基礎ゼミ II 問題 9 2023年12月4日

問 9.1. 次の関数の極値を求めよ。

(1)
$$z = x^3 + y^3 - 3axy$$

(2)
$$z = xy(x^2 + y^2 - 1)$$

(3)
$$z = (2x - x^2)(3y - y^2)$$

$$(4) \quad z = x^2 + xy + y^2 - 2x - 3y$$

(5)
$$z = x^2 - 2xy^2 + y^4 - y^5$$

(6)
$$z = \frac{x+y}{x^2 + y^2 + 1}$$

$$(7) \quad z = \sin x + \sin y + \sin(x+y)$$

(8)
$$z = \frac{x^2y^2}{(x-1)(y-1)}$$

問 9.2. 次の等式で与えられる x の陰関数 y の極値を求めよ。

(1)
$$x^3 - 3axy + y^3 = 0$$
 $(a > 0)$

(2)
$$x^3y^3 = x - y$$

問 9.3. 次の等式で与えられる x, y の陰関数 z の極値を求めよ。

(1)
$$x^2 + 2y^2 + z^2 + 2yz + 2zx - 2xy + 12 = 0$$
 (2) $x^2 + 2y^2 + 5z^2 - 2xy - 2yz = 4$

$$(2) \quad x^2 + 2y^2 + 5z^2 - 2xy - 2yz = 4$$

問 9.4. 次の関数 f の示された条件のもとでの極値を求めよ。

(1)
$$f(x,y) = xy$$
, $4x^2 + y^2 = 4$

(2)
$$f(x,y) = x^3 + y^3$$
, $4x^2 + 3y^2 = 4$

(3)
$$f(x,y) = x^2 + y^2$$
, $x^3 + y^3 = 3xy$

(1)
$$f(x,y) = xy$$
, $4x^2 + y^2 = 4$
(2) $f(x,y) = x^3 + y^3$, $4x^2 + 3y^2 = 4$
(3) $f(x,y) = x^2 + y^2$, $x^3 + y^3 = 3xy$
(4) $f(x,y,z) = xy + yz + zx$, $x^2 + y^2 + z^2 = 1$

問 9.5. 関数 $f(x,y)=(y-x^2)(y-2x^2)$ について、原点はこれを通る任意の直線上における f の極小点である ことを示せ。また、原点で f が極値となるか調べよ。

問 9.6. 2 辺の長さが x,y の長方形を底面とするマスをつくる。このマスの表面積 xy+2(xz+yz)=a を一定の もとで、体積 V = xyz を最大にする x, y, z とそのときの体積を求めよ。

問 9.7. 曲面 $x^{2/3} + y^{2/3} + z^{2/3} = a^{2/3}$ の接平面と x 軸, y 軸, z 軸との交点をそれぞれ P, Q, R とするとき、三 角形 PQR の重心は一定の球面上にあることを示せ。

問 9.8. f(x,y) は C^1 級とする。曲線 f(x,y)=0 上の点とこの曲線外の点 A との距離が点 P で極値をとると き。直線 AP はこの曲線の法線であることを示せ。

問 9.9. f(x,y) は C^1 級とする。曲線 $f\left(\frac{x-a}{z-c},\frac{y-b}{z-c}\right)=0$ の上の点 (x_0,y_0,z_0) における接平面の方程式を述 べよ。また、接平面は点(a,b,c)を通ること

問 9.10. 次の重積分を計算をせよ。ただし D を図示しそれを縦線領域もしくは横線領域で表すこと。

(1)
$$\iint_{\mathbb{D}} (x+y) \, dx dy$$
, $D: y^2 \le x \le y+2$ (2) $\iint_{\mathbb{D}} \sqrt{x} \, dx dy$, $D: x^2 + y^2 \le 2x$

$$D: y^2 < x < y + 2$$

(2)
$$\iint_{\mathbb{R}} \sqrt{x} \, dx dy,$$

$$D: x^2 + y^2 \le 2x$$

問 9.11. 積分順序を交換することによって、次の累次積分を計算せよ。

(1)
$$\int_{0}^{a} dx \int_{0}^{\sqrt{a^{2}-x^{2}}} x^{3} \sqrt{x^{2}+y^{2}} dx \qquad (a>0)$$
 (2)
$$\int_{1}^{e} dx \int_{0}^{\log x} \frac{1+y}{x} dy$$

(2)
$$\int_{1}^{e} dx \int_{0}^{\log x} \frac{1+y}{x} dy$$

- 問 9.4 ヒント: Lagrange の未定乗数法 (教科書 p.183 定理 20) に関する問題ですが、他の解き方でも構いません。
- (1), (2) 条件式は楕円の周上の点なので、例えば極値の候補が楕円上の点で反時計回りに $P_1 \dots P_6$ であり、その とき $f(P_1) < f(P_2) > f(P_3) < f(P_4) > f(P_5) < f(P_6) > f(P_1)$ となっていれば、 $f(P_1)$, $f(P_3)$, $f(P_5)$ で極小、 $f(P_2), f(P_4), f(P_6)$ で極大となることがわかる。

[別解] (1) なら $x=\cos\theta,y=2\sin\theta$ (0 $\leq\theta\leq2\pi$) と媒介変数表示して $F(\theta)=f(\cos\theta,2\sin\theta)$ の極値を調べ てもできます。

- (a) 極値となる点の候補が (0,0) と $\left(\frac{3}{2},\frac{3}{2}\right)$ であることを導く。 (b) (0,0) については、f(x,y)>0 $((0,0)\neq(0,0))$ であるから、f(x,y) が (0,0) で極小値 0 をとることがわかる。
- (c) y=g(x) を $\frac{3}{2}=g\left(\frac{3}{2}\right)$ を満たす $\varphi(x,y)=0$ の陰関数とし、F(x)=f(x,g(x)) とおく。このとき、 $F''\left(\frac{3}{2}\right) < 0$ を示し、解答を完結させる。

[別解] 媒介変数表示を用いるときは、 $\frac{y}{x}=t$ とおき条件式 $x^3+y^3=3xy$ に代入することで、 $x=\frac{3t}{1+t^3},y=t$ $\frac{3t^2}{1+t^3}$ と表せることがわかります。これより、 $F(t)=f\Big(\frac{3t}{1+t^3},\frac{3t^2}{1+t^3}\Big)$ の極値を求める問題となります。

(4) 条件式は球面上の点なので、例えば極値の候補が 2 点 P,Q で、そこで f(P) < f(Q) であれば、f(x,y,z) は Pで極小値 (実は最小値)、Qで極大値 (実は最大値) をとります。

問 9.5 ヒント:

「原点で f が極値となるか」は xy 平面上に f(x,y)>0 となる領域と f(x,y)<0 となる領域を図示すればわかり ます。

問 9.6 ヒント:

xy + 2(xz + yz) = a かつ x, y, z > 0 となる範囲で f(x, y, z) = xyz の最大値を探す問題ですが、この範囲で f(x,y,z) > 0 であり、xy + 2(xz + yz) = a かつ x,y,z のいずれかが 0 となるとき f(x,y,z) = 0 となることか ら、xy + 2(xz + yz) = a かつ x, y, z > 0 となる範囲で f(x, y, z) の極値が一つならそこで最大となります。