確率統計学I

杉浦 誠

2019年3月26日

目次

1	確率空間	3
1.1	確率の定義	3
1.2	条件付確率と事象の独立・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2	確率変数	7
2.1	確率変数の定義	7
2.2	可測関数と確率変数	7
2.3	分布関数	8
2.4	多次元確率変数	13
2.5	条件付き確率分布	16
2.6	確率変数の独立性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
3	確率変数の変換	20
3.1	絶対連続型確率変数の変換	20
3.2	正規母集団における標本平均・不偏分散とその関数の分布	22
4	期待值	25
4.1	Lebesgue 積分	25
4.2	期待値の定義	26
4.3	積率 (モーメント)・分散	28
4.4	共分散と相関係数	32
4.5	条件付き期待値	37
Α	Appendix	39
A.1	関数の級数展開について....................................	39
A.2	Stirling の公式	41
A.3	(整級数ともいう。)	42
A.4	Cantor 集合と Cantor 関数	44

これは

- 柳川 尭 統計数学 近代科学社
- ◆ 浅野, 江島, 李 共著 基本統計学 森北出版 を教科書として作った講義ノートです。

1 確率空間

1.1 確率の定義

定義 1.1 集合 $\Omega(\neq\emptyset)$ の部分集合からなる集合を Ω 上の集合族という。 Ω 上の集合族 $\mathcal F$ が次の条件

- (i) $\Omega \in \mathcal{F}$
- (ii) $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$ (A^c は A の補集合を表す。)
- (iii) $A_1, A_2, \dots, A_n, \dots \in \mathcal{F} \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

を満たすとき、この \mathcal{F} を Ω 上の σ 集合族という。また、 (Ω,\mathcal{F}) を可測空間という。

確率論では、 σ 集合族 F の元を事象という。特に、 Ω を全事象と、 $\emptyset = \Omega^c$ を空事象という。

定理 1.1 (Ω, \mathcal{F}) を可測空間、 $\{B_n\} \subset \mathcal{F}$ とすると次が成り立つ。

$$(0) \quad \emptyset \in \mathcal{F}, \quad (1) \quad \bigcup_{i=1}^{n} B_i \in \mathcal{F}, \quad (2) \quad \bigcap_{i=1}^{n} B_i \in \mathcal{F}, \quad (3) \quad \bigcap_{n=1}^{\infty} B_n \in \mathcal{F}, \quad (4) \quad B_1 \backslash B_2 := B_1 \cap B_2^{\, c} \in \mathcal{F}$$

証明: (0) 定義 1.1 (i), (ii) より $\Omega^c \in \mathcal{F}$. よって、 $\Omega^c = \emptyset$ より主張を得る。

- (1) $A_i = B_i \ (1 \le i \le n), \ A_i = \emptyset \ (i \ge n+1)$ とおくと、仮定と (0) より $\forall i$ に対し $A_i \in \mathcal{F}$ であるから、定義 1.1 (iii) より $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^\infty A_i \in \mathcal{F}$ を得る。
- (2) 定義 1.1 (ii) より $B_i^c \in \mathcal{F}$ であるから、(1) と de Morgan の法則により $\bigcap_{i=1}^n B_i = \left(\bigcup_{i=1}^n B_i^c\right)^c \in \mathcal{F}$.
- (3) 定義 1.1 (iii) と de Morgan の法則により (2) と全く同様に証明できる。
- (4) $A_1 = B_1, A_2 = B_2^c, n = 2$ として (2) を用いればよい。

定義 1.2 (Ω, \mathcal{F}) を可測空間とする。次の条件を満たす $P: \mathcal{F} \to [0,1]$ を (Ω, \mathcal{F}) 上の確率測度という。

- (i) $P(\Omega) = 1$
- (ii) $A_n \in \mathcal{F}, n=1,2,\ldots,$ が任意の $m \neq n$ なる組に対し $A_m \cap A_n = \emptyset$ を満たせば (このとき A_1,A_2,\ldots は互いに排反であるという)、 $P\Big(\bigcup_{n=1}^\infty A_n\Big) = \sum_{n=1}^\infty P(A_n).$

このとき、 (Ω, \mathcal{F}, P) を確率空間という。また、 \mathcal{F} の元を事象、 $A \in \mathcal{F}$ に対し P(A) を事象 A の確率という。

例 1.1 (古典的確率模型) $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\} \quad (有限集合)$

$$\mathcal{F}=2^{\Omega}$$
 (Ω のべき集合; Ω の部分集合すべてからなる集合族) $P(A)=\frac{\#A}{\#\Omega},\ A\in\mathcal{F}$ ($\#A$ は集合 A の元の個数)

この確率空間 (Ω, \mathcal{F}, P) を古典的確率模型という。以下、その例をいくつか例示する。

- a) サイコロを 1 回投じる: $\Omega=\{1,2,3,4,5,6\},\,P(\{\omega\})=1/6\;(\forall\omega\in\Omega).$ 例えば、 $P(奇数の目が出る)=P(\{1,3,5\})=\frac{\#\{1,3,5\}}{\#\Omega}=\frac{3}{6}=\frac{1}{2}.$
 - b) コインを 2 回投げる: $\Omega=\{H,T\}^2=\{HH,HT,TH,TT\},\ P(\{\omega\})=1/4\ (\forall\omega\in\Omega).$ (H は表 (head), T は裏 (tail) を意味する。)
- c) 箱の中に黒球 a 個と白球 b 個が入っている。この箱から球を 1 個ずつ取り出す復元抽出を n 回行う。この場合 $\Omega = \{B_1, \dots, B_a, W_1, \dots, W_b\}^n$ と考える。 $\#\Omega = (a+b)^n$ に注意する。A で黒球がちょうど k 回出る事象とする。このとき、 $\#A = \binom{n}{k} a^k b^{n-k}$ であるから、 $P(A) = \binom{n}{k} \frac{a^k b^{n-k}}{(a+b)^n}$.

定理 1.2 (Ω, \mathcal{F}, P) を確率空間とする。

(1) $P(\emptyset) = 0$

(2)
$$B_i \in \mathcal{F}, i = 1, ..., n$$
, が互いに排反であれば、 $P\left(\bigcup_{i=1}^n B_i\right) = \sum_{i=1}^n P(B_i)$.

- (3) $A, B \in \mathcal{F}, A \subset B \Longrightarrow P(A) \leq P(B)$
- (4) $B \in \mathcal{F} \Longrightarrow P(B^{c}) = 1 P(B)$
- (5) $A, B \in \mathcal{F}$ に対し $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

証明: (1) 定理 1.1 に注意して、 $a=P(\emptyset)$ とおくと、 $0\leq a\leq 1$. ここで、 $A_n=\emptyset$ $(\forall n)$ とおくと、 $\bigcup_{n=1}^{\infty}A_n=\emptyset$ で、 $A_m \cap A_n = \emptyset \ (m \neq n)$ であるから定義 1.2 (ii) より $P(\emptyset) = \sum_{n=1}^{\infty} P(\emptyset)$ を得る。もし a > 0 であれば、 これは $a=\infty$ を意味し、 $0 \le a \le 1$ に矛盾する。従って、 $P(\emptyset)=0$ となる。

- $(2) A_i = B_i \ (1 \le i \le n), A_i = \emptyset \ (i \ge n+1)$ とおくと、 $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{n} B_i$ で、 $A_i \cap A_i = \emptyset \ (i \ne j)$ である から、定義 1.2 (ii) と (1) より、 $P(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n P(B_i) + \sum_{i=n+1}^\infty P(\emptyset) = \sum_{i=1}^n P(B_i)$.
- (3) $B_1 = A$, $B_2 = B \setminus A$ とすると $B = B_1 \cup B_2$, $B_1 \cap B_2 = \emptyset$ より (2) から、 $P(B) = P(B_1) + P(B_2) \geq P(A)$.
- $(4) B \cup B^c = \Omega, B \cap B^c = \emptyset$ より、定義 1.2 (i) と (2) により、 $P(B) + P(B^c) = P(\Omega) = 1$ となり従う。
- (5) $B_1 = A \cap B$, $B_2 = A \cap B^c$, $B_3 = A^c \cap B$ とおくと、 B_1, B_2, B_3 は互いに排反であるから、(2) により $A = B_1 \cup B_2$ から $P(A) = P(B_1) + P(B_2), B = B_1 \cup B_3$ から $P(B) = P(B_1) + P(B_3), A \cup B = B_1 \cup B_2 \cup B_3$ から $P(A \cup B) = P(B_1) + P(B_2) + P(B_3)$. よって、与式は従う。

定理 **1.3** $A_1, A_2, \ldots \in \mathcal{F}$ に対し $P(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} P(A_n)$.

証明: $B_1=A_1,\,B_2=A_2\backslash A_1,\,\ldots,\,B_n=A_n\backslash (\bigcup_{k=1}^{n-1}A_k)$ とおくと、 B_1,B_2,\ldots は互いに排反で $\bigcup_{n=1}^{\infty}B_n=A_n$ $\bigcup_{n=1}^{\infty} A_n$. よって、定義 1.2 (ii) により、

$$P(\bigcup_{n=1}^{\infty} A_n) = P(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} P(B_n) \le \sum_{n=1}^{\infty} P(A_n).$$

ここで、最後の不等式は $A_n \subset B_n$ と定理 1.2(3) を用いた。

定理 **1.4** (Ω, \mathcal{F}, P) を確率空間、 $\{B_n\} \subset \mathcal{F}$ とする。

- (1) $B_1 \subset B_2 \subset \cdots \subset B_n \subset \cdots \implies P(\bigcup_{n=1}^{\infty} B_n) = \lim_{n \to \infty} P(B_n).$ (2) $B_1 \supset B_2 \supset \cdots \supset B_n \supset \cdots \implies P(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to \infty} P(B_n).$

証明: (1) $A_1=B_1,$ $A_n=B_n\setminus\bigcup_{k=1}^{n-1}B_k$ $(n\geq 2)$ とおくと、 A_1,A_2,\ldots は互いに排反で $\bigcup_{k=1}^nA_k=B_n$ $(n \in \mathbf{N}),$ $\bigcup_{k=1}^{\infty} A_k = \bigcup_{n=1}^{\infty} B_n$. よって、定義 1.2 (ii), 定理 1.2 (2) により、

$$P(\bigcup_{n=1}^{\infty}B_n)=P(\bigcup_{k=1}^{\infty}A_k)=\sum_{k=1}^{\infty}P(A_k)=\lim_{n\to\infty}\sum_{k=1}^{n}P(A_k)=\lim_{n\to\infty}P(\bigcup_{k=1}^{n}A_k)=\lim_{n\to\infty}P(B_n).$$

(2) $B_1^c \subset \cdots \subset B_n^c \subset \cdots$ であるから、定理 1.2 (4), de Morgan の法則と前半より

$$P(\bigcap_{n=1}^{\infty}B_n) = 1 - P(\left(\bigcap_{n=1}^{\infty}B_n\right)^{\mathrm{c}}) = 1 - P(\bigcup_{n=1}^{\infty}B_n^{\mathrm{c}}) = 1 - \lim_{n \to \infty}P(B_n^{\mathrm{c}}) = \lim_{n \to \infty}(1 - P(B_n^{\mathrm{c}})) = \lim_{n \to \infty}P(B_n). \qquad \Box$$

定理 1.5 Ω を集合とし A をその部分集合族とする。A を含む Ω 上の σ 集合族はいくつもある。これに index を付け、 \mathcal{F}_{λ} ($\lambda \in \Lambda$) と表す。このとき、次が成り立つ。

- (1) $\bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ は σ 集合族である。
- (2) $\bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ は A を含む σ 集合族の中で最小の σ 集合族である。

証明: (1) は演習問題とする。(2) まず、A を含む Ω 上の σ 集合族として、 Ω のべき集合があることに注意する (よって Λ は空ではない)。(1) より、 $F:=\bigcap_{\lambda\in\Lambda}F_\lambda$ が A を含む σ 集合族の中で最小であることを示せばよい。今、F より小さい (真部分集合となる)、A を含む σ 集合族 F_0 があったとする。 F_0 は A を含む σ 集合族ので、 F_λ のいずれかである。従って、 $F_0 \supset \bigcap_{\lambda\in\Lambda}F_\lambda = F$ であるが、これは F_0 が F の真部分集合であることに矛盾する。

1.2 条件付確率と事象の独立

確率空間 (Ω, \mathcal{F}, P) において $C \in \mathcal{F}, P(C) > 0$ のとき、次のように定める。

$$P(A|C) := \frac{P(A \cap C)}{P(C)} \qquad (A \in \mathcal{F})$$

定理 1.6 $P(\cdot|C)$ は可測空間 (Ω, \mathcal{F}) 上の確率測度である。

証明: 定理 1.2 (3) より $0 \le P(A \cap C) \le P(C)$ となり、 $0 \le P(A|C) \le 1$. 定義 1.2 (i) は明らか。(ii) は $\{A_n\} \subset \mathcal{F}$ が互いに排反であれば、 $B_n = A_n \cap C$ とすると $B_n \in \mathcal{F}$ で $B_m \cap B_n = A_m \cap A_n \cap C = \emptyset$ $(m \ne n)$ より、

$$P(\bigcup_{n=1}^{\infty} A_n | C) = \frac{P((\bigcup_{n=1}^{\infty} A_n) \cap C)}{P(C)} = \frac{P(\bigcup_{n=1}^{\infty} B_n)}{P(C)} \frac{\sum_{n=1}^{\infty} P(B_n)}{P(C)} = \sum_{n=1}^{\infty} \frac{P(A_n \cap C)}{P(C)} = \sum_{n=1}^{\infty} P(A_n | C). \square$$

定義 1.3 P(A|C) を事象 C が与えられたときの $A \in \mathcal{F}$ の条件付確率という。また、 $P(\cdot |C)$ を C が与えられたときの条件付確率測度という。

定理 1.7 次が成り立つ。

(1) (乗法公式) $P(A_1 \cap A_2 \cap \cdots \cap A_n) > 0, A_i \in \mathcal{F} \ (i = 1, 2, \dots, n)$ のとき

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1) \cdots P(A_n|A_1 \cap \cdots \cap A_{n-1})$$

(2) (全確率の公式) $\{A_n\}\subset \mathcal{F}$ を Ω の分割、即ち、 $\{A_n\}$ は互いに排反で $P(A_n)>0$ $(n\in \mathbf{N})$ かつ $\Omega=\bigcup_{n=1}^\infty A_n$ を満たすとする。このとき、

$$P(A) = \sum_{i=1}^{\infty} P(A_i)P(A|A_i) \qquad (A \in \mathcal{F})$$

(3) (Bayes の定理) $\{A_n\}\subset \mathcal{F}$ を Ω の分割とする。このとき、 $B\in \mathcal{F}$ で P(B)>0 なるものに対して次が成立する。

$$P(A_k|B) = \frac{P(A_k)P(B|A_k)}{\sum_{n=1}^{\infty} P(A_n)P(B|A_n)}.$$

注意 1.1 定理 1.7 (2), (3) は Ω が有限個の $A_1, \ldots, A_N \in \mathcal{F}$ によって分割されている場合にも成立する。証明は、定義 1.2 (ii) のかわりに定理 1.2 (2) を用いることで、全く同様にできる。

証明: (1) $P(A \cap C) = P(A|C)P(C)$ に注意する。これを繰り返し用いて、

(右辺)= $P(A_1 \cap \cdots \cap A_{n-1})P(A_n|A_1 \cap \cdots A_{n-2} \cap A_{n-1}) = P(A_1 \cap \cdots \cap A_{n-2})P(A_{n-1}|A_1 \cap \cdots \cap A_{n-2})P(A_n|A_1 \cap \cdots \cap A_{n-1}) = \cdots = (左辺).$

(2)
$$(\exists i \exists j) = \sum_{n=1}^{\infty} P(A_n) \frac{P(B \cap A_n)}{P(A_n)} = P(\bigcup_{n=1}^{\infty} (B \cap A_n)) = P(B \cap \bigcup_{n=1}^{\infty} A_n) = P(B \cap \Omega) = P(B).$$

n=1 ここで、第 2 の等号は $m \neq n$ であれば $(B \cap A_m) \cap (B \cap A_n) = B \cap A_m \cap A_n = \emptyset$ より $\{B \cap A_n\}$ は互いに排反であることに注意し定義 1.2 (ii) を適用した。

(3) (右辺)=
$$\frac{P(A_k)\frac{P(B\cap A_k)}{P(A_k)}}{P(B)} = \frac{P(B\cap A_k)}{P(B)} = P(A_k|B)$$
. ここで、第1の等号は(2)を用いた。

例題 1.1 ある病気の判定薬があり、病気の人に対して 98% の確率で陽性反応 (病気であると判定) を示し、健康者に対して 2% の確率で陽性反応を示す。この病気の罹病率は 1% であるとする。ある人がこの判定薬で陽性反応がでたとき、この人が本当にその病気に罹っている確率を求めよ。

解: A をその病気に罹っている事象、B を陽性反応を示す事象とすると。病気の人に対して 98% の確率で陽性反応を示すから P(B|A)=0.98. 健康者に対して 2% の確率で陽性反応から $P(B|A^c)=0.02$. また、この病気の罹病率は 1% より P(A)=0.01. 求める確率は P(A|B) である。以上の式より、

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A^{c})P(B|A^{c})} = \frac{0.01 \cdot 0.98}{0.01 \cdot 0.98 + 0.99 \cdot 0.02} = \frac{49}{49 + 99} = \frac{49}{148} (= 0.331...)$$

定義 1.4 (1) $P(A \cap B) = P(A)P(B)$ のとき、事象 A と B は独立であるといい、 $A \perp \!\!\! \perp B$ と表わす。

(2) 事象の列 $\{B_n\} \subset \mathcal{F}$ (有限個でも無限個でもよい) に対し、

$$P(B_{n_1} \cap B_{n_2} \cap \dots \cap B_{n_l}) = P(B_{n_1})P(B_{n_2}) \dots P(B_{n_l}) \quad \text{for all } n_1 < n_2 < \dots < n_l$$
 (1.1)

を満たすとき、事象の列 $\{B_n\}$ は独立であるという。

定理 1.8 (1) $A, B \in \mathcal{F}$ とし P(B) > 0 のとき、 $A \perp \!\!\!\perp B \iff P(A|B) = P(A)$.

(2) 事象の列 B_1, B_2, \ldots, B_n が独立であれば、任意の $k=1,\ldots,n$ に対して、 $B_1^c, \ldots, B_k^c, B_{k+1}, \ldots, B_n$ も独立となる。

証明: (1) 独立の定義から明らか。(2) B_1, B_2, \ldots, B_n が独立ならば、 B_1^c, B_2, \ldots, B_n も独立となることを示せばよい。実際、これより $B_2, B_3, \ldots, B_n, B_1^c$ が独立となるから、 $B_2^c, B_3, \ldots, B_n, B_1^c$ は独立となり、これを繰り返すことで主張を得る。

このため任意の $1 \le n_1 < n_2 < \cdots < n_l \le n$ に対し (1.1) に相当する式を示せばよが、 $n_1 \ge 2$ の場合は B_1^c が関与しないため (1.1) は明らかに成り立つ。 $n_1 = 1$ の場合:

$$P(B_1^c \cap B_{n_2} \cap \dots \cap B_{n_l}) = P(B_1^c)P(B_{n_2}) \dots P(B_{n_l})$$
(1.2)

を示せばよい。まず、

$$P(B_1 \cap B_{n_2} \cap \dots \cap B_{n_l}) + P(B_1^c \cap B_{n_2} \cap \dots \cap B_{n_l}) = P(B_{n_2} \cap \dots \cap B_{n_l})$$

に注意する。ここで、 B_1, B_2, \cdots, B_n の独立性を用いると

$$P(B_1 \cap B_{n_2} \cap \dots \cap B_{n_l}) = P(B_1)P(B_{n_2}) \dots P(B_{n_l}), \quad P(B_{n_2} \cap \dots \cap B_{n_l}) = P(B_{n_2}) \dots P(B_{n_l})$$

となる。よって、

$$P(B_1^c \cap B_{n_2} \cap \dots \cap B_{n_l}) = \{1 - P(B_1)\}P(B_{n_2}) \dots P(B_{n_l}) = P(B_1^c)P(B_{n_2}) \dots P(B_{n_l}). \quad \Box$$

注意 1.2 (1) 事象 A,B,C に対し、2 つの事象の組すべてが独立であっても、A,B,C が独立であるとは限らない。

実際、 $\Omega=\{1,2,3,4\}$, $P(\{k\})=1/4$ (k=1,2,3,4) において、 $A=\{1,2\}$, $B=\{1,3\}$, $C=\{2,3\}$ とおくと、P(A)=P(B)=P(C)=1/2, $P(A\cap B)=P(A\cap C)=P(B\cap C)=1/4$ となるから、どの 2 つの事象も独立となる。

一方、 $A\cap B\cap C=\emptyset$ であるから、 $0=P(A\cap B\cap C)\neq P(A)P(B)P(C)=1/8$ となり、A,B,C は独立とならない。

(2) $P(A \cap B \cap C) = P(A)P(B)P(C)$ であっても、 $A \perp \!\!\!\perp B, B \perp \!\!\!\perp C, C \perp \!\!\!\perp A$ は必ずしも成立しない。

実際、 $\Omega=\{1,2,3,4\},\ P(\{1\})=\frac{1}{\sqrt{2}}-\frac{1}{4},\ P(\{2\})=\frac{3}{4}-\frac{1}{\sqrt{2}},\ P(\{3\})=P(\{4\})=1/4$ において、 $A=\{1,2\},\ B=\{2,3\},\ C=\{2,4\}$ とおくと、 $P(A\cap B\cap C)=P(\{2\})=\frac{3}{4}-\frac{1}{\sqrt{2}}=P(A)P(B)P(C)$ となるが、 $P(A\cap B)=P(\{2\})=\frac{3}{4}-\frac{1}{\sqrt{2}},\ P(A)P(B)=\frac{1}{2}\Big(1-\frac{1}{\sqrt{2}}\Big)$ となる。 $P(B\cap C)\neq P(B)P(C),\ P(A\cap C)\neq P(A)P(C)$ も同様。

2 確率変数

2.1 確率変数の定義

可測空間 (Ω, \mathcal{F}) において、 Ω 上の実数値関数 $X:\Omega \to \mathbf{R}$ が $\forall a \in \mathbf{R}$ に対して

$$\{\omega; X(\omega) \le a\} \in \mathcal{F}$$

を満たすとき X を (Ω, \mathcal{F}) 上の確率変数という。

例 2.1 1回のコイン投げでは、 $\Omega = \{H, T\}, \mathcal{F} = 2^{\Omega} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$ であった。このとき、

 $\forall a \in \mathbf{R}$ に対して $\{\omega: X(\omega) < a\} \in \mathcal{F}$ がわかる。従って、X は確率変数である。

定理 2.1 X は (Ω, \mathcal{F}) 上の確率変数 $\iff \forall a \in \mathbf{R}$ に対して $\{\omega; X(\omega) < a\} \in \mathcal{F}$.

証明:
$$(\Longrightarrow)$$
 $\{\omega; X(\omega) < a\} = \bigcup_{n=1}^{\infty} \{\omega; X(\omega) \le a - \frac{1}{n}\}$ より従う。

(⇐━)
$$\{\omega; X(\omega) \leq a\} = \bigcap_{n=1}^{\infty} \{\omega; X(\omega) < a + \frac{1}{n}\}$$
 と定理 1.2 (2) より従う。 \square ここで、 σ 集合族の定義から

$$\{\omega; X(\omega) \le a\} \in \mathcal{F} \iff \{\omega; X(\omega) > a\} \in \mathcal{F},$$

$$\{\omega; X(\omega) < a\} \in \mathcal{F} \iff \{\omega; X(\omega) > a\} \in \mathcal{F}.$$

これと定理 2.1 より、一般に次が成立する。

定理 2.2 X は (Ω, \mathcal{F}) 上の確率変数 \iff 任意の区間 I に対して $\{\omega; X(\omega) \in I\} \in \mathcal{F}$.

証明: (\Longleftrightarrow) は明らか。 (\Longrightarrow) について、 $I=(-\infty,b),(-\infty,b],(a,\infty),[a,\infty)$ の場合はすでに示した。 I=(a,b),[a,b],(a,b],[a,b) の場合に $\{\omega;X(\omega)\in I\}\in\mathcal{F}$ を示せばよい。例えば、I=(a,b) のときは、

$$\{\omega; X(\omega) \in (a,b)\} = \{\omega; X(\omega) < b\} \cap \{\omega; X(\omega) > a\}$$

より従う。他は演習問題とする。 □

2.2 可測関数と確率変数

定理 1.5 より、 ${f R}$ 上の区間 (a,b] 全体からなる族を含む最小の σ 集合族が存在する。この集合族を ${f R}$ の Borel 集合族といい、 ${\cal B}({f R})$ と表す。Borel 集合族に属する集合を Borel 集合という。

補題 2.1 高々可算個の元からなる集合 E は Borel 集合である。また、開集合 G も Borel 集合である。

証明: 一点からなる集合 $\{x\}$ は $\{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x\right]$ となるから Borel 集合である。よって、定義 1.1 (iii) により E は Borel 集合となる。次に開集合 G の各点 $x \in G$ に対して、 $a_x, b_x \in \mathbf{Q}$ があって、 $x \in (a_x, b_x] \subset G$ とできる。このとき、 $\bigcup_{x \in G} (a_x, b_x] = G$ であるが、有理数体 \mathbf{Q} は可算集合なので、この左辺は可算和となる。したがって、定義 1.1 (iii) により G は Borel 集合となる。

補題 2.2 可測空間 (Ω, \mathcal{F}) において、関数 $X:\Omega\to \mathbf{R}$ によって与えられる \mathbf{R} の部分集合族 $\{A\subset \mathbf{R}; X^{-1}(A)\in \mathcal{F}\}$ は σ 集合族である。ただし、 $X^{-1}(A)=\{\omega\in\Omega; X(\omega)\in A\}$ とする。

証明: $X^{-1}(\mathbf{R}) = \Omega$, $X^{-1}(A^c) = (X^{-1}(A))^c$, $X^{-1}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} X^{-1}(A_n)$ となることを示せば、容易に証明できるので演習問題とする。

定理 2.3 X が (Ω, \mathcal{F}) 上の確率変数 \iff 任意の Borel 集合 $B \in \mathcal{B}(\mathbf{R})$ に対して $\{\omega; X(\omega) \in B\} \in \mathcal{F}$.

証明: (\Longleftrightarrow) $B = (-\infty, a]$ ととれば明らか。

(⇒) X を確率変数とし、 $\mathcal{A} = \{A \subset \mathbf{R}; X^{-1}(A) \in \mathcal{F}\}$ とおく。定理 2.2 より $(a,b] \in \mathcal{A}$ であり、補題 2.2 より σ 集合族である。従って、 $\mathcal{B}(\mathbf{R})$ は区間 (a,b] 全体からなる集合族を含む最小の σ 集合族であるから $\mathcal{A} \supset \mathcal{B}(\mathbf{R})$ となる。よって $B \in \mathcal{B}(\mathbf{R})$ なら $B \in \mathcal{A}$ となり、 $X^{-1}(B) \in \mathcal{F}$ を得る。

定義 2.1 可測空間 $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ において、関数 $f: \mathbf{R} \to \mathbf{R}$ が任意の $a \in \mathbf{R}$ に対して $\{x; f(x) \leq a\} \in \mathcal{B}(\mathbf{R})$ を満たすとき、f は $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ 上の可測関数、あるいは Borel 可測関数であるという。

注意 2.1 f が $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ 上で可測であることは、f が $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ 上の確率変数であることは同値である。

定理 2.4 高々可算個の点を除いて連続な関数 $f: \mathbf{R} \to \mathbf{R}$ は Borel 可測である。特に、連続関数は Borel 可測 関数である。

証明: D_f は高々可算個の点からなる集合で、f は $\mathbf{R} \setminus D_f$ で連続とする。 $\forall a \in \mathbf{R}$ に対して $\{x; f(x) > a\}$ が Borel 集合であることを示せばよい。 $C_{a,1} := \{x \in D_f; f(x) > a\}$ は高々可算なのでこれは Borel 集合。また、 $C_{a,2} := \{x \in \mathbf{R} \setminus D_f; f(x) > a\}$ は開集合 G を用いて $C_{2,a} = G \setminus D_f$ と表せる。実際、 $\forall x \in C_{a,2}$ に対して、 $\delta'_x > 0$ を $y \in (x - \delta'_x, x + \delta'_x) \setminus D_f$ ならば |f(y) - f(x)| < f(x) - a となるように選べば、このとき f(y) > a なので $(x - \delta'_x, x + \delta'_x) \setminus D_f \subset C_{a,2}$. よって、 $G = \bigcup_{x \in C_{a,2}} (x - \delta'_x, x + \delta'_x)$ とおくと、G は \mathbf{R} の開集合で、 $C_{a,2} = G \setminus D_f$ と表せるので補題 2.1 より $C_{a,2} \in \mathcal{B}(\mathbf{R})$. よって、 $\{x; f(x) < a\} = C_{a,1} \cup C_{a,2} \in \mathcal{B}(\mathbf{R})$.

定理 **2.5** X が (Ω, \mathcal{F}) 上の確率変数、 $f: \mathbf{R} \to \mathbf{R}$ が Borel 可測関数のとき、 $f(X(\omega))$ は (Ω, \mathcal{F}) 上の確率変数 である。

証明: $\forall a \in \mathbf{R}$ とし、 $B = \{x; f(x) \leq a\}$ とおくと、f は可測だから $B \in \mathcal{B}(\mathbf{R})$. よって、定理 2.3 により $\{\omega; f(X(\omega)) \leq a\} = \{\omega; X(\omega) \in B\} \in \mathfrak{B}$ を得る。

例 2.2 定理 2.4、定理 2.5 より、X が確率変数であるとき aX+b (a,b は定数), X^a , \sqrt{X} , $\log X$, e^X , $\cos X$ などは、すべて確率変数である。

2.3 分布関数

定義 2.2 (1) 確率空間 (Ω, \mathcal{F}, P) 上の確率変数 X に対して、 $F_X(x) = P(X \le x) = P(\{\omega; X(\omega) \le x\})$ で定義される関数 $F_X: \mathbf{R} \to [0,1]$ を確率変数 X の分布関数という。

(2) 確率変数 X,Y に対して、その分布関数が一致するとき、即ち $F_X(x)=F_Y(x)$ ($\forall x\in \mathbf{R}$) となるとき、X と Y は同じ分布に従うという。

 $\{\omega; X(\omega) \le a\}$ を単に $\{X \le a\}$ と書くことが多い。以下このような略した書き方を用いる。

定理 **2.6** $P(a < X \le b) = F_X(b) - F_X(a), a, b \in \mathbf{R}$ (a < b)

証明: $A = \{X \le a\}, B = \{a < X \le b\}$ とすると、 $A \cap B = \emptyset, A \cup B = \{X \le b\}$ より、 $F_X(b) = P(A \cup B) = P(A) + P(B) = F_X(a) + P(a < X \le b).$

定理 2.7 $F_X(x)$ を確率変数 X の分布関数とする。このとき、次が成立する。

- (1) F_X は単調非減少である、即ち、x < y ならば $F_X(x) \le F_X(y)$.
- (2) 右連続関数である、即ち、 $F_X(a+0):=\lim_{x\to a+0}F_X(x)=F_X(a)$ ($\forall a\in\mathbf{R}$).
- (3) $F_X(-\infty) := \lim_{x \to -\infty} F_X(x) = 0, \ F_X(\infty) := \lim_{x \to \infty} F_X(x) = 1.$

証明: (1) x < y より $\{X \le x\} \subset \{X \le y\}$. 従って、定理 1.2 (3) により $F_X(x) = P(X \le x) \le P(X \le y) = F_X(y)$ を得る。

- $\{a_n\}$ を単調減少で a に収束する任意の数列とし、 $C_n=\{X\leq a_n\}$ とおく。このとき、 $\bigcap_{n=1}^{\infty}C_n=\{X\leq a\}$ となる。実際、「つ」は $\forall n$ で C_n つ $\{X\leq a\}$ だから明らか。 $\omega\in\{X>a\}$ とすると $X(\omega)>a$ で $a_n\to a+0$ $(n\to\infty)$ より、ある N があって $n\geq N\Longrightarrow a_n-a< X(\omega)-a$ 、これより $X(\omega)>a_N$ 、即ち $\omega\notin C_N$ つ $\bigcap_{n=1}^{\infty}C_n$ となり「 \subset 」が従う。よって、 $\{C_n\}$ は単調減少あったらから、定理 1.4 (2) より $\lim_{n\to\infty}F_X(a_n)=\lim_{n\to\infty}P(C_n)=P(X\leq a)=F_X(a)$ となる。
- (3) $\{x_n\}$ を単調減少で $-\infty$ に発散する任意の数列とする。このとき $B_n=\{X\leq x_n\}$ とおくと、 $\{B_n\}$ は単調減少な事象の列で、またX は実数値なので、 $\bigcap_{n=1}^\infty \{X\leq x_n\}=\emptyset$. 従って、定理1.4 (2) と命題1.2 (1) により、 $\lim_{n\to\infty} F_X(x_n)=\lim_{n\to\infty} P(B_n)=P(\emptyset)=0$ となり、前半の主張を得る。後半は、 $\{x_n\}$ を単調増加で ∞ に発散する任意の数列とし、定理1.4 (1) と $P(\Omega)=1$ となることを用いれば、同様に証明できる (演習問題とする)。

注意 2.2 関数 $F: \mathbf{R} \to \mathbf{R}$ が定理 2.7 の条件 (1), (2), (3) を満たせば、F(x) を分布関数としてもつ確率変数 X が (無限個) 存在することが知られている。(cf. 舟木著 確率論 朝倉書店 p.47, p.83.)

定義 2.3 確率空間 (Ω, \mathcal{F}, P) 上の確率変数 X に対して、 $P(X \in E) = 1$ となる高々可算個の元からなる集合 $E \subset \mathbf{R}$ が存在するとき、X を離散型確率変数という。(補題 2.1 より E は Borel 集合となることに注意。)

以下、確率変数 X がとりうるのは可算個の値 x_1,x_2,\ldots であるとして説明する。(有限個の場合も同様である。) このとき、 $p(x_i)=P(X=x_i)$ $(i\in \mathbf{N})$ とすると、このとき

$$p(x_i) > 0 \quad (i \in \mathbf{N}), \qquad \sum_{i=1}^{\infty} p(x_i) = 1$$

が成立する。このpを確率変数Xの確率関数という。この場合、分布関数は

$$F(x) = P(X \le x) = \sum_{k: x_k \le x} p(x_k)$$

で与えられる。これは、不連続点だけで増加する関数で、 $p(x_i) = F(x_i) - F(x_i - 0)$ となる。離散型確率変数の分布関数を離散型分布関数という。

離散型分布の例

(a) Bernoulli 過程

歪んだコイン投げの試行のように、結果 S (success) の起こる確率が p, 結果 F (false) が起こる確率が q:=1-p となる試行 (Bernoulli 試行という) を n 回行う。このとき、i 番目に S が起こる事象を A_i とする

と、 A_1,\cdots,A_n は独立な事象の列となる。このとき、 $X_i(\omega)=1_{A_i}(\omega)$ $(A_i$ が起こったとき 1, 起こらなかったとき 0 とする) とすると、 X_1,\cdots,X_n は同じ分布に従う n 個の確率変数となる。実際、 X_i の分布関数は

$$F_{X_i}(x) = 0 \ (x < 0)$$
 = $q \ (0 \le x < 1)$ = $1 \ (1 \le x)$

となり、同じ分布に従うことがわかる。

(b) 二項分布 B(n,p)

(a) と同様の結果 S の起こる確率が p となる Bernoulli 試行を n 回反復するとき、結果 S が起こる回数を Y とする。このとき、Y のとり得る値は $0,1,\ldots,n$ で

$$P(Y = k) = \binom{n}{k} p^k q^{n-k}$$
 $(k = 0, 1, ..., n)$

であり、この分布関数は

$$F(x) = 0 \quad (x < 0), \qquad F(x) = \sum_{k=0}^{[x]} \binom{n}{k} p^k q^{n-k} \quad (0 \le x < n), \qquad F(x) = 1 \quad (n \le x),$$

最後の式は二項定理による。この分布を二項分布 $\mathrm{B}(n,p)$ という。また、確率変数 Y がこのような分布を持つとき Y は $\mathrm{B}(n,p)$ に従うといい $Y\sim\mathrm{B}(n,p)$ とかく。

- (a) で定義した Bernoulli 過程 X_1, \dots, X_n に対して、 $Y = \sum_{i=1}^n X_i$ とすると、 $Y \sim B(n, p)$ となる。
- (c) 幾何分布 Ge(p)
- (a) と同様の結果 S の起こる確率が p となる Bernoulli 試行の反復においてを、S が初めて出現するまでの F の出現回数を X とすると、X のとり得る値は $0,1,2,\ldots$ であり、この分布は幾何分布といい、

$$P(X = k) = q^k p$$
 $(k = 0, 1, 2, ...)$

である。容易にわかるように $P(X \ge k) = \sum_{l=k}^{\infty} P(X = l) = q^k$ となる。また、

$$P(X = k + s | X > k) = P(X = s)$$
 $(s, k = 0, 1, 2, ...)$

となる。実際、

(左辺) =
$$\frac{P(\{X = k + s\} \cap \{X \ge k\})}{P(X \ge k)} = \frac{P(X = k + s)}{P(X \ge k)} = \frac{q^{k + s}p}{q^k} = q^sp = P(X = s)$$

となるからである。

- (d) 負の二項分布 NB(α , p), $\alpha > 0$,
- (a) と同様の結果 S の起こる確率が p となる Bernoulli 試行を、S が α 回出現するまで反復するとき、F が出現する回数を Y とする。このとき、Y のとり得る値は $0,1,\ldots$ で、Y=k となるとき、 $\alpha+k$ 回の試行で結果 S は最後を除いて $\alpha-1$ 回、F は k 回出現するので、

$$P(Y = k) = {\alpha + k - 1 \choose k} p^{\alpha} q^k \qquad (k = 0, 1, ...)$$
 (2.1)

となる。ここで、

$$\binom{\alpha+k-1}{k} = \frac{(\alpha+k-1)(\alpha+k-2)\cdots(\alpha+1)\alpha}{k!}$$
$$= (-1)^k \frac{(-\alpha)(-\alpha-1)\cdots(-\alpha-k+1)}{k!} = (-1)^k \binom{-\alpha}{k}$$

との Taylor 展開式 $(1+x)^{\beta} = \sum_{k=0}^{\infty} {\beta \choose k} x^k \ (-1 < x < 1)$ を $\beta = -\alpha$ と用いて $(cf. \ \emptyset \ A.1 \ (5))$

$$\lim_{y \to \infty} F(y) = \sum_{k=0}^{\infty} {-\alpha \choose k} p^{\alpha} (-q)^k = p^{\alpha} (1-q)^{-\alpha} = 1$$

となる。この分布を負の二項分布 $NB(\alpha, p)$ という。(この分布は α が自然数でないときも定義できる。)

表が出る確率が p である硬貨を n 回投げて k 回以上出ることと、k 回表が出るまでに裏が n-k 回以下しか出ないことは同値なので、 $X\sim \mathrm{B}(n,k), Y\sim \mathrm{NB}(k,p)$ とすると

$$\sum_{l=k}^{n} \binom{n}{l} p^{l} (1-p)^{n-l} = P(X \ge k) = P(Y \le n-k) = \sum_{l=0}^{n-k} \binom{k+l-1}{l} p^{k} (1-p)^{l}$$

この両端の式が等しいことを直接証明するのはかなり面倒である。

(e) Poisson 分布 Po(λ)

 $\lambda > 0$ とする。確率変数 X が非負整数値で、その確率関数が

$$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda} \qquad (k=0,1,\ldots)$$
 (2.2)

で与えられるとき、この確率変数 X は母数 λ の Poisson 分布 Po(λ) に従うという。 $e^x = \sum_{k=0}^\infty \frac{x^k}{k!}$ $(x \in \mathbf{R})$ に注意すれば、 $\sum_{k=0}^\infty P(X=k) = 1$ がわかる。Poisson 分布は次の命題で見るように、一定時間間隔の事故の件数などを表すと考ええられる。

問 2.1 各 $n \in \mathbb{N}$ に対して、確率変数 X_n は二項分布 $\mathrm{B}(n,p_n)$ に従うとする。ここで、 p_n は $0 < p_n < 1$ および $\lim_{n \to \infty} n p_n = \lambda > 0$ を満たすとする。このとき、 $\{X_n\}$ は Poisson 分布 $\mathrm{Po}(\lambda)$ を近似している、即ち、次が成立する。

$$\lim_{n \to \infty} P(X_n = k) = \frac{\lambda^k}{k!} e^{-\lambda} \qquad (k = 0, 1, \dots)$$

証明:
$$P(X=k) = 1\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k-1}{n}\right)\frac{(np_n)^k}{k!}\left\{\left(1-\frac{np_n}{n}\right)^n\right\}^{1-\frac{k}{n}} \to \frac{\lambda^k}{k!}e^{-\lambda} \ (n\to\infty)$$

定義 2.4 $F_X(x)$ を、確率空間 (Ω, \mathcal{F}, P) 上の確率変数 X の分布関数とする。 $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ 上の非負可測関数 f(x) が存在して

$$F_X(x) = \int_{-\infty}^x f(t) dt$$
 $(\forall x \in \mathbf{R})$

と表せるとき、F を絶対連続な分布関数, X を絶対連続型確率変数という。また、この f(x) を X の密度関数 (density function) という。

注意 2.3 (1) X が絶対連続型なら $F_X(x)$ は連続である。

(2) $F_X(x)$ が x について連続であっても、密度関数 f(x) が存在するとは限らない。(詳しくは関数解析学で Cantor 関数として勉強する。)

X が絶対連続型確率変数のとき、その密度関数 f(x) は

$$f(x) \ge 0,$$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

を満たす。また、x が f の連続点であれば $\frac{dF}{dx}(x)=f(x)$ であり、P(X=a)=0 $(\forall a\in\mathbf{R})$ であり、

$$P(a < X \le b) = P(a \le X \le b) = \int_a^b f(t) dt \qquad (a < b)$$

となる。

絶対連続型分布の例

(a) 一様分布 U(a,b)

確率変数 X の密度関数 f_X あるいは分布関数 F_X が

$$f_X(x) = \left\{ \begin{array}{ll} \frac{1}{b-a} & (a < x < b) \\ 0 & (x \le a \ \sharp \ \text{f.i.t.} \ b \le x) \end{array} \right. \qquad F_X(x) = \int_{-\infty}^x f(t) \, dt = \left\{ \begin{array}{ll} 0 & (x \le a) \\ \frac{x-a}{b-a} & (a < x \le b) \\ 1 & (b < x) \end{array} \right.$$

で与えられるとき、確率変数 X は区間 (a,b) 上の一様分布 $\mathrm{U}(a,b)$ に従うという。

(b) 指数分布 $Ex(\lambda)$ ($\lambda > 0$)

確率変数 X の密度関数 $f_X(x)$ あるいは分布関数 $F_X(x)$ が次で与えられるとき、この分布を指数分布 $\operatorname{Ex}(\lambda)$ という。

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & (x \ge 0) \\ 0 & (x < 0) \end{cases}$$
 $F_X(x) = \begin{cases} 1 - e^{-\lambda x} & (x \ge 0) \\ 0 & (x < 0) \end{cases}$

指数分布は事故などの Poisoon 事象が生起する時間間隔の分布として広く用いられている。

(c) 正規分布 $N(\mu, \sigma^2)$ ($\mu \in \mathbf{R}, \sigma > 0$)

次の密度関数をもつ分布を正規分布 (normal distribution) という。

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (2.3)

この正規分布を記号 $N(\mu, \sigma^2)$ で表す。このとき、分布関数は

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

となる。ここで、 $\int_{-\infty}^{\infty} f(t) dt = 1$ に注意する。これは、

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

である (これは微分積分学で習ったように、重積分に帰着し極座標を用いれば証明できる) から、 $z=\frac{x-\mu}{\sigma}$ とおくと、 $dx=\sigma\,dz$ で $\frac{z|-\infty\to\infty}{z|-\infty\to\infty}$ より、

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz = \frac{1}{\sqrt{2\pi}} \cdot \sqrt{2\pi} = 1.$$

正規分布 $N(\mu, \sigma^2)$ において、特に $\mu=0, \sigma=1$ のとき、この正規分布 N(0,1) を標準正規分布という。この密度関数と分布関数をそれぞれ $\phi(x)$, $\Phi(x)$ とすると、

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \qquad \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

 $\mathrm{N}(\mu,\sigma^2)$ に従う確率変数 X に対して、 $Z=(X-\mu)/\sigma$ とし、 $z=\frac{x-\mu}{\sigma}$ とおくと、変数変換 $s=\frac{t-\mu}{\sigma}$ を施すことで

$$P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} ds = \Phi(z),$$

即ち、 $Z=(X-\mu)/\sigma$ は標準正規分布に従う。これより、 $P(a \leq X \leq b)$ などは、性質 $P(X \leq x) = \Phi(\frac{x-\mu}{\sigma})$ と標準正規分布表を利用して計算できる。(これは「統計と社会」で学んだ。)

正規分布は中心極限定理で現れる分布で、偏差値など日常幅広く活用されている。

(d) ガンマ分布 $\Gamma(\alpha, \beta)$ ($\alpha > 0, \beta > 0$)

確率変数 X の密度関数が次の $f_X(x)$ のとき、X はガンマ分布 $\Gamma(\alpha,\beta)$ に従うといい、 $X\sim\Gamma(\alpha,\beta)$ と表す。

$$f_X(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} & (x > 0) \\ 0 & (x \le 0) \end{cases}$$
 (2.4)

ここで、 $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$ はガンマ関数を表す。また、ガンマ分布 $\Gamma(1,\beta)$ と指数分布 $\operatorname{Ex}(\beta)$ は同じ

(e) ベータ分布 BETA(a,b) (a>0,b>0)

確率変数 X の密度関数が次のとき、X はベータ分布 $\mathrm{Beta}(a,b)$ に従うといい、 $X\sim\mathrm{Beta}(a,b)$ と表す。

$$f_X(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & (0 < x < 1) \\ 0 & (その他) \end{cases}$$
 (2.5)

ここで、 $\mathrm{B}(a,b)=\int_0^1 x^{a-1}(1-x)^{b-1}\,dx$ はベータ関数を表す。また、ベータ分布 $\mathrm{Beta}(1,1)$ と一様分布 U(1,1) は同じ分布である

補題 2.3 (ベータ関数 B(p,q)、ガンマ関数 $\Gamma(p)$ に関する公式の復習) 以下が成り立つ。

- (1) $\Gamma(1) = 1$, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- (2) $\Gamma(p+1) = p\Gamma(p) \ (p>0)$ 特に、自然数 n に対して $\Gamma(n) = (n-1)!$ となる。 (3) $\mathrm{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \ (p,q>0)$.

証明 (1)
$$\Gamma(1) = \int_0^\infty e^{-x} dx = \left[-e^{-x} \right]_0^\infty = 1$$
,
$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty x^{-\frac{1}{2}} e^{-x} dx = \int_0^\infty \left(\frac{t^2}{2}\right)^{-\frac{1}{2}} e^{-\frac{1}{2}t^2} t dt = \sqrt{2} \int_0^\infty e^{-\frac{1}{2}t^2} dt = \sqrt{2} \frac{\sqrt{2\pi}}{2} = \sqrt{\pi}. \quad (x = \frac{1}{2}t^2)$$
 (2) $\Gamma(p+1) = \int_0^\infty x^p (-e^{-x})' dx = \left[-x^{p-1}e^{-x} \right]_0^\infty + \int_0^\infty px^{p-1} (-e^{-x})' dx = p\Gamma(p)$. (3) まず、 $D: x > 0, y > 0$ とすると、 $\Gamma(p)\Gamma(q) = \iint_D e^{-x-y}x^{p-1}y^{q-1} dxdy$ となる。ここで、 $n \ge 2$ に対して $K_n: \frac{1}{n} \le x + y \le n, \frac{1}{n-1}x \le y \le (n-1)x$ とすると、 $\{K_n\}$ は D に収束する増大列である。このとき、 $x = uv, y = u(1-v)$ と変換すると $u = x + y, v = \frac{x}{x+y}$ より、 K_n は $F_n: \frac{1}{n} \le u \le n, \frac{1}{n} \le v \le 1 - \frac{1}{n}$ に対応し、ヤコビアンは $\frac{\partial(x,y)}{\partial(u,v)} = -u$ となる。よって、

$$\iint_{K_n} e^{-x-y} x^{p-1} y^{q-1} dx dy = \iint_{F_n} e^{-uv - u(1-v)} (uv)^{p-1} \{u(1-v)\}^{q-1} |-u| du dv$$
$$= \int_{\frac{1}{n}}^n u^{p+q-1} e^{-u} du \int_{\frac{1}{n}}^{1-\frac{1}{n}} v^{p-1} (1-v)^{q-1} dv$$

となり、 $n \to \infty$ として $\Gamma(p)\Gamma(q) = \Gamma(p+q)B(p,q)$ を得る。

2.4 多次元確率変数

定義 2.5 $X_1(\omega), \dots, X_n(\omega)$ を確率空間 (Ω, \mathcal{F}, P) 上の確率変数とするとき、

$$\boldsymbol{X}(\omega) = (X_1(\omega), \dots, X_n(\omega)) \tag{2.6}$$

を n 次元確率変数または n 次元確率ベクトルという。ここに、 $\mathbf{X} = (X_1, \ldots, X_n)$ とも略記される。

定義 2.6 任意の $(x_1,\ldots,x_n)\in \mathbf{R}^n$ に関し、(2.6) の多次元確率変数 $\boldsymbol{X}=(X_1,\ldots,X_n)$ の同時分布関数を次式で定義する。

$$F_{\mathbf{X}}(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n).$$

注意 **2.4** $P(X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n)$ は $P(\{X_1 \leq x_1\} \cap \{X_2 \leq x_2\} \cap \dots \cap \{X_n \leq x_n\})$ を表す。 今後もこのように " \cap " を略した記号を用いる。

n次元 Borel 集合族を問 1.5 を用いて次のように定義する。

定義 2.7 \mathbf{R}^n のすべての開区間 $(a_1,b_1) \times (a_2,b_2) \times \cdots \times (a_n,b_n)$, $a_i < b_i$, $i=1,2,\cdots,n$, を含む最小 の σ 集合族を、n 次元 Borel 集合族といい、 $\mathcal{B}(\mathbf{R}^n)$ と表す。 $\mathcal{B}(\mathbf{R}^n)$ の元を Borel 集合という。また、関数 $\varphi: \mathbf{R}^n \to \mathbf{R}$ が任意の $B \in \mathcal{B}(\mathbf{R})$ に対して、 $\varphi^{-1}(B) \in \mathcal{B}(\mathbf{R}^n)$ を満たすとき、 φ は $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ 上の可測関数、あるいは、単に Borel 可測であるという。

原理的には、任意の $B \in \mathcal{B}(\mathbf{R})$ に対して $P((X_1,\ldots,X_n) \in B)$ の値は $F_{\boldsymbol{X}}(x_1,x_2,\ldots,x_n)$ から定まる。例えば、2 次元の場合、 $B=(a_1,b_1]\times(a_2,b_2]$ の場合、 $B=\bigcap_{n=1}^{\infty}\left(a_1,b_1+\frac{1}{n}\right)\times\left(a_2,b_2+\frac{1}{n}\right)$ より Borel 集合であることに注意する。このとき、

$$P(a_1 < X_1 \le b_1, a_2 < X_2 \le b_2) = P(a_1 < X_1 \le b_1, X_2 \le b_2) - P(a_1 < X_1 \le b_1, X_2 \le a_2)$$

$$= P(X_1 \le b_1, X_2 \le b_2) - P(X_1 \le a_1, X_2 \le b_2) - \{P(X_1 \le b_1, X_2 \le a_2) - P(X_1 \le a_1, X_2 \le a_2)\}$$

$$= F_{\mathbf{X}}(b_1, b_2) - F_{\mathbf{X}}(a_1, b_2) - F_{\mathbf{X}}(b_1, a_2) + F_{\mathbf{X}}(a_1, a_2)$$

を得る。

次の定理は定理 2.5 の拡張である。証明は省略する。

定理 2.8 X_1, \ldots, X_n が (Ω, \mathcal{F}) 上の確率変数、 $f: \mathbf{R}^n \to \mathbf{R}$ が $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ 上の可測関数のとき、 $f(X_1(\omega), \cdots, X_n(\omega))$ は (Ω, \mathcal{F}) 上の確率変数である。

定理 2.7 と同様に次が成り立つ。証明は省略する。

命題 **2.1** (1) 各変数 x_i ごとに分布関数 $F_{\boldsymbol{X}}(x_1,x_2,\ldots,x_n)$ は非減少な右連続関数である。

(2)
$$F_{\mathbf{X}}(x_1,\ldots,-\infty,\ldots,x_n) := \lim_{\substack{x_j \to -\infty \\ x_1,\cdots,x_n \to \infty}} F_{\mathbf{X}}(x_1,\ldots,x_j,\ldots,x_n) = 0.$$
 $\sharp \, \mathcal{T}_{\mathbf{X}}(\infty,\ldots,\infty) := \lim_{\substack{x_1,\cdots,x_n \to \infty \\ x_1,\cdots,x_n \to \infty}} F_{\mathbf{X}}(x_1,\ldots,x_n) = 1.$

多次元確率変数 $X = (X_1, \ldots, X_n)$ において、

$$P(X_i \leq x_i) = F_{\mathbf{X}}(\infty, \cdots, \infty, x_i, \infty, \cdots, \infty)$$

を X_i の 1 次元周辺分布という。同様に、1 < m < n に対して m 次元周辺分布も定義される。

- 一次元の場合と同様に離散分布, 絶対連続分布を以下のように定義する。
- (1) 高々可算個の点からなる集合 $D \subset \mathbf{R}^n$ があって、 $P((X_1, \dots, X_n) \in D) = 1$ となる場合、この多次元確率変数を離散型という。
- (2) \mathbf{R}^n 上の可測関数 $f(x_1,\ldots,x_n)$ が存在して

$$F_{\boldsymbol{X}}(x_1,\ldots,x_n) = \int_{-\infty}^{x_n} \int_{-\infty}^{x_{n-1}} \cdots \int_{-\infty}^{x_1} f(t_1,t_2,\ldots,t_n) dt_1 dt_2 \cdots dt_n$$

と表せるとき、F を絶対連続な分布関数, $\mathbf{X}=(X_1,\ldots,X_n)$ を絶対連続型確率変数という。また、この $f(x_1,\ldots,x_n)$ を \mathbf{X} の同時密度関数という。

絶対連続型確率変数 (X_1,\ldots,X_n) に対し、 X_i の周辺分布は絶対連続型となり、その密度関数は他の座標をすべて ${\bf R}$ で積分してしまうことで得られる。実際、j=1 のとき証明すると

$$P(X_1 \le x) = P(X \le x_1, X_2 \in \mathbf{R}, \dots, X_n \in \mathbf{R}) = \int_{-\infty}^{x_1} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(t_1, t_2, \dots, t_n) dt_n \dots dt_2 dt_1$$

より、 X_1 の周辺密度関数 f_{X_1} は

$$f_{X_1}(x) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x, t_2, \dots, t_n) dt_n \cdots dt_2$$
(2.7)

となることがわかる。また、 $B \subset \mathbf{R}^n$ が Borel 集合のとき、

$$P((X_1, \dots, X_n) \in B) = \iint \dots \iint_{\mathcal{P}} f(t_1, t_2, \dots, t_n) dt_1 dt_2 \dots dt_n$$
(2.8)

となることが、(Lebesgue 積分論を用いて) 証明できる。

例 2.3 多次元確率変数とその分布を例示する。

(i) 多項分布

 $\{A_1,A_2,\ldots,A_L\}\subset\mathcal{F}$ を Ω の分割: $\Omega=\bigcup_{j=1}^LA_j,\,A_i\cap A_j=\emptyset\;(i\neq j)$ とする。また、1 回の試行で事象 A_j が出現する確率を p_j とし、この試行を n 回反復して各事象 A_j の出現回数を X_j $(j=1,\ldots,L)$ とすれば、 (X_1,\ldots,X_L) の同時分布は次式で示される。

$$P(X_1 = k_1, X_2 = k_2, \cdots, X_L = k_L) = \frac{n!}{k_1! k_2! \cdots k_L!} p_1^{k_1} p_2^{k_2} \cdots p_L^{k_L}$$

ただし、 $k_1+k_2+\cdots+k_L=n$ である。このような分布を多項分布という。

この多項分布に対し X_1 の 1 次元周辺分布が二項分布 $B(n, p_1)$ であることを示そう。

簡単のため L=4 として示す。一般の場合はそれを繰り返せばよい。 $X_1=k_1, X_2=k_2$ とすると $X_3+X_4=n_3:=n-k_1-k_2$ であるから、

$$P(X_1 = k_1, X_2 = k_2) = \sum_{k_3=0}^{n_3} P(X_1 = k_1, X_2 = k_2, X_3 = k_3, X_4 = n_3 - k_3)$$

$$= \frac{n!}{k_1! k_2! n_3!} p_1^{k_1} p_2^{k_2} \sum_{k_3=0}^{n_3} \frac{n_3!}{k_3! (n_3 - k_3)!} p_3^{k_3} p_4^{n_3 - k_3} = \frac{n!}{k_1! k_2! n_3!} p_1^{k_1} p_2^{k_2} (p_3 + p_4)^{n_3}$$

最後の等式は二項定理を用いた。特に (X_1,X_2,X_3+X_4) も多項分布となる。

$$P(X_1 = k_1) = \sum_{k_2 = 0}^{n - k_1} P(X_1 = k_1, X_2 = k_2) = \frac{n!}{k_1!(n - k_2)!} p_1^{k_1} \sum_{k_2 = 0}^{n - k_1} \frac{(n - k_1)!}{k_2!n_3!} p_2^{k_2} (p_3 + p_4)^{n_3}$$

$$= \frac{n!}{k_1!(n - k_1)!} p_1^{k_1} (p_2 + p_3 + p_4)^{n - k_1} = \binom{n}{k_1} p_1^{k_1} (1 - p_1)^{n - k_1}$$

3つ目の等号は $n_3 = n - k_1 - k_2$, 最後の等号は $p_1 + p_2 + p_3 + p_4 = 1$ を用いた。

(ii) 多次元正規分布 $N(\mu, \Sigma)$

 $\mu = (\mu_1, \dots, \mu_n)'$ と n 次正定値対称行列 $\Sigma = (\sigma_{ij})$ に対して、n 次元確率変数 $X = (X_1, \dots, X_n)'$ が次の密度関数をもつとき、この分布を n 次元正規分布 $N(\mu, \Sigma)$ という。

$$f(x_1,...,x_n) = \frac{1}{(2\pi)^{n/2}(\det \Sigma)^{1/2}} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)}, \qquad x = (x_1,...,x_n)'$$

ここに、A' は行列 A の転置を表す。例えば μ, x は縦ベクトルとなる。

これが \mathbb{R}^n 上で積分すれば 1 となることは次のように示すことが出来る。

 Σ は正定値対称行列なので、線形代数の対角化に関する定理から、直交行列 P と対角成分がすべて正の対角行列 $D=(d_{ij})$ がとれて、 $P'\Sigma P=D$ とできる。ここで、 ${m y}=(y_1,\ldots,y_n)'=P({m x}-{m \mu})$ とすると、 $D^{-1}=(P'\Sigma P)^{-1}=P'\Sigma^{-1}P$ より

$$(x - \mu)' \Sigma^{-1}(x - \mu) = y' P' \Sigma^{-1} P y = y' D^{-1} y = \sum_{j=1}^{n} \frac{1}{d_{jj}} y_j^2$$

で、ヤコビアンは $\frac{\partial \pmb{y}}{\partial \pmb{x}} = \det\left(\left(\frac{\partial y_i}{\partial x_j}\right)_{ij}\right) = \det P = \pm 1, \, \det \pmb{\Sigma} = \det D = \prod_{j=1}^n d_{jj}$ なので、

$$\int \cdots \int_{\mathbf{R}^n} f(x_1, \dots, x_n) \, dx_1 \cdots dx_n = \prod_{j=1}^n \int_{-\infty}^{\infty} \frac{1}{(2\pi d_{jj})^{1/2}} e^{-\frac{1}{2} \frac{y_j^2}{d_{jj}}} \, dy_j = 1$$

となる。 □

2.5 条件付き確率分布

この節では確率変数で条件付けをした分布について、離散型確率変数の場合と絶対連続型確率変数の場合に定義する。一般の確率変数について条件付け確率分布を定義するためには、Lebesgue 積分論の Radon-Nikodym の定理を必要とするのでこの授業では取り扱わない。

ここでは、簡単のため (X,Y) を 2 次元確率変数として、条件付き分布 $P(Y \in A|X=x)$ を定義する。

(i) X の周辺分布が離散型の場合

X のとり得る値が $\{x_1, x_2, \ldots\}$ とすると、 $P(X = x_j) > 0 \ (\forall j)$ となることに注意する。この場合、

$$P(Y \in A | X = x_j) = \frac{P(X = x_j, Y \in A)}{P(X = x_j)}$$

と定め、これを $X=x_j$ の条件下での Y の条件付き確率分布という。ただし、P(X=x)=0 となる x では 定義しないものとする。

(ii) X の周辺分布が絶対連続型の場合

この場合 $P(X = x) = 0 \ (\forall x)$ であるから工夫が必要となる。

X の周辺密度関数を $f_X(x)$ とする。ここでは、簡単のため x は $f_X(x)$ の連続点で $f_X(x)>0$ となるときに考える。P(Y< y|X=x) を次のように定義する。

$$P(Y \in A|X=x) = \lim_{\delta \to +0} P(Y \in A|x \le X < x + \delta)$$

と定める。このとき、 $\xi_k = a + \frac{k}{n}(b-a)$ とすることで、

$$\int_{a}^{b} P(Y \in A | X = x) f_X(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} P(Y \in A | \xi_{k-1} \le X < \xi_k) \int_{\xi_{k-1}}^{\xi_k} f_X(x) dx$$
$$= P(Y \in A, a \le X < b)$$
(2.9)

となることに注意する。次に、(X,Y) は絶対連続型で f(x,y) をその同時密度関数とする。このとき、

$$P(Y < y | x \le X < x + \delta) = \frac{P(Y < y, x \le X < x + \delta)}{P(x \le X < x + \delta)} = \frac{\int_x^{x + \delta} \int_{-\infty}^y f(s, t) dt ds}{\int_x^{x + \delta} f_X(s) ds}$$

ここで、分母分子を δ で割り $\delta \to +0$ とすることで、微分積分学の基本定理により

$$P(Y < y | X = x) = \frac{\int_{-\infty}^{y} f(x, t) dt}{f_X(x)}$$

を得る。これより、条件 X=x の下での Y の分布は絶対連続型で、その密度関数 $f_{Y|X}(y|x)$ が

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$
 (2.10)

となることがわかった。 $f_{Y|X}(y|x)$ を条件 X=x の下での Y の条件付き密度関数という。

注意 2.5 (Bayes の定理) (2.10) は次のように表せる。

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{\int_{-\infty}^{\infty} f_{X|Y}(x|u)f_Y(u) du}$$
(2.11)

これは Bayes の定理の一般化で機械学習のある分野で用いられる。

例 2.4 (X,Y) を 2 次元正規分布 $N\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$, $\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$) に従うとする。ただし、 Σ は正定値であったから、 $\det(\lambda I - \Sigma) = \lambda^2 - (\sigma_{11} + \sigma_{22})\lambda + \sigma_{11}\sigma_{22} - \sigma_{12}^2 = 0$ の根が 2 つとも正となるため、 $\sigma_{11}, \sigma_{22} > 0$, $\sigma_{11}\sigma_{22} - \sigma_{12}^2 > 0$ を得る。これより、 $\sigma_{1}, \sigma_{2} > 0$, $|\rho| < 1$ を用いて、 $\Sigma = \begin{pmatrix} \sigma_{1}^2 & \sigma_{1}\sigma_{2}\rho \\ \sigma_{1}\sigma_{2}\rho & \sigma_{2}^2 \end{pmatrix}$ と表せる。このと

き、
$$\det \mathbf{\Sigma} = \sigma_1^2 \sigma_2^2 (1-\rho^2)$$
 で $\mathbf{\Sigma}^{-1} = \frac{1}{1-\rho^2} \begin{pmatrix} 1/\sigma_1^2 & -\rho/(\sigma_1\sigma_2) \\ -\rho/(\sigma_1\sigma_2) & 1/\sigma_2^2 \end{pmatrix}$ であるから、 (X,Y) の密度関数は

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left\{ \frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right\} \right] (2.12)$$

となる。

これを踏まえ $f_{Y|X}(y|x)$ を求め、X=x の条件のもと Y の分布を調べよう。まず、X の周辺密度関数 $f_X(x)$ を求める。(2.12) の右辺の $\{\cdots\}$ の中を y について平方完成すると

$$\frac{1}{\sigma_2^2} \left[(y - \mu_2) - \frac{\rho \sigma_2}{\sigma_1} (x - \mu_1) \right]^2 + \frac{1 - \rho^2}{\sigma_1^2} (x - \mu_1)^2$$

となるから、 $t=rac{1}{\sigma_2\sqrt{1ho^2}}ig[y-\mu_2-rac{
ho\sigma_2}{\sigma_1}(x-\mu_1)ig]$ とおくと、

$$f_X(x) = \int_{\mathbf{R}} f(x, y) \, dy = \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} \, dt = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

となる。(これより X の周辺分布は $\mathrm{N}(\mu_1,\sigma_1^2)$ であることがわかった。) よって、

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{(y - \{\mu_2 + \frac{\rho\sigma_2}{\sigma_1}(x - \mu_1)\})^2}{2\sigma_2^2(1-\rho^2)}\right]$$

を得る。これは、X=x の条件下の Y の分布が正規分布 $\mathrm{N}(\mu_2+\frac{\rho\sigma_2}{\sigma_1}(x-\mu_1),\sigma_2^2(1-\rho^2))$ となることを示している。

例題 2.1 (1) Λ は $\Gamma(\alpha,\beta)$ に従い、 $\Lambda=\lambda$ の条件のもと X が $\mathrm{Po}(\lambda)$ に従うとき、 $k=0,1,\ldots$ に対して P(X=k) および $f_{\Lambda|X}(\lambda|k)$ を求めよ。

(2) Λ は $\Gamma(\alpha,\beta)$ に従い、 $\Lambda=\lambda$ の条件のもと Y が $N(0,1/\lambda)$ に従うとき、 $f_Y(y)$ 及び $f_{\Lambda|Y}(\lambda|y)$ を求めよ。

解 (1) (2.9) を $A = \{k\}$, $(a,b) = (-\infty,\infty)$ として用いると

$$P(X = k) = \int_{-\infty}^{\infty} P(X = k | \Lambda = \lambda) f_{\Lambda}(\lambda) d\lambda = \int_{0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda} d\lambda$$
$$= \frac{\beta^{\alpha}}{k! \Gamma(\alpha)} \int_{0}^{\infty} \lambda^{k + \alpha - 1} e^{-(\beta + 1)\lambda} d\lambda = \frac{\beta^{\alpha}}{k! \Gamma(\alpha)} \frac{\Gamma(\alpha + k)}{(\beta + 1)^{\alpha + k}}$$

$$=\frac{(\alpha+k-1)(\alpha+k-2)\cdots\alpha\Gamma(\alpha)}{k!\Gamma(\alpha)}\frac{\beta^{\alpha}}{(\beta+1)^{\alpha+k}}=\binom{\alpha+k-1}{k}\Big(\frac{\beta}{\beta+1}\Big)^{\alpha}\Big(\frac{1}{\beta+1}\Big)^{k}.$$

3 行目の最初の等号は補題 2.3(2) を用いた。よって、 $X \sim \mathrm{NB}\Big(\alpha, \frac{\beta}{\beta+1}\Big)$ となる。次に (2.11) と上式より

$$f_{\Lambda|X}(\lambda|k) = \frac{f_{X|\Lambda}(k|\lambda)f_{\Lambda}(\lambda)}{\int_{-\infty}^{\infty} f_{X|\Lambda}(k|\lambda)f_{\Lambda}(\lambda) d\lambda} = \frac{P(X=k|\Lambda=\lambda)f_{\Lambda}(\lambda)}{P(X=k)}$$
$$= \frac{\frac{\lambda^{k}}{k!} e^{-\lambda} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda}}{\frac{\beta^{\alpha}}{k!\Gamma(\alpha)} \frac{\Gamma(\alpha+k)}{(\beta+1)^{\alpha+k}}} = \frac{(\beta+1)^{\alpha+k}}{\Gamma(\alpha+k)} \lambda^{\alpha+k-1} e^{-(\beta+1)\lambda}, \qquad \lambda > 0.$$

また、 $\lambda \leq 0$ のとき $f_{\Lambda|X}(\lambda|k)=0$ である。これより、X=k の条件のもと Λ はガンマ分布 $\Gamma(\alpha+k,\beta+1)$ に従うことがわかった。

(2) (Y,λ) の同時密度関数 $f(y,\lambda)$ は $f(y,\lambda) = f_{Y|\Lambda}(y|\lambda)f_{\Lambda}(\lambda)$ であるから、

$$f_Y(y) = \int_{-\infty}^{\infty} f(y,\lambda) d\lambda = \int_0^{\infty} \frac{1}{\sqrt{2\pi/\lambda}} e^{-\lambda y^2/2} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda} d\lambda = \frac{\beta^{\alpha}}{\sqrt{2\pi}\Gamma(\alpha)} \int_0^{\infty} \lambda^{\alpha+\frac{1}{2}-1} e^{-(\beta+\frac{y^2}{2})\lambda} d\lambda$$
$$= \frac{\beta^{\alpha}}{\sqrt{2\pi}\Gamma(\alpha)} \frac{\Gamma(\alpha+\frac{1}{2})}{(\beta+\frac{1}{2}y^2)^{\alpha+\frac{1}{2}}} = \frac{\Gamma(\alpha+\frac{1}{2})}{\sqrt{\pi}\Gamma(\alpha)} \left(\frac{1}{2\beta}\right)^{1/2} \left(1 + \frac{1}{2\beta}y^2\right)^{-\alpha-\frac{1}{2}}.$$

ここで、 $2\beta=1$ であれば Y は自由度 2α の t 分布に従うことに注意する (cf. 定理 3.6)。次に、 $\lambda>0$ のとき、

$$f_{\Lambda|Y}(\lambda|y) = \frac{f_{Y|\Lambda}(y|\lambda)}{f_{Y}(y)} = \frac{\frac{\beta^{\alpha}}{\sqrt{2\pi}\Gamma(\alpha)}\lambda^{\alpha+\frac{1}{2}-1}e^{-(\beta+\frac{y^{2}}{2})\lambda}}{\frac{\Gamma(\alpha+\frac{1}{2})}{\sqrt{\pi}\Gamma(\alpha)}\left(\frac{1}{2\beta}\right)^{1/2}\left(1+\frac{1}{2\beta}y^{2}\right)^{-\alpha-\frac{1}{2}}} = \frac{\left(\beta+\frac{1}{2}y^{2}\right)^{\alpha+\frac{1}{2}}}{\Gamma(\alpha+\frac{1}{2})}\lambda^{\alpha+\frac{1}{2}-1}e^{-(\beta+\frac{1}{2}y^{2})\lambda}.$$

また、 $\lambda \leq 0$ のとき $f_{\Lambda|Y}(\lambda|y) = 0$ である。これより、Y = y の条件のもと Λ はガンマ分布 $\Gamma\left(\alpha + \frac{1}{2}, \beta + \frac{1}{2}y^2\right)$ に従うことがわかった。

例題 2.2
$$(X,Y)$$
 の同時密度関数を $f(x,y) = \begin{cases} Kxy & (0 \le x, 0 \le y, x^2 + y^2 \le 1) \\ 0 & (その他) \end{cases}$ とする。

- (1) 定数 K を求めよ。
- (2) X の周辺密度関数 $f_X(x)$ を求めよ。
- (3) 0 < x < 1 のとき $f_{Y|X}(y|x)$ を求め、 $P(Y > \frac{1}{2}|X = \frac{1}{2})$ を計算せよ。
- (4) T = X + Y とする。T の分布関数 $F_T(t)$ と密度関数 $f_T(t)$ を求めよ。

解 (1)
$$1 = \iint_{\mathbf{R}^2} f(x,y) \, dx dy = \int_0^1 dx \int_0^{\sqrt{1-x^2}} Kxy \, dy = \dots = \frac{K}{8}$$
 より $K = 8$.

(2) $f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy$ より、 $x \notin (0,1)$ のとき明らかに $f_X(x) = 0$. 0 < x < 1 のとき、

$$f_X(x) = \int_0^{\sqrt{1-x^2}} 8xy \, dy = 4x(1-x^2).$$

$$(3) f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{2y}{1-x^2} & (0 \le y \le \sqrt{1-x^2}) \\ 0 & (その他) \end{cases}$$

$$P\left(Y > \frac{1}{2} \middle| X = \frac{1}{2}\right) = \int_{\frac{1}{2}}^{\infty} f_{Y|X}\left(y \middle| \frac{1}{2}\right) dy = \int_{\frac{1}{2}}^{\sqrt{1 - (\frac{1}{2})^2}} \frac{2y}{1 - (\frac{1}{2})^2} dy = \frac{2}{3}.$$

(4) t < 0 のとき $F_T(t) = 0$, $\sqrt{2} \le t$ のとき $F_T(t) = 1$ は明らか。 $0 \le t \le 1$ のとき、

$$F_T(t) = P(X + Y \le t) = \int_0^t dx \int_0^{x-t} 8xy \, dy = \dots = \frac{1}{3}t^4.$$

 $1 \le t < \sqrt{2}$ のとき、 $x+y=t, \, x^2+y^2=1$ の交点の x 座標を α,β $(\alpha<\beta)$ とすると、 $\alpha+\beta=t, \, \alpha\beta=\frac{t^2-1}{2}$. よって、 $(\beta-\alpha)^2=2-t^2$ となることに注意する。よって、

$$1 - F_T(t) = P(X + Y > t) = \iint_{t-x \le y \le \sqrt{1-x^2}} 8xy \, dx dy = \int_{\alpha}^{\beta} dx \int_{t-x}^{\sqrt{1-x^2}} 8xy \, dy$$

$$= \int_{\alpha}^{\beta} \left\{ 4x(1-x^2) - 4x(t-x)^2 \right\} \, dx = \left[\frac{8}{3}tx^3 - 2x^4 - 2(t^2 - 1)x^2 \right]_{\alpha}^{\beta}$$

$$= (\beta - \alpha) \left\{ \frac{8}{3}t \left((\alpha + \beta)^2 - \alpha\beta \right) - 2(\alpha + \beta)(\alpha^2 + \beta^2) - 2(t^2 - 1)(\alpha + \beta) \right\}$$

$$= \sqrt{2 - t^2} \left\{ \frac{4}{3}t \left(t^2 + 1 \right) - 2t(t^2 - t^2 + 1) - 2(t^2 - 1)t \right\} = \dots = \frac{2}{3}t(2 - t^2)^{3/2}.$$

以上をまとめて、

$$F_T(t) = \begin{cases} 0 & (t < 0) \\ \frac{1}{3}t^4 & (0 \le t < 1) \\ 1 - \frac{2}{3}t(2 - t^2)^{3/2} & (1 \le t < \sqrt{2}) \end{cases}, \ f_T(t) = \frac{d}{dt}F_T(t) = \begin{cases} 0 & (t < 0) \\ \frac{4}{3}t^3 & (0 \le t < 1) \\ \frac{4}{3}(2t^2 - 1)\sqrt{2 - t^2} & (1 \le t < \sqrt{2}) \end{cases} \quad \Box$$

2.6 確率変数の独立性

定義 2.8 (1) 確率変数の列 X_1, X_2, \ldots, X_n が独立であるとは、任意の $x_1, x_2, \ldots, x_n \in \mathbf{R}$ に対して

$$P(X_1 \le x_1, X_2 \le x_2, \cdots, X_n \le x_n) = P(X_1 \le x_1)P(X_2 \le x_2)\cdots P(X_n \le x_n)$$
(2.13)

となるときにいう。

(2) 無限個の確率変数の族 $\{X_{\lambda}\}$ が独立であるとは、その任意の有限部分列 $X_{\lambda_1},\dots,X_{\lambda_q}$ が独立であるときにいう。

確率変数の列 X_1, X_2, \ldots, X_n が独立であることと、任意の Borel 集合 $B_1, \ldots, B_n \subset \mathbf{R}$ に対して

$$P(X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n) = P(X_1 \in B_1)P(X_2 \in B_2) \dots P(X_n \in B_n)$$
 (2.14)

となることが同値である。(証明には後期に学ぶ Dynkin 族定理を用いる。) 特に、離散型確率変数であれば

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_1 = x_1)P(X_2 = x_2)\cdots P(X_n = x_n) \qquad \forall x_1, x_2, \dots, x_n \in \mathbf{R}$$

と同値となる。絶対連続型確率変数の場合は次の定理で見るように同時密度関数がそれぞれの一次元周辺密度 関数の積に分解できればよい。

定理 2.9 絶対連続型確率変数の列 X_1,\ldots,X_n が独立であることための必要十分条件は、 (X_1,\ldots,X_n) の同時密度関数を $f(x_1,\ldots,x_n),X_j$ の周辺密度関数を $f_{X_i}(x)$ $(j=1,\ldots,n)$ とするとき

$$f(x_1, x_2, \dots, x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \cdots f_{X_n}(x_n), \qquad \forall x_1, x_2, \dots, x_n \in \mathbf{R}$$
 (2.15)

が成立することである。

証明: 絶対連続型であるから (2.13) を密度関数で表すと

$$\int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} f(t_1, t_2, \dots, t_n) dt_1 \cdots dt_n = \left(\int_{-\infty}^{x_1} f_{X_1}(t) dt \right) \times \cdots \times \left(\int_{-\infty}^{x_n} f_{X_n}(t) dt \right). \tag{2.16}$$

これを x_1, \cdots, x_n でそれぞれ 1 回ずつ偏微分すれば (2.15) を得る。逆に、(2.15) を各 x_j に関して $(-\infty, x_j]$ の範囲で定積分すれば (2.16) を得る。

例 2.5 $X=(X_1,\ldots,X_n)$ を n 次元正規分布 $N(\boldsymbol{\mu},\boldsymbol{\Sigma})$ に従うとする。 $\boldsymbol{\mu}=(\mu_1,\ldots,\mu_n)',\,\boldsymbol{\Sigma}=(\sigma_{ij})$ とかく。 このとき、 X_1,\ldots,X_n が独立であるための必要十分条件が、 $\boldsymbol{\Sigma}$ が対角行列であること、即ち、 $i\neq j$ となる任意の i,j で $\sigma_{ij}=0$ となることである。

証明: (必要性) Σ が対角行列のとき Σ^{-1} も対角行列でその jj 成分は $1/\sigma_{jj}$ であるから、明らかに

$$\frac{1}{(2\pi)^{n/2}(\det \mathbf{\Sigma})^{1/2}}e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})} = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{jj}}}e^{-\frac{(x_{j}-\mu_{j})^{2}}{2\sigma_{jj}}}.$$
 (2.17)

が成立する。よって、定理2.9より独立であることが従う。

(十分性) 共分散の節で証明する (定理 4.12 とその系)。 □

例 **2.6** X_1, \ldots, X_n を独立で同分布に従う (i.i.d. と書く) 確率変数とし、F(x) で X_1 の分布関数を表す。このとき、次が成立する。

- (1) $F_{(n)}(x)$ を $X_{(n)} := \max\{X_1, \dots, X_n\}$ の分布関数とすると、 $F_{(n)}(x) = F(x)^n$ となる。
- (2) $F_{(1)}(x)$ を $X_{(1)} := \min\{X_1, \cdots, X_n\}$ の分布関数とすると、 $1 F_{(1)}(x) = (1 F(x))^n$ となる。

証明: (1)
$$F_{X_{(n)}}(x) = P(X_1 \le x, \dots, X_n \le x) = \prod_{j=1}^n P(X_j \le x) = F(x)^n$$
.
(2) $1 - F_{X_{(1)}}(x) = P(X_{(1)} > x) = P(X_1 > x, \dots, X_n > x) = \prod_{j=1}^n P(X_j > x) = (1 - F(x))^n$.

例 2.7 X_1, X_2 が独立で、各 X_i が Poisson 分布 Po(λ_i) ($\lambda_i > 0$) に従うとき、 $Y_1 = X_1 + X_2$ と $Y_2 = X_2$ の同時分布を求めよ。また、 Y_1 の周辺分布を求めよ。

解: (Y_1, Y_2) のとりうる値は、 $(y_1, y_2) \in \mathbb{Z}^2 : y_1 \geq y_2 \geq 0$ である。このとき、同時分布は

$$P(Y_1 = y_1, Y_2 = y_2) = P(X_1 = y_1 - y_2, X_2 = y_2) = \frac{\lambda_1^{y_1 - y_2} \lambda_2^{y_2}}{(y_1 - y_2)! y_2!} e^{-\lambda_1 - \lambda_2}$$

となる。また、 Y_1 の周辺分布は $y_1 \in \{0\} \cup \mathbf{N}$ に対して

$$P(Y_1=y_1) = \sum_{y_2=0}^{y_1} \frac{\lambda_1^{y_1-y_2}\lambda_2^{y_2}}{(y_1-y_2)!y_2!} e^{-\lambda_1-\lambda_2} = \frac{1}{y_1!} \sum_{y_2=0}^{y_1} \binom{y_1}{y_2} \lambda_1^{y_1-y_2}\lambda_2^{y_2} e^{-\lambda_1-\lambda_2} = \frac{(\lambda_1+\lambda_2)^{y_1}}{y_1!} e^{-(\lambda_1+\lambda_2)^{y_1}} e^{-(\lambda_1+\lambda_2)^{y_2}} e^{-(\lambda_1+\lambda_2)^{y_1}} e^{-(\lambda_1+\lambda_2)^{y_2}} e^{-(\lambda_1+\lambda_2)^{y_2}} e^{-(\lambda_1+\lambda_2)^{y_1}} e^{-(\lambda_1+\lambda_2)^{y_2}} e^{-(\lambda_1+\lambda_2)^{y_1}} e^{-(\lambda_1+\lambda_2)^{y_2}} e^{-(\lambda_1$$

となり、これは Y_1 が Poisson 分布 Po $(\lambda_1 + \lambda_2)$ に従うことを示している。 \Box

定理 2.10 m 次元確率変数 $X=(X_1,\ldots,X_m)$ と 1 次元確率変数 Y_1,\ldots,Y_n が独立であるとする: 即ち、

$$P(X_1 \le x_1, \dots, X_m \le x_m, Y_1 \le y_1, \dots, Y_n \le y_n)$$

= $P(X_1 \le x_1, \dots, X_m \le x_m) P(Y_1 \le y_1) \dots P(Y_n \le y_n), \quad \forall x_1, \dots, x_m, y_1, \dots, y_n \in \mathbf{R}$

とする。このとき、 $f: \mathbf{R}^m \to \mathbf{R}$ が Borel 可測であれば、 $f(X_1, \dots, X_m), Y_1, \dots, Y_n$ は独立である。

証明は難しいので省略する。(たとえば、後期に学ぶ Dynkin 族定理を用いて証明できる。)

3 確率変数の変換

3.1 絶対連続型確率変数の変換

離散型確率変数の変換は例 2.7 や演習問題にあるように比較的容易に考察できた。絶対連続型確率変数の場合は次の重積分の変数変換の公式を用いる。

定理 3.1 n 次元確率変数 $X=(X_1,\ldots,X_n)$ の密度関数を $f_X(x_1,\cdots,x_n)$ とする。 $y_i=u_i(x_1,\cdots,x_n)$ $(1 \le i \le n)$ が $f_X(x_1,\cdots,x_n)>0$ なる領域で次の仮定 (1)–(3) を満たす \mathbf{R}^n から \mathbf{R}^n への 1 対 1 変換とする。

- (1) 変換 $y_i = u_i(x_1, \dots, x_n)$ $(1 \le i \le n)$ およびその逆変換 $x_i = v_i(y_1, \dots, y_n)$ $(1 \le i \le n)$ はともに連続である。
- (2) 偏導関数 $\frac{\partial x_i}{\partial y_j}$ $(1 \le i, j \le n)$ が存在して連続である。
- (3) $\forall \exists \forall \forall \gamma \forall \frac{\partial(x_1, \cdots, x_n)}{\partial(y_1, \cdots, y_n)} \text{ which is a possible of } \lambda$

このとき、 $Y_i=u_i(X_1,\cdots,X_n)$ $(1\leq i\leq n)$ で (X_1,\cdots,X_n) を (Y_1,\cdots,Y_n) に変換するとき、 $\boldsymbol{Y}=(Y_1,\cdots,Y_n)$ の分布は絶対連続型でその密度関数 $f_{\boldsymbol{Y}}(y_1,\cdots,y_n)$ は次式で与えられる。

$$f_{\mathbf{Y}}(y_1, \dots, y_n) = f_{\mathbf{X}}(v_1(y_1, \dots, y_n), \dots, v_n(y_1, \dots, y_n)) \left| \frac{\partial (x_1, \dots, x_n)}{\partial (y_1, \dots, y_n)} \right|.$$

証明: $(a_1, \cdots, a_n) \in \mathbf{R}^n$ に対して $E = \{(x_1, \cdots, x_n); u_1(x_1, \cdots, x_n) \leq a_1, \dots, u_n(x_1, \cdots, x_n) \leq a_n\}$ と おくと、この変換で E は $E' = \{(y_1, \cdots, y_n); y_1 \leq a_1, \dots, y_n \leq a_n\}$ に対応するから、多変数関数の積分の変数変換の公式により

$$P(Y_1 \leq a_1, \dots, Y_n \leq a_n) = P(u_1(X_1, \dots, X_n) \leq a_1, \dots, u_n(X_1, \dots, X_n) \leq a_n)$$

$$= P((X_1, \dots, X_n) \in E) = \int \dots \int_E f_{\mathbf{X}}(x_1, \dots, x_n) dx_1 \dots dx_n = \int \dots \int_{E'} f_{\mathbf{Y}}(y_1, \dots, y_n) dy_1 \dots dy_n$$

$$= \int_{-\infty}^{a_n} \dots \int_{-\infty}^{a_1} f_{\mathbf{Y}}(y_1, \dots, y_n) dy_1 \dots dy_n \qquad \Box$$

定理 3.2 (X,Y) の密度関数を f(x,y) とする。このとき、Z=X+Y とすると Z の密度関数 $f_Z(z)$ は

$$f_Z(z) = \int_{-\infty}^{\infty} f(t, z - t) dt$$

となる。特に、 $P(X \ge 0, Y \ge 0) = 1$ なら、 $f_Z(z) = \int_0^z f(t, z - t) \, dt \; (z > 0), = 0 \; (z \le 0)$ となる。

証明: Z = X + Y, T = X という変換を考えると、X = T, Y = Z - T よりヤコビアンは

$$\frac{\partial(x,y)}{\partial(t,z)} = \left| \begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right| = -1.$$

よって、定理 3.1 より (T,Z) の密度関数は $f_{(T,Z)}(t,z)=f(t,z-t)|-1|=f(t,z-t)$ となるので、 $f_Z(z)$ は Z の周辺密度関数となるから、t で積分して与式で与えられることがわかる。

定理 3.3 確率変数 X_1, \ldots, X_n は独立で、各 X_i は正規分布 $N(\mu_i, \sigma_i^2)$ に従うとする。このとき、 $Y = X_1 + \cdots + X_n$ は正規分布 $N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$ に従う。

証明: n=2 の場合に証明する。一般の場合は定理 2.10 より $X_1+\cdots+X_k$ と X_{k+1} が独立になることに注意して、これを繰り返し用いればよい。 X_i の密度関数は $f_{X_i}(x_i)=\frac{1}{\sqrt{2\pi}\sigma_i}e^{-\frac{(x_i-\mu_i)^2}{2\sigma_i^2}}$ であり、 (X_1,X_2) の同時密度関数は $f_{X_1}(x_1)f_{X_2}(x_2)$ であった。したがって、 $Y=X_1+X_2$ の密度関数は定理 3.2 より、

$$f_Y(y) = \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_1\sigma_2} \exp\left[-\frac{(t-\mu_1)^2}{2\sigma_1^2} - \frac{(y-t-\mu_2)^2}{2\sigma_2^2}\right] dt.$$

ここで、 $u = t - \mu_1$ とおき、 \exp の中を u について平方完成すると

$$-\frac{u^2}{2\sigma_1^2} - \frac{(y - u - \mu_1 - \mu_2)^2}{2\sigma_2^2} = -\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} \left[u - \frac{\sigma_1^2(y - \mu_1 - \mu_2)}{\sigma_1^2 + \sigma_2^2} \right]^2 - \frac{(y - \mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)}$$

となり、
$$s=\frac{\sqrt{\sigma_1^2+\sigma_2^2}}{\sigma_1\sigma_2}\Big[u-\frac{\sigma_1^2(y-\mu_1-\mu_2)}{\sigma_1^2+\sigma_2^2}\Big]$$
 とおき、 $\int_{-\infty}^{\infty}e^{-\frac{1}{2}s^2}\,ds=\sqrt{2\pi}$ となることを用いると、

$$f_Y(y) = \frac{1}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} \exp\left[-\frac{(y - \mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)}\right].$$

定理 3.4 確率変数 X_1,\cdots,X_n は独立で、各 X_i はガンマ分布 $\Gamma(\alpha_i,\beta)$ に従うとする。このとき、 $Y=X_1+\cdots+X_n$ はガンマ分布 $\Gamma(\sum_{i=1}^n\alpha_i,\beta)$ に従う。

証明: n=2 の場合に証明する。一般の場合は、 $X_1+\cdots+X_k$ と X_{k+1} が独立になることに注意してこれを繰り返し用いればよい。 X_i の密度関数を f_{X_i} とすると、 $Y=X_1+X_2$ の密度関数は定理 3.2 より、

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X_1}(t) f_{X_2}(y-t) dt = \frac{\beta^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \int_{0}^{\max\{y,0\}} t^{\alpha_1 - 1} (y-t)^{\alpha_2 - 1} e^{-\beta(t+y-t)} dt \qquad (3.1)$$

 $y \le 0$ のとき $f_Y(y) = 0$ は明らか。y > 0 とき、t = ys と置換することで、

$$\int_0^y t^{\alpha_1 - 1} (y - t)^{\alpha_2 - 1} dt = y^{\alpha_1 + \alpha_2 - 1} \int_0^1 s^{\alpha_1 - 1} (1 - s)^{\alpha_2 - 1} ds = y^{\alpha_1 + \alpha_2 - 1} B(\alpha_1, \alpha_2)$$

となり、補題 2.3(3) を用いて (3.1) に代入して、

$$f_Y(y) = \frac{\beta^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} y^{\alpha_1 + \alpha_2 - 1} \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)} e^{-\beta y} = \frac{\beta^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} y^{\alpha_1 + \alpha_2 - 1} e^{-\beta y}. \quad \Box$$

3.2 正規母集団における標本平均・不偏分散とその関数の分布

次の定理を踏まえて、ガンマ分布 $\Gamma(\frac{n}{2},\frac{1}{2})$ を自由度 n のカイ二乗分布 χ_n^2 に従うという。

定理 3.5 確率変数 X が標準正規分布 N(0,1) に従うとするとき、 X^2 は自由度 1 のカイ二乗分布 χ_1^2 に従う。特に、確率変数 X_1,\cdots,X_n は独立で、各 X_i は標準正規分布 N(0,1) に従うとする。このとき、 $Y_n=X_1^2+\cdots+X_n^2$ は自由度 n のカイ二乗分布 χ_n^2 に従う。

証明: X が N(0,1) に従うとし、 $Y=X^2$ とする。 $(y=x^2$ は 1 対 1 ではないので定理 3.1 は使えない。) $y\leq 0$ のとき $P(Y\leq y)=0$ より $f_Y(y)=0$. y>0 のとき、

$$P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 2 \int_{0}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

よって、 $f_Y(y)=\frac{2}{\sqrt{2\pi}}e^{-\frac{1}{2}(\sqrt{y})^2}(\sqrt{y})'=\frac{1}{\sqrt{2\pi}}y^{-1/2}e^{-\frac{1}{2}y}=\frac{(1/2)^{1/2}}{\Gamma(1/2)}y^{-1/2}e^{-\frac{1}{2}y}, y>0$. ここで、 $\Gamma(\frac{1}{2})=\sqrt{\pi}$ を用いた。以上より、最初の主張は従う。後者の主張は、 X_1,\cdots,X_n は独立であれば、 X_1^2,\cdots,X_n^2 も独立であるので、定理 3.4 からの帰結となる。

確率変数 X_1, \ldots, X_n が独立で $N(\mu, \sigma^2)$ に従うとき、

標本平均:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, 不偏分散: $U^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

の分布について考える。まず、次について考える。

定理 3.6 (1) 確率変数 Y,Z が独立で、それぞれ Y が自由度 n のカイ二乗分布 χ_n^2 に、Z は標準正規分布 N(0,1) に従うとき、 $T=\frac{Z}{\sqrt{Y/n}}$ は次の密度関数 $f_T(t)$ をもつ。

$$f_T(t) = \frac{1}{\sqrt{n}B\left(\frac{n}{2}, \frac{1}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}.$$

このとき T は自由度 n の t 分布 t_n に従うという。

(2) 確率変数 X,Y が独立で、それぞれが自由度 m,n のカイ二乗分布 χ^2_m,χ^2_n に従うとき、 $W=\frac{X/m}{Y/n}$ は次の 密度関数 $f_W(w)$ をもつ。

$$f_W(w) = \frac{\left(\frac{m}{n}\right)^{m/2}}{B\left(\frac{m}{2}, \frac{n}{2}\right)} \frac{w^{\frac{m}{2} - 1}}{\left(1 + \frac{m}{n}w\right)^{\frac{m+n}{2}}} \quad (w > 0), \qquad = 0 \quad (w \le 0).$$

このとき W は自由度 (m,n) の F 分布 F_n^m に従うという。

証明は演習問題とする。

定理 3.7 X_1,\ldots,X_n が独立で、それぞれ同一の正規分布 $\mathrm{N}(\mu,\sigma^2)$ に従うとするとき、次が成立する。

- (1) \overline{X} は正規分布 $N\left(\mu, \frac{\sigma^2}{n}\right)$ に従う。
- (2) $\overline{X} \ge U^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ は独立。
- (3) $\frac{n-1}{\sigma^2}U^2 = \frac{1}{\sigma^2}\sum_{i=1}^n (X_i \overline{X})^2$ は自由度 n-1 のカイ二乗分布 χ_{n-1}^2 に従う。

証明: $Z_i = \frac{X_i - \mu}{\sigma}$, $i = 1, \ldots, n$ とおくと、 Z_1, \cdots, Z_n は独立で N(0,1) に従う。次に

$$\boldsymbol{p}_0 = \left(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right), \quad \boldsymbol{p}_k = \left(\underbrace{\frac{1}{\sqrt{k^2 + k}}, \cdots, \frac{1}{\sqrt{k^2 + k}}, \frac{-k}{\sqrt{k^2 + k}}, 0 \cdots, 0\right), \quad k = 1, \cdots, n - 1$$

とし、 $P=(\pmb{p}_0\pmb{p}_1\cdots \pmb{p}_{n-1})'$ とすると、P は直交行列となる。ここで $(T_1\cdots T_n)'=P(Z_1\cdots Z_n)'$ とすると、 T_1,\ldots,T_n は独立で N(0,1) に従う。実際、 $(Z_1\cdots Z_n)$ の密度関数を $f(z_1,\cdots,z_n)$ とすると、

$$f(z_1, \dots, z_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z_i^2} = \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum_{i=1}^n z_i^2}$$

であるが、 $(T_1\cdots T_n)$ の密度関数 $g(t_1,\cdots,t_n)$ は $(t_1\cdots t_n)'=P(z_1\cdots z_n)'$ より $(z_1\cdots z_n)'=P'(t_1\cdots t_n)$ となるから $\left|\frac{\partial(z_1,\cdots,z_n)}{\partial(t_1,\cdots,t_n)}\right|=|\det P'|=1$ で、 $\mathbf{z}=(z_1\cdots z_n)',\,\mathbf{t}=(t_1\cdots t_n)'$ と表すと、

$$\sum_{i=1}^{n} z_i^2 = \mathbf{z}' \mathbf{z} = (P'\mathbf{t})' P'\mathbf{t} = \mathbf{t}' P P'\mathbf{t} = \mathbf{t}' \mathbf{t} = \sum_{i=1}^{n} t_i^2$$
(3.2)

より、定理 3.1 より

$$g(t_1, \dots, t_n) = f(P'(t_1 \dots t_n)') \left| \frac{\partial(z_1, \dots, z_n)}{\partial(t_1, \dots, t_n)} \right| = \left(\frac{1}{\sqrt{2\pi}} \right)^n e^{-\frac{1}{2} \sum_{i=1}^n t_i^2} = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} t_i^2}$$

となるからである。
ここで、
$$T_1=rac{1}{\sqrt{n}}\sum_{i=1}^n Z_i$$
 より

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \sum_{i=1}^{n} (\sigma Z_i + \mu) = \frac{\sigma}{\sqrt{n}} T_1 + \mu$$

であるから、 \overline{X} は $\mathrm{N}\Big(\mu, \frac{\sigma^2}{n}\Big)$ に従う。また、(3.2) より $\sum\limits_{i=1}^n Z_i^2 = \sum\limits_{i=1}^n T_i^2$ であるが、 $\overline{Z} = \frac{1}{n}\sum\limits_{i=1}^n Z_i$ とすると

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (\sigma Z_i + \mu - \sigma \overline{Z} - \mu)^2 = \sum_{i=1}^{n} (Z_i - \overline{Z})^2 = \sum_{i=1}^{n} (Z_i^2 - 2\overline{Z}Z_i + \overline{Z}^2)$$
(3.3)

$$= \sum_{i=1}^{n} Z_i^2 - 2\overline{Z} \sum_{i=1}^{n} Z_i + n\overline{Z}^2 = \sum_{i=1}^{n} Z_i^2 - n\overline{Z}^2 = \sum_{i=1}^{n} T_i^2 - n\left(\frac{1}{\sqrt{n}}T_1\right)^2 = \sum_{i=2}^{n} T_i^2.$$
 (3.4)

よって、定理 3.5 より (3) は従う。また、 \overline{X} は T_1 のみで表されることと (3.4) および T_1,\cdots,T_n が独立であることから定理 2.10 より (2) は従う。

母分散の区間推定

 $\chi_n^2(\alpha)$ で自由度 n の χ^2 分布 χ_n^2 の上側 α 点、即ち、 $X \sim \chi_n^2$ のとき、 $P(X > \chi_n^2(\alpha)) = \alpha$ となる点とする。このとき、 U^2 を不偏分散とすると、定理 3.7 より $\frac{n-1}{\sigma^2}U^2 \sim \chi_{n-1}^2$ なので、

$$P\left(\chi_{n-1}^2(1-\alpha/2) \le \frac{n-1}{\sigma^2}U^2 \le \chi_{n-1}^2(\alpha/2)\right) = 1-\alpha$$

となる。これを変形して

$$\frac{(n-1)U^2}{\chi_{n-1}^2(\alpha/2)} \le \sigma^2 \le \frac{(n-1)U^2}{\chi_{n-1}^2(1-\alpha/2)}$$

となるが、 U^2 に実現値 u^2 を代入することで、 σ^2 の $100(1-\alpha)\%$ 信頼区間を得る。

定理 3.8 X_1, \ldots, X_n が独立で、それぞれ同一の正規分布 $N(\mu, \sigma^2)$ に従うとするとき、

$$T = \frac{\overline{X} - \mu}{\sqrt{U^2/n}}$$

は自由度 n-1 の t 分布 t_{n-1} に従う。ここで、 \overline{X} は標本平均、 U^2 は不偏分散を表す。

証明: 定理 3.7 より $Z=\frac{X-\mu}{\sigma/\sqrt{n}},$ $Y=\frac{n-1}{\sigma^2}U^2$ とおくと、Z と Y は独立で Z は $\mathrm{N}(0,1)$ に、Y は χ^2_{n-1} に 従う。ここで、

$$T = \frac{(\sigma/\sqrt{n})Z}{\sqrt{(\sigma^2Y/(n-1))/n}} = \frac{Z}{\sqrt{Y/(n-1)}}$$

となるが、定理 3.6 (1) より T は t_{n-1} に従うことがわかる。

母分散が未知の場合の母平均の区間推定

 $t_n(\alpha)$ で自由度 n の t 分布の (片側) α 点、即ち T が t_n 分布に従うとき、 $P(T>t_n(\alpha))=\alpha$ となる点とする。 このとき、定理 3.8 より

$$P\left(-t_{n-1}(\alpha/2) \le \frac{\overline{X} - \mu}{\sqrt{U^2/n}} \le t_{n-1}(\alpha/2)\right) = 1 - \alpha$$

となる。これを変形して

$$\overline{X} - t_{n-1}(\alpha/2)\sqrt{\frac{U^2}{n}} \le \mu \le \overline{X} + t_{n-1}(\alpha/2)\sqrt{\frac{U^2}{n}}$$

となるが、 \overline{X} と U^2 に実現値 \overline{x} と u^2 を代入することで、 μ の $100(1-\alpha)\%$ 信頼区間を得る。

例 3.1 [TS p.96] 次の数値はある複合肥料 6 袋の重量を測定した値である。

この袋づめ複合肥料の重量は正規母集団 $N(\mu, \sigma^2)$ に従い、上の 6 個の数値は、この母集団からの無作為標本と見て、(a) σ^2 と (b) μ の 95% 信頼区間を求めよ。

解: $\overline{x} = 25.14$, 標本分散 $s^2 = \overline{x^2} - \overline{x}^2 = \frac{0.067}{6}$ より $u^2 = \frac{6}{5}s^2$.

(a)
$$\frac{(6-1)u^2}{\chi_5^2(0.025)} = \frac{0.067}{12.83} = 0.005222, \quad \frac{(6-1)u^2}{\chi_5^2(0.975)} = \frac{0.067}{0.8312} = 0.080606$$
 より求める信頼区間は $0.0052 \le \sigma^2 \le 0.08061$.

(b)
$$\overline{x} \pm t_5(0.025)\sqrt{\frac{u^2}{6}} \coloneqq \left\{ \begin{array}{l} 25.0185 \\ 25.2615 \end{array} \right.$$
 より求める信頼区間は $25.01 \le \mu \le 25.27$.

4 期待値

4.1 Lebesgue 積分

Lebesgue 積分論に基づいて \mathbf{R}^n 上の Borel 可測関数 $\varphi(\mathbf{x})$ と n 次元確率変数 $\mathbf{X}=(X_1,\cdots,X_n)$ に対し て、 $\int_{\Omega} \varphi(\boldsymbol{X}(\omega)) dP(\omega)$ の定義の概略を述べる。

 $\underline{\text{1st step}}\ \ \varphi(m{x})\$ が単関数のとき、即ち、 $\varphi(m{x})=\sum_{k=1}^N a_k 1_{A_k}(m{x})\$ と表せるとき。ここで、 $a_1,\ldots,a_N\in\mathbf{R},$ $A_1, \ldots, A_N \in \mathcal{B}(\mathbf{R}^n)$ とし、 $1_A(\mathbf{x})$ は A の定義関数を表す。

$$1_A(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & (\boldsymbol{x} \in A) \\ 0 & (\boldsymbol{x} \notin A) \end{array} \right.$$

このとき、次のように定義する。(本来は well-defined かどうか調べなければならないが省略する。)

$$\int_{\Omega} \varphi(\mathbf{X}(\omega)) dP(\omega) = \sum_{k=1}^{N} a_k P(\mathbf{X} \in A_k). \tag{4.1}$$

 $2nd step \varphi(x) \ge 0$ のとき。各 $q \in \mathbb{N}$ に対して、

$$A_{q,i} = \left\{ x \in \mathbf{R}^n \; ; \; \frac{i}{2^q} \le \varphi(x) < \frac{i+1}{2^q} \right\} \quad (i = 0, 1, \dots, q2^q - 1), \qquad A_{q,q2^q} = \left\{ x \in \mathbf{R}^n \; ; \; \varphi(x) \ge q \right\}$$

とし、 $\varphi_q(\boldsymbol{x}) = \sum_{i=0}^{q2^q} \frac{i}{2^q} 1_{A_{q,i}}(\boldsymbol{x})$ と定める。このとき、 $\varphi_q(\boldsymbol{x})$ は単関数で (4.1) により $\int_{\Omega} \varphi_q(\boldsymbol{X}(\omega)) \, dP(\omega)$ は 定義されるが、 $A_{q,i}=A_{q+1,2i}\cup A_{q+2,2i+1},\,A_{q+1,2i}\cap A_{q+2,2i+1}=\emptyset\;(i=0,1,\ldots,q2^q-1)$ となるので、

$$\frac{i}{2^q}P(\boldsymbol{X}\in A_{q,i}) \leq \frac{2i}{2^{q+1}}P(\boldsymbol{X}\in A_{q+1,2i}) + \frac{2i+1}{2^{q+1}}P(\boldsymbol{X}\in A_{q+1,2i+1})$$

となり、 $\int_{\Omega} \varphi_q(\boldsymbol{X}(\omega)) \, dP(\omega) \leq \int_{\Omega} \varphi_{q+1}(\boldsymbol{X}(\omega)) \, dP(\omega) \text{ を得る。よって、} \left\{ \int_{\Omega} \varphi_q(\boldsymbol{X}(\omega)) \, dP(\omega) \right\} \text{ は単調増加 }$ 列なので、その $q \to \infty$ とした極限は無限大かもしれないが定義される。これを用いて、次のように定める。

$$\int_{\Omega} \varphi(\boldsymbol{X}(\omega)) dP(\omega) = \lim_{q \to \infty} \int_{\Omega} \varphi_q(\boldsymbol{X}(\omega)) dP(\omega). \tag{4.2}$$

3rd step 一般の $\varphi(x)$ について。

$$\varphi^{+}(\boldsymbol{x}) = \max\{\varphi(\boldsymbol{x}), 0\}, \qquad \varphi^{-}(\boldsymbol{x}) = \max\{-\varphi(\boldsymbol{x}), 0\}$$
(4.3)

とおく。このとき、 $\varphi(\boldsymbol{x}) = \varphi^+(\boldsymbol{x}) - \varphi^-(\boldsymbol{x}), \ |\varphi(\boldsymbol{x})| = \varphi^+(\boldsymbol{x}) + \varphi^-(\boldsymbol{x})$ となることに注意する。これを用いて、 $\int_{\Omega} |\varphi(\boldsymbol{X}(\omega))| \, dP(\omega) < \infty$ のとき (この判定は 2nd step より可能)、各 * = +, - に対して 2nd step の定 義と $0 \leq \varphi^*(\boldsymbol{x}) \leq |\varphi(\boldsymbol{x})|$ より $0 \leq \int_{\Omega} \varphi^*(\boldsymbol{X}(\omega)) \, dP(\omega) \leq \int_{\Omega} |\varphi(\boldsymbol{X}(\omega))| \, dP(\omega) < \infty$ となることに注意して

$$\int_{\Omega} \varphi(\boldsymbol{X}(\omega)) dP(\omega) = \int_{\Omega} \varphi^{+}(\boldsymbol{X}(\omega)) dP(\omega) - \int_{\Omega} \varphi^{-}(\boldsymbol{X}(\omega)) dP(\omega)$$
(4.4)

と定める。

注意 4.1 上記の定義は、 $\mu(B)=P(\pmb{X}\in B)\;(B\in\mathcal{B}(\mathbf{R}^n))$ によって定義される確率測度 μ (\pmb{X} の分布という) に対して、 $\int_{\mathbf{R}^n}\varphi(\pmb{x})\,d\mu(\pmb{x})$ を定義したことに相当する。特に、n=1 のときこの積分を確率変数 \pmb{X} の分布関数 $\pmb{F}(x)$ を用いて、 $\int_{-\infty}^\infty\varphi(x)\,dF(x)$ と表すことがある。

以下の Lebesgue 積分論の定理 4.1, 4.2 が成立することに注意する。(証明は関数解析学で勉強のこと。)

定理 4.1 (1) 積分は線形性や単調性を有する。(期待値の形で定理 4.3 で述べる。)

(2)
$$\varphi(\mathbf{x}) \ge 0$$
, $\int_{\Omega} \varphi(\mathbf{X}(\omega)) dP(\omega) = 0 \Longrightarrow P(\varphi(\mathbf{X}) = 0) = 1$.

注意 **4.2** $P(\varphi(X) = 0) = 1$ のとき、ほとんどいたるところ (almost everywhere) $\varphi(X) = 0$ といい、 $\lceil \varphi(X) = 0$ a.e.」と表す。(ほとんど確かに (almost surely) といい、 $\lceil \varphi(X) = 0$ a.s.」と表すこともある。)

定理 4.2 (1) (単調収束定理) (R,\mathfrak{A},μ) を測度空間とする。可測関数の列 $\{f_q(x)\}$ が非負値で単調増加であるとする, $0 \le f_1(x) \le \cdots \le f_q(x) \le \cdots$ a.e. このとき、次が成立する。

$$\lim_{q \to \infty} \int_{R} f_q(x) \, d\mu(x) = \int_{R} \left(\lim_{q \to \infty} f_q(x) \right) d\mu(x).$$

(2) **(Lebesgue** の収束定理**)** (R,\mathfrak{A},μ) を測度空間とする。可測関数の列 $\{f_q(x)\}$ に対して、ある可測関数 M(x) で $\int_R M(x) \, d\mu(x) < \infty$ を満たすもの (可積分という) が存在して、 $|f_q(x)| \leq M(x)$ a.e. $(q=1,2,\ldots)$ を満たすとるとする。このとき、 $f(x) = \lim_{q \to \infty} f_q(x)$ a.e. が存在して可測であれば、f(x) も可積分であり、次が成立する。

$$\lim_{q \to \infty} \int_R f_q(x) \, d\mu(x) = \int_R f(x) \, d\mu(x).$$

4.2 期待値の定義

§4.1 で準備した積分を用いて、 $\varphi \geq 0$ あるいは $\int_{\Omega} |\varphi(\boldsymbol{X}(\omega))| \, dP(\omega) < \infty$ のとき、期待値 $E[\varphi(\boldsymbol{X})]$ を

$$E[\varphi(\mathbf{X})] = \int_{\Omega} \varphi(\mathbf{X}(\omega)) dP(\omega)$$

で定義する。次の定理が成立する。証明は省略する。

定理 **4.3** $\varphi, \psi: \mathbf{R}^n \to \mathbf{R}$ を Borel 可測関数、a, b, c を定数とする。このとき、次が成立する。

- (1) $\varphi(\mathbf{X}) = c$ a.e. のとき、 $E[\varphi(\mathbf{X})] = c$.
- (2) $\varphi(X) \leq \psi(X)$ a.e. のとぎ、 $E[\varphi(X)] \leq E[\psi(X)]$.
- (3) $|E[\varphi(\boldsymbol{X})]| \leq E[|\varphi(\boldsymbol{X})|].$
- (4) $E[|\varphi(\boldsymbol{X})|] < \infty$, $E[|\psi(\boldsymbol{X})|] < \infty$ のとぎ、 $E[a\varphi(\boldsymbol{X}) + b\psi(\boldsymbol{X})] = aE[\varphi(\boldsymbol{X})] + bE[\psi(\boldsymbol{X})]$.

次に、X が離散型、絶対連続型のときの計算方法に関する定理を与える。 $\varphi: \mathbf{R}^n \to \mathbf{R}$ を Borel 可測関数と する。

定理 4.4~X が離散型確率変数のとき、そのとりうる値を x_1, x_2, \ldots とすれば、

$$E[\varphi(\mathbf{X})] = \sum_{k=1}^{\infty} \varphi(\mathbf{x}_k) P(\mathbf{X} = \mathbf{x}_k). \tag{4.5}$$

証明: $\varphi \ge 0$ とする。 $\S 4.1$ の 2nd step のように $\varphi_q(x)$ を定義すると、

$$\begin{split} E[\varphi_q(\boldsymbol{X})] &= \sum_{i=0}^{q2^q} \frac{i}{2^q} P(\boldsymbol{X} \in A_{q,i}) = \sum_{i=0}^{q2^q} \frac{i}{2^q} \sum_{k: \boldsymbol{x}_k \in A_{q,i}} P(\boldsymbol{X} = \boldsymbol{x}_k) \\ &= \sum_{i=0}^{q2^q} \sum_{k: \boldsymbol{x}_k \in A_{q,i}} \varphi_q(\boldsymbol{x}_k) P(\boldsymbol{X} = \boldsymbol{x}_k) = \sum_{k=1}^{\infty} \varphi_q(\boldsymbol{x}_k) P(\boldsymbol{X} = \boldsymbol{x}_k) \end{split}$$

ここで、 $\{\varphi_q\}$ は非負値単調増加列なので、 $\lim_{q\to\infty} \varphi_q(x) = \varphi(x)$ に注意して単調収束定理 (個数測度として) を用いれば (4.5) を得る。一般の場合は、(4.4) として定義するのだから、 $\varphi \geq 0$ の場合より成立する。

定理 4.5~X が絶対連続型確率変数のとき、その密度関数を $f(x_1,\ldots,x_p)$ とすれば、

$$E[\varphi(\mathbf{X})] = \int \cdots \int_{\mathbf{R}^p} \varphi(x_1, \dots, x_p) f(x_1, \dots, x_p) dx_1 \cdots dx_p.$$
(4.6)

証明: 記号を簡単にするため 1 次元確率変数として記す。定理 4.4 の証明と同様に $\varphi \ge 0$ とし、 $\S 4.1$ の 2nd step の $\varphi_{q}(x)$ を用いると、

$$E[\varphi_q(X)] = \sum_{i=0}^{q2^q} \frac{i}{2^q} P(X \in A_{q,i}) = \sum_{i=0}^{q2^q} \frac{i}{2^q} \int_{A_{q,i}} f(x) dx$$
$$= \sum_{i=0}^{q2^q} \int_{A_{q,i}} \varphi_q(x) f(x) dx = \int_{\mathbf{R}} \varphi_q(x) f(x) dx$$

ここで、 $\{\varphi_q(x)f(x)\}$ は非負値単調増加列なので、単調収束定理を用いて (4.6) を得る。一般の φ に対しては、 (i) と同様に (4.4) として定義するのだから明らか。

注意 4.3 2 次元確率変数 (X,Y) が X は離散型で取り得る値が x_1,x_2,\ldots で、Y は絶対連続型である非負 Borel 関数 f(x,y) を用いて

$$P(X = x_k, Y \le a) = \int_{-\infty}^{a} f(x_k, y) \, dy \qquad a \in \mathbf{R}, \ k = 1, 2, \dots$$

と表される場合

$$E[\varphi(X,Y)] = \sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \varphi(x_k, y) f(x_k, y) \, dy$$

となることが、定理 4.4, 4.5 と同様に証明できる。

確率変数の期待値と独立性の関係で、次は重要である。

定理 4.6 確率変数 X_1,\ldots,X_n は独立であるとし、 $\varphi_1,\cdots,\varphi_n$ は Borel 可測であるとする。このとき、もし、任意の j で $E[|\varphi_j(X_j)|]<\infty$ であれば、 $E[|\varphi_1(X_1)\varphi_2(X_2)\cdots\varphi_n(X_n)|]<\infty$ であり、次が成立する。

$$E[\varphi_1(X_1)\varphi_2(X_2)\cdots\varphi_n(X_n)] = E[\varphi_1(X)]E[\varphi_2(X_2)]\cdots E[\varphi_n(X_n)]. \tag{4.7}$$

証明: 簡単のため n=2 の場合に証明する。 $X_1=X, X_2=Y, \varphi_1=\varphi, \varphi_2=\psi$ と記す。

1st step $\varphi(x), \psi(y)$ が単関数 $\varphi(x) = \sum_{i=1}^{M} a_i 1_{A_i}(x), \ \psi(y) = \sum_{j=1}^{N} b_i 1_{B_i}(y)$ のとき。 $1_A(x) 1_B(y)$ も $x \in A$ かつ $y \in B$ のときのみ 1 になる定義関数だから、 $\varphi(x) \psi(y) = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i b_j 1_{A_i}(x) 1_{B_j}(y)$ も単関数で、独立性の定義 2.8 とそのあとの注意により、

$$E[\varphi(X)\psi(Y)] = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i b_j P(X \in A_i, Y \in B_j) = \sum_{i=1}^{M} \sum_{j=1}^{N} a_i b_j P(X \in A_i) P(Y \in B_j)$$

$$= \sum_{i=1}^{M} a_i P(X \in A_i) \sum_{j=1}^{N} b_j P(Y \in B_j) = E[\varphi(X)] E[\psi(Y)]$$

2nd step $\varphi \ge 0, \psi \ge 0$ のとき。 $\S 4.1$ の 2nd step と同様に、各 $q \in \mathbf{N}$ に対して単関数 φ_q, ψ_q を定義する。このとき、1st step により

$$E[\varphi_a(X)\psi_a(Y)] = E[\varphi_a(X)]E[\psi_a(Y)]$$

となる。ここで、単調収束定理 (定理 4.2 (1)) により $q \to \infty$ とすることで (4.7) を得る。特に、 $E[|\varphi(X)|] < \infty$ かつ $E[|\psi(Y)|] < \infty$ であれば、 $E[|\varphi(X)\psi(Y)|] = E[|\varphi(X)|]E[|\psi(X)|] < \infty$ となることもわかった。

 $\frac{3\text{rd step}}{-\theta}$ 一般の φ, ψ の場合。 $(\varphi\psi)(x,y) = \varphi(x)\psi(y)$ と書くものとする。このとき、(4.3) のように、 $\varphi^+, \varphi^-, \psi^+, \psi^-, (\varphi\psi)^+, (\varphi\psi)^-$ を定める。このとき、

$$(\varphi \psi)^{+}(x,y) = \varphi^{+}(x)\psi^{+}(y) + \varphi^{-}(x)\psi^{-}(y), \qquad (\varphi \psi)^{-}(x,y) = \varphi^{+}(x)\psi^{-}(y) + \varphi^{-}(x)\psi^{+}(y)$$

に注意する。これより、

 $E[\varphi(X)]E[\psi(Y)] = (E[\varphi^{+}(X)] - E[\varphi^{-}(X)])(E[\psi^{+}(Y)] - E[\psi^{-}(Y)])$

- $= (E[\varphi^{+}(X)]E[\psi^{+}(Y)] + E[\varphi^{-}(X)]E[\psi^{-}(Y)]) (E[\varphi^{+}(X)]E[\psi^{-}(Y)] + E[\varphi^{-}(X)]E[\psi^{+}(Y)])$
- $= (E[\varphi^{+}(X)\psi^{+}(Y)] + E[\varphi^{-}(X)\psi^{-}(Y)]) (E[\varphi^{+}(X)\psi^{-}(Y)] + E[\varphi^{-}(X)\psi^{+}(Y)])$
- $= E[(\varphi\psi)^{+}(X,Y)] E[(\varphi\psi)^{-}(X,Y)] = E[\varphi(X)\psi(Y)] \qquad \Box$

4.3 積率 (モーメント)・分散

定義 4.1 X を確率変数、r > 0 とする。

- (1) $E[X^r]$ を r 次の積率 (モーメント) という。 特に、r=1 のとき、E[X] を X の平均という。
- (2) $\mu=E[X]$ とするとき、 $E[(X-\mu)^r]$ を平均のまわりの r 次の積率という。 特に、r=2 のとき、 $E[(X-\mu)^2]$ を X の分散といい V(X) と表す。また、 $\sigma(X)=\sqrt{V(X)}$ を X の標準偏差という。
- (3) $M_X(t) = E[e^{tX}], t \in \mathbf{R}, \$ をXの積率母関数という。 $\Lambda_X(t) = \log E[e^{tX}], \ t \in \mathbf{R}, \$ をXのキュムラント母関数という。

ただし、上記はそれぞれの期待値が定義される場合にのみ考えるものとする。

定理 4.7 X の r 次の積率が存在するとき、s ($\leq r$) 次の積率も存在する。

証明: $|X|^s \le \max\{1, |X|^r\} \le 1 + |X|^r$ であるから、 $E[|X|^s] \le 1 + E[|X|^r] < \infty$ となり存在する。 \square

この定理により、 $E[X^2]<\infty$ のとき、平均 E[X] も存在する。また、このとき $(X-c)^2=X^2-2cX+c^2$ となることから、分散 V(X) が存在する。

定理 $4.8~E[X^2]<\infty$ とする。このとき次が成り立つ。

- (1) $V(X) = E[X^2] E[X]^2$.
- (2) $V(aX + b) = a^2V(X)$ (a, b は定数).
- (3) V(X) = 0 ならば $X = \mu$ a.e., ただし $\mu = E[X]$.

証明: (1), (2) は演習問題とする。(3) は定理 4.1 (2), 注意 4.2 から自明。 □

例 4.1 重要な分布の期待値と分散、積率母関数を例示する。

[A] 離散型確率変数の例

(1) 二項分布 B(n, p)

$$E[X] = \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^k q^{n-k} = np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-1-(k-1))!} p^{k-1} q^{n-1-(k-1)}$$
$$= np(p+q)^{n-1} = np.$$

また、

$$E[X(X-1)] = \sum_{k=0}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^k q^{n-k} = n(n-1)p^2 \sum_{k=2}^{n} \frac{(n-2)!}{(k-2)!(n-2-(k-2))!} p^{k-2} q^{n-2-(k-2)}$$
$$= n(n-1)p^2 (p+q)^{n-2} = n(n-1)p^2.$$

となるから、 $E[X^2]=E[X(X-1)+X]=E[X(X-1)]+E[X]=n(n-1)p^2+np$. よって、 $V(X)=E[X^2]-E[X]^2=np(1-p)$. また、 $M_X(t)=(e^tp+1-p)^n$. \square

(2) Poisson 分布 Po(λ)

$$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, \dots \ \sharp \ \emptyset$$

$$E[X] = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda.$$

また、二項分布と同様にして、

$$E[X(X-1)] = \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} = \lambda^2 e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} = \lambda^2 e^{-\lambda} e^{\lambda} = \lambda^2.$$

となる。よって、 $V(X)=E[X(X-1)]+E[X]-E[X]^2=\lambda^2+\lambda-\lambda^2=\lambda$. また、 $M_X(t)=e^{\lambda(e^t-1)}$. ちなみに、 $E[(X-\lambda)^3]=\lambda$, $E[(X-\lambda)^4]=\lambda+3\lambda^2$ となるが、これには積率母関数もしくはキュムラント母関数を用いて計算(cf. 問題 **4.2**) しないときつい。

(3) 幾何分布 Ge(p)

 $P(X=k)=q^kp,\,k=0,1,\ldots,\,(q=1-p)$. まず、級数 $\sum\limits_{k=0}^{\infty}x^k$ の収束半径は 1 であったから、|x|<1 のとき この級数は何度でも項別微分でき (cf. 微分積分学の教科書 pp.146-7)、

$$\sum_{k=1}^{\infty} kx^{k-1} = \frac{d}{dx} \left(\sum_{k=0}^{\infty} x^k \right) = \frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{1}{(1-x)^2}$$
$$\sum_{k=2}^{\infty} k(k-1)x^{k-2} = \frac{d}{dx} \left(\sum_{k=1}^{\infty} kx^{k-1} \right) = \frac{d}{dx} \left(\frac{1}{(1-x)^2} \right) = \frac{2}{(1-x)^3}$$

よって、

$$\begin{split} E[X] &= \sum_{k=1}^{\infty} kq^k p = qp \sum_{k=1}^{\infty} kq^{k-1} = \frac{pq}{(1-q)^2} = \frac{q}{p}, \\ V(X) &= E[X(X-1)] + E[X] - E[X]^2 = \sum_{k=2}^{\infty} k(k-1)q^k p + E[X] - E[X]^2 \\ &= \frac{2q^2p}{(1-q)^3} + \frac{q}{p} - \left(\frac{q}{p}\right)^2 = \frac{q}{p^2}. \end{split}$$

また、
$$M_X(t) = \frac{p}{1 - e^t q}$$
, $t < \log \frac{1}{q}$, であり $E[(X - E[X])^3] = \frac{q^2 + q}{p^3}$ となる。

(4) 負の二項分布 NB
$$(\alpha,p)$$
 $(\alpha>0,0< p<1)$
$$P(X=n) = \binom{\alpha+n-1}{n} p^{\alpha} (1-p)^n, \ n=0,1,2,\dots$$
 まず、 $\binom{\alpha+n-1}{k} = \frac{(\alpha+n-1)(\alpha+n-2)\cdots\alpha}{n!} = (-1)^n \frac{(-\alpha)(-\alpha-1)\cdots(-\alpha-n+1)}{n!} = (-1)^n \binom{-\alpha}{k}$ と $(1+x)^{-\alpha} = \sum_{n=0}^{\infty} \binom{-\alpha}{k} x^n \ (|x|<1)$ より、 $\sum_{n=0}^{\infty} P(X=n) = 1$ となることに注意する。このとき、

$$E[X] = \sum_{n=1}^{\infty} n \binom{\alpha + n - 1}{n} p^{\alpha} (1 - p)^n = \sum_{n=1}^{\infty} (-1)^n n \binom{-\alpha}{n} p^{\alpha} (1 - p)^n = p^{\alpha} \sum_{n=1}^{\infty} n \binom{-\alpha}{n} (p - 1)^n$$
$$= p^{\alpha} (-\alpha)(p - 1) \sum_{n=1}^{\infty} \binom{-\alpha - 1}{n - 1} (p - 1)^{n-1} = p^{\alpha} (-\alpha)(p - 1)(1 + p - 1)^{-\alpha - 1} = \frac{\alpha(1 - p)}{p}.$$

同様に、 $n(n-1)\binom{-\alpha}{n}=(-\alpha)(-\alpha-1)\binom{-\alpha-2}{n-2}$ より E[X(X-1)] が求まり、 $V(X)=\frac{\alpha(1-p)}{n^2}$ とな る。また、 $M_X(t) = \frac{p^{\alpha}}{(1 - e^t q)^{\alpha}}, \ t < \log \frac{1}{q}, \$ であり $E[(X - E[X])^3] = \frac{\alpha(q^2 + q)}{p^3}$ となる $(q = 1 - p \ とした)$ 。 級数 $(1+x)^{-\alpha}=\sum\limits_{n=0}^{\infty}\binom{-\alpha}{k}x^n$ の収束半径が 1 であるから、項別微分を利用することで、幾何分布と同様に E[X] や E[X(X-1)] を計算できることにも注意する。

(5) 平均が存在しない例

とり得る値を $x_k=(-1)^{k-1}k$, $k=1,2,\ldots$, その確率を $P(X=(-1)^{k-1}k)=\frac{1}{k(k+1)}$, $k=1,2,\ldots$ とす ると、

$$\sum_{k=1}^{\infty} P(X = (-1)^{k-1}k) = \sum_{k=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$$

となり、X は確かに確率変数となるが、

$$E[|X|] = \sum_{k=1}^{\infty} k \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \frac{1}{k+1} = \infty$$

となり平均は存在しない。この場合、

$$\sum_{k=1}^{\infty} (-1)^{k-1} k \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k+1} = 1 - \sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l} = 1 - \log 2$$

と条件収束し、一見期待値が存在しそうだが、この場合は平均が存在しないとする。

[B] 絶対連続型確率変数の例

(1) 一様分布 U(a,b)

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{a+b}{2}.$$

$$V(X) = E[\left(X - \frac{a+b}{2}\right)^{2}] = \int_{a}^{b} \left(x - \frac{a+b}{2}\right)^{2} dx = \left[\frac{1}{3}\left(x - \frac{a+b}{2}\right)^{3}\right]_{a}^{b} = \frac{1}{3}\left(\frac{a-b}{2}\right)^{3} - \frac{1}{3}\left(\frac{b-a}{2}\right)^{3} = \frac{(b-a)^{2}}{12}.$$

$$(2) \ \textit{ガンマ分布} \ \Gamma(\alpha,\beta)$$

$$E[X^c] = \int_0^\infty x^c \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \, dx = \frac{\beta^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{c+\alpha-1} e^{-\beta x} \, dx = \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{\Gamma(c+\alpha)}{\beta^{c+\alpha}}, \ c > -\alpha.$$

$$E[X] = \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{\Gamma(1+\alpha)}{\beta^{1+\alpha}} = \frac{\alpha}{\beta}, \ E[X^2] = \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{\Gamma(2+\alpha)}{\beta^{2+\alpha}} = \frac{(\alpha+1)\alpha}{\beta^2} \ \text{$\rlap{$t$}$ b $V(X)$} = E[X^2] - (E[X])^2 = \frac{\alpha}{\beta^2}.$$

$$M_X(t) = \int_0^\infty e^{tx} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \, dx = \frac{\beta^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{c+\alpha-1} e^{-(\beta-t)x} \, dx = \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{\Gamma(\alpha)}{(\beta-t)^\alpha} = \left(\frac{\beta}{\beta-t}\right)^\alpha, \ t < \beta.$$
 指数分布 $Y \sim \text{Ex}(\lambda)$ はガンマ分布で $\alpha = 1, \ \beta = \lambda$ の場合だから、

$$E[Y] = \frac{1}{\lambda}, \ V(Y) = \frac{1}{\lambda^2}, \ M_Y(t) = \frac{\lambda}{\lambda - t}, \ t < \lambda.$$

(3) 正規分布 $N(\mu, \sigma^2)$

標準正規分布 $Z \sim N(0,1)$ の場合を考える。

$$\begin{split} E[|Z|^{\alpha}] &= \int_{-\infty}^{\infty} |z|^{\alpha} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} |z|^{\alpha} e^{-\frac{z^2}{2}} \, dz \\ &= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} (2t)^{\frac{\alpha - 1}{2}} e^{-t} \, dt = \frac{2^{\alpha/2}}{\sqrt{\pi}} \Gamma\left(\frac{\alpha + 1}{2}\right). \end{split}$$

ただし $\alpha>-1/2$ とした。 $\alpha\leq -1/2$ のときは $E[|Z|^{\alpha}]=\infty$ である。これより、すべての $n\in \mathbb{N}$ に対して $E[Z^n]$ は存在し、n が奇数のとき密度関数が遇関数なので $E[Z^n]=0$ となる。n=2m が偶数のとき

$$E[Z^{2m}] = \frac{2^m}{\sqrt{\pi}} \Gamma\left(\frac{2m+1}{2}\right) = \frac{2^m}{\sqrt{\pi}} \frac{2m-1}{2} \frac{2m-3}{2} \cdots \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = (2m-1)!!$$

となる。一般の場合 $X \sim \mathcal{N}(\mu, \sigma^2)$ とすると $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$ なので、

$$E[X] = E[\sigma Z + \mu] = \mu, \qquad V(X) = E[(X - \mu)^2] = E[\sigma^2 Z^2] = \sigma^2$$

を得る。また、

$$\begin{split} M_X(t) &= E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{t(\sigma z + \mu)} e^{-\frac{z^2}{2}} \, dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{t\mu} e^{-\frac{1}{2} \{(z - t\sigma)^2 - (t\sigma)^2\}} \, dz = e^{t\mu + \frac{1}{2}t^2\sigma^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z - t\sigma)^2} \, dz = e^{t\mu + \frac{1}{2}t^2\sigma^2}. \end{split}$$

X が正規分布 $N(\mu, \sigma^2)$ に従うとき、 $Y=e^X$ の分布を対数正規分布という。このとき演習問題 **47** より、(Y の最頻値)<(Y の中央値)<(Y の平均)となる。所得額や貯蓄額がこの分布に従うと考えられているが、この傾向が統計局のデータからもわかる。

(4) 自由度 n の t 分布 t_n

T が自由度 n の t 分布 t_n に従うとき、定理 3.6 (1) より $T=Z/\sqrt{\frac{Y}{n}}, Z\sim \mathrm{N}(0,1), Y\sim \chi_n^2, Z$ と Y は独立と表せる。ここで、独立性と自由度 n のカイ二乗分布 χ_n^2 はガンマ分布 $\Gamma(\frac{n}{2},\frac{1}{2})$ と同じ分布に注意すると

$$E[|T|^\alpha] = E[|Z|^\alpha] n^{\frac{\alpha}{2}} E[Y^{-\frac{\alpha}{2}}] = \frac{2^{\alpha/2}}{\sqrt{\pi}} \Gamma\Big(\frac{\alpha+1}{2}\Big) n^{\frac{\alpha}{2}} \frac{\Gamma(\frac{n-\alpha}{2})}{\Gamma(\frac{n}{2})2^{\frac{\alpha}{2}}} = \frac{\Gamma(\frac{\alpha+1}{2})\Gamma(\frac{n-\alpha}{2})}{\sqrt{\pi}\Gamma(\frac{n}{2})}.$$

よって $k\in \mathbf{N}$ に対して $n\geq k+1$ であれば $E[T^k]$ は定義され、k が奇数なら $E[T^k]=0$ となる。 $n\geq 3$ のとき

$$V(T) = E[T^2] = \frac{\Gamma(\frac{3}{2})\Gamma(\frac{n-3}{2})}{\sqrt{\pi}\Gamma(\frac{n}{2})} \frac{2}{\sqrt{\pi}} = \frac{\frac{1}{2}\Gamma(\frac{1}{2})\Gamma(\frac{n-2}{2})}{\sqrt{\pi}\frac{n-2}{2}\Gamma(\frac{n-2}{2})} = \frac{n}{n-2}$$

となる。 $n \geq 5$ のとき $E[T^4] = \frac{3n^2}{(n-2)(n-4)}$ となる。また、積率母関数は存在しない。

例題 4.1 $X_i, i \in \mathbb{N}, N$ は独立な確率変数で、 $X_i, i \in \mathbb{N},$ は同じ分布に従い、N のとりうる値は $0,1,2,\ldots$ とする。このとき、

$$S = \begin{cases} 0, & N = 0\\ \sum_{i=1}^{N} X_i, & N \ge 1 \end{cases}$$
 (4.8)

とすると、 $E[X_1^2]<\infty$ かつ $E[N^2]<\infty$ であれば、次が成立する。

(1) $E[S] = E[X_1]E[N]$, (2) $V(S) = V(X_1)E[N] + E[X_1]^2V(N)$.

また、 $E[e^{tX_1}]<\infty$ かつ $E[e^{tN}]<\infty, \ \forall t\in \mathbf{R}$ であれば、(3) $M_S(t)=M_N(\log M_{X_1}(t))$ となる。

証明:
$$(1)$$
 $E[S] = \sum_{k=0}^{\infty} E[S1_{\{k\}}(N)] = \sum_{k=1}^{\infty} E[(X_1 + \dots + X_k)1_{\{k\}}(N)] = \sum_{k=1}^{\infty} \sum_{i=1}^{k} E[X_i1_{\{k\}}(N)]$ $= \sum_{k=1}^{\infty} \sum_{i=1}^{k} E[X_i]E[1_{\{k\}}(N)] = \sum_{k=1}^{\infty} kE[X_1]P(N=k) = E[X_1]E[N].$ 2 行目の最初の等号は X_i と N が独立であることと定理 4.6 を用いた。

(2) X_i , $i \in \mathbb{N}$, は同分布に従うので独立性と定理 4.6 より

$$E[(X_1 + \dots + X_k)^2 1_{\{k\}}(N)] = \sum_{i=1}^k E[X_i^2 1_{\{k\}}(N)] + 2\sum_{i < j} E[X_i X_j 1_{\{k\}}(N)]$$

$$= \sum_{i=1}^k E[X_i^2] E[1_{\{k\}}(N)] + 2\sum_{i < j} E[X_i] E[X_j] E[1_{\{k\}}(N)] = k E[X_1^2] P(N = k) + k(k-1) E[X_1]^2 P(N = k).$$

よって、

$$\begin{split} E[S^2] &= \sum_{k=1}^{\infty} E[S^2 1_{\{N=k\}}] = \sum_{k=1}^{\infty} E[(X_1 + \dots + X_k)^2 1_{\{N=k\}}] \\ &= E[X_1^2] \sum_{k=1}^{\infty} k P(N=k) + E[X_1]^2 \sum_{k=1}^{\infty} k(k-1) P(N=k) = E[X_1^2] E[N] + E[X_1]^2 E[N(N-1)]. \end{split}$$

これより、

$$V(S) = E[S^2] - E[S]^2 = E[X_1^2]E[N] + E[X_1]^2E[N(N-1)] - (E[X_1]E[N])^2$$

= $V(X_1)E[N] + E[X_1]^2V(N)$.

(3)
$$M_S(t) = \sum_{k=0}^{\infty} E[e^{t(X_1 + \dots + X_k)}]P(N=k) = \sum_{k=0}^{\infty} E[e^{tX_1}]^k P(N=k) = E[M_{X_1}(t)^N] = M_N(\log M_{X_1}(t)).\square$$

4.4 共分散と相関係数

以下、 $L^2(\Omega)$ で、確率変数 X で $E[X^2]<\infty$ を満たすもの全体を表すとする。

定理 4.9 (Cauchy-Schwarz の不等式) $X,Y \in L^2(\Omega)$ のとき、E[XY] は定義され、

$$|E[XY]|^2 \le E[X^2]E[Y^2] \tag{4.9}$$

が成立する。等号成立のための必要十分条件は、 $(a,b) \neq (0,0)$ なる定数 a,b が存在して aX+bY=0 a.e. と なることである。

証明: $|XY| \leq \frac{1}{2}(X^2 + Y^2)$ より、 $E[|XY|] \leq \frac{1}{2}(E[X^2] + E[Y^2]) < \infty$ となり E[XY] は定義される。 $E[X^2] = 0$ のとき、定理 4.1, 注意 4.2 より X = 0 a.e. なので (4.9) は 0 = 0 として明らかに成立し、また、 a=1, b=0 として aX+bY=0 a.e. も成立する。 $E[X^2]>0$ のとき、

$$0 \le E[(tX+Y)^2] = t^2 E[X^2] + 2t E[XY] + E[Y^2] = E[X^2] \left\{ t + \frac{E[XY]}{E[X^2]} \right\}^2 - \frac{(E[XY])^2}{E[X^2]} + E[Y^2]$$
(4.10)

が任意の t に対して成立するので、(4.9) は成立する。一方、(4.9) で等号が成立するとき、(4.10) で t= $-E[XY]/E[X^2]$ ととれば $E[(tX+Y)^2]=0$ となる。よって、tX+Y=0 a.e. を得る。逆に、aX+bY=0a.e. とすると、 $P(X \neq 0) > 0$ より $b \neq 0$ となることに注意する。このとき、Y = aX/b a.e. より

$$|E[XY]|^2 = \left(\frac{a}{b}\right)^2 E[X^2]^2, \qquad E[X^2]E[Y^2] = E[X^2]\left(\frac{a}{b}\right)^2 E[X^2]$$

となるので、(4.9) の等号が成立する。

系 **4.1** $X,Y \in L^2(\Omega)$ のとき $E[(X - \mu_1)(Y - \mu_2)]$ は定義され、

$$|E[(X - \mu_1)(Y - \mu_2)]|^2 \le V(X)V(Y) \tag{4.11}$$

が成立する。ただし、 $E[X]=\mu_1,\,E[Y]=\mu_2$ とした。(4.11) で等号成立のための必要十分条件は、 $(a,b)\neq (0,0)$ なる定数 a,b が存在して $a(X-\mu_1)+b(Y-\mu_2)=0$ a.e. となることである。

証明: 定理 4.8 より $X,Y\in L^2(\Omega)$ のとき $X-\mu_1,Y-\mu_2\in L^2(\Omega)$ に注意する。よって、定理 4.9 の X,Y を $|X-\mu_1|,|Y-\mu_2|$ に置き換えると、

$$E[|(X - \mu_1)(Y - \mu_2)|]^2 \le E[(X - \mu_1)^2]E[(Y - \mu_2)^2] < \infty$$

より、 $E[(X-\mu_1)(Y-\mu_2)]$ は定義される。他は、定理 4.9 の X,Y を $X-\mu_1,Y-\mu_2$ に置き換えれよい。 \Box

定義 4.2 $X,Y \in L^2(\Omega)$ なる確率変数 X,Y の共分散 Cov(X,Y)、相関係数 $\rho(X,Y)$ を次で定義する。

$$Cov(X,Y) = E[(X - \mu_1)(Y - \mu_2)] = E[XY] - \mu_1 E[X] - \mu_2 E[Y] + \mu_1 \mu_2 = E[XY] - \mu_1 \mu_2,$$

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$$

ただし、 $\mu_1 = E[X], \mu_2 = E[Y]$ とし、相関係数は V(X)V(Y) > 0 のときのみに定義されるものとする。

定理 **4.10** $X,Y \in L^2(\Omega)$ のとき、相関係数 $\rho(X,Y)$ について次が成立する。

- (i) $-1 \le \rho(X, Y) \le 1$.
- (ii) X と Y は完全相関であるとき、即ち、 $|\rho(X,Y)|=1$ のとき次が成り立つ。

証明: (i) 定義と系 4.1 より明らか。

(ii) 仮定と系 4.1 により $(a,b) \neq (0,0)$ があって $a(X-\mu_1)+b(Y-\mu_2)=0$ a.e. となる。従って、 $a^2(X-\mu_1)^2=b^2(Y-\mu_2)^2$ の期待値をとって、 $a^2V(X)=b^2V(Y)$. ここで、V(X)V(Y)>0 より a,b は ともに 0 ではことがわかる。 $(-方が \ 0$ なら双方とも 0 となるため。) よって、 $Y-\mu_2=-a(X-\mu_1)/b$ a.e. より、

$$V(Y) = \left(\frac{a}{b}\right)^2 V(X), \quad \rho(X,Y) = \frac{E\left[\frac{-a}{b}(X - \mu_1)^2\right]}{V(X)^{1/2} \left|\frac{a}{b}\right| V(X)^{1/2}} = -\frac{\frac{a}{b}}{\left|\frac{a}{b}\right|}.$$

よって、 $\rho(X,Y)=1$ なら、 $\frac{a}{b}<0$ で $\frac{a}{b}=-\frac{\sqrt{V(Y)}}{\sqrt{V(X)}},$ $\rho(X,Y)=-1$ なら、 $\frac{a}{b}>0$ で $\frac{a}{b}=-\frac{\sqrt{V(Y)}}{\sqrt{V(X)}}$ となり主張を得る。

例題 4.2 同時密度関数が $f(x,y)=\left\{egin{array}{ll} 24xy & (0\leq x,0\leq y,x+y\leq 1) \\ 0 & (その他) \end{array}
ight.$ である確率変数 X,Y について、その共分散 $\mathrm{Cov}(X,Y)$ と相関係数 $\rho(X,Y)$ を求める。

解 $f_X(x)$, $f_Y(y)$ を X,Y の周辺密度関数とする。 $0 \le x \le 1$ のとき、

$$f_X(x) = \int_0^{1-x} 24xy \, dy = 12x(1-x)^2$$

より、
$$f_X(x) = \begin{cases} 12x(1-x)^2 & (0 \le x \le 1) \\ 0 & (その他) \end{cases}$$
 . 全く同様に、 $f_Y(y) = \begin{cases} 12y(1-y)^2 & (0 \le y \le 1) \\ 0 & (その他) \end{cases}$ である。よって、補題 2.3 を用いて計算すると、

(注意: $f_X(x)$ を求めず、 $E[\varphi(X)] = \iint_D \varphi(x) \, 24xy \, dxdy$ から求めてもよい。) 一方 $D: 0 \leq y \leq 1-x, \, 0 \leq x \leq 1$ とすると、

$$E[XY] = \iint_D xy \, 24xy \, dx dy = \int_0^1 dx \int_0^{1-x} 24x^2 y^2 \, dy = \int_0^1 \left[8x^2 y^3 \right]_{y=0}^{y=1-x} dx$$

$$= \int_0^1 8x^2 (1-x)^3 \, dx = 8 \, \mathbf{B}(3,4) = \dots = \frac{2}{15} \, \, \mathbf{\sharp} \, \, \mathbf{0}$$

$$\operatorname{Cov}(X,Y) = E[XY] - E[X]E[Y] = \frac{2}{15} - \left(\frac{2}{5}\right)^2 = -\frac{2}{75}$$

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{-2/75}{1/25} = -\frac{2}{3}. \quad \Box$$

命題 **4.1** $X,Y,Z \in L^2(\Omega)$ と定数 $a,b \in \mathbf{R}$ に対して次が成立する。

- (i) Cov(aX + bY, Z) = a Cov(X, Z) + b Cov(Y, Z).
- (ii) $V(aX + bY) = a^2V(X) + 2ab\operatorname{Cov}(X, Y) + b^2V(Y)$.

証明: $\widetilde{X} = X - E[X]$, $\widetilde{Y} = Y - E[Y]$, $\widetilde{Z} = Z - E[Z]$ とすると、

$$Cov(aX + bY, Z) = E[(a\widetilde{X} + b\widetilde{Y})\widetilde{Z}] = aE[\widetilde{X}\widetilde{Z}] + bE[\widetilde{Y}\widetilde{Z}] = aCov(X, Z) + bCov(Y, Z).$$

(ii) は共分散の定義より Cov(X,X) = V(X) となることに注意すれば、(i) から容易に従う。 \Box

定理 **4.11** 確率変数 X,Y について、次の (i)–(iv) は同値である。

- (i) Cov(X, Y) = 0.
- (ii) $X \ge Y$ は無相関、即ち、 $\rho(X,Y) = 0$ となる。
- (iii) E[XY] = E[X]E[Y].
- (iv) V(X + Y) = V(X) + V(Y).

証明: (i) ⇔ (ii): 定義より明らか。

- (i) \iff (iii): Cov(X,Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y] よりわかる。
- (i) \iff (iv): $V(X+Y)=V(X)+V(Y)+2\operatorname{Cov}(X,Y)$ より従う。

注意 4.4 X,Y が独立であれば、無相関である。実際、X,Y が独立であれば、定理 4.6 より (iii) が成立する。よって、定理 4.11 より無相関となる。

逆は成立しない。例えば、0 < q < 1 とし、P((X,Y) = (0,1)) = q, P((X,Y) = (1,0)) = P((X,Y) = (-1,0)) = (1-q)/2 となる確率変数 X,Y を考えると、

$$P(X = 0) = P(Y = 1) = P((X, Y) = (0, 1)) = q$$

より $P(X=0,Y=1)=P((X,Y)=(0,1))\neq P(X=0)P(Y=1)$ となり X と Y は独立ではない。

一方、P(XY=0)=P((X,Y)=(0,1))+P((X,Y)=(1,0))+P((X,Y)=(-1,0))=1 より E[XY]=0, P(X=1)=P((X,Y)=(1,0))=(1-q)/2 より $E[X]=1\cdot P(X=1)+(-1)\cdot P(X=-1)+0\cdot P(X=0)=0$ となり、E[XY]=E[X]E[Y] が成立するので $Cov(X,Y)=\rho(X,Y)=0$.

ただし、(X,Y) が 2 次元正規分布であれば X,Y が独立であることと、無相関であることが同値となる (cf. 例 2.5, 定理 4.12, 系 4.2)。

例 **4.2** X_1, X_2, \ldots, X_n はどの 2 つも無相関で各 $k=1,\ldots,n$ に対して $E[X_k]=\mu, V(X_k)=\sigma^2$ とする。 このとき、 $\overline{X}=\frac{1}{n}\sum_{k=1}^n X_k$ (標本平均), $U^2=\frac{1}{n-1}\sum_{k=1}^n (X_k-\overline{X})^2$ (不偏分散) とおくと、 $E[\overline{X}]=\mu, E[U^2]=\sigma^2$ となる。

証明 $E[\overline{X}] = \frac{1}{n} \sum_{k=1}^{n} E[X_k] = \mu$. $Y_k = X_k - \mu$ とおくと、 $X_1 - \overline{X} = \frac{n-1}{n} Y_1 - \frac{1}{n} \sum_{k=2}^{n} Y_k$. 今、 $E[Y_k^2] = V(X_k) = \sigma^2$, $E[Y_k Y_l] = \operatorname{Cov}(X_k, X_l) = 0 \ (k \neq l)$ だから、

$$E[(X_1 - \overline{X})^2] = \frac{(n-1)^2}{n^2} E[Y_1^2] + \frac{1}{n^2} \sum_{k=2}^n E[Y_k^2] = \frac{n-1}{n} \sigma^2.$$

同様に、各 k について $E[(X_k-\overline{X})^2]=\frac{n-1}{n}\sigma^2$ となるので、 $E[U^2]=\frac{1}{n-1}\sum_{k=1}^n\frac{n-1}{n}\sigma^2=\sigma^2$.

例 4.3 2 次元確率変数 (X,Y) が次のような多項分布に従うとき、共分散 $\mathrm{Cov}(X,Y)$ を求めよ:

$$P(X = k, Y = l) = \frac{n!}{k! l! (n - k - l)!} p^k q^l r^{n - k - l}, \quad k, l \in \mathbb{Z}; 0 \le k, l, \ k + l \le n.$$
(4.12)

ただし、0 < p, q, r < 1, p + q + r = 1 とする。

解: X,Y の周辺分布がそれぞれ二項分布 $\mathrm{B}(n,p),\,\mathrm{B}(n,q)$ に従うから、 $E[X]=np,\,E[Y]=nq.$ また、

$$\begin{split} E[XY] &= \sum_{k=0}^{n} \sum_{l=0}^{n-k} k l \frac{n!}{k! l! (n-k-l)!} p^k q^l r^{n-k-l} = \sum_{k=0}^{n} k \frac{n!}{k! (n-k)!} p^k \sum_{l=1}^{n-k} l \frac{(n-k)!}{l! (n-k-l)!} q^l r^{n-k-l} \\ &= \sum_{k=0}^{n} k \frac{n!}{k! (n-k)!} p^k \sum_{l=1}^{n-k} (n-k) q \binom{n-k-1}{l-1} q^{l-1} r^{n-k-l} \\ &= \sum_{k=0}^{n} k (n-k) \frac{n!}{k! (n-k)!} p^k q (q+r)^{n-k-1} = n(n-1) p q \sum_{k=1}^{n-1} \binom{n-2}{k-1} p^{k-1} (q+r)^{n-k-1} \\ &= n(n-1) p q (p+q+r)^{n-2} = n(n-1) p q. \end{split}$$

よって、Cov(X,Y) = -npq.

相関係数について $\rho(X,Y)>0$ のとき X と Y は正の相関がある、 $\rho(X,Y)<0$ のとき負の相関があるという。 X と Y は正の相関があるのとき X が大きくなれば Y も大きくなる、負の相関があるとき X が大きくなれば Y は小さくなるという傾向を持つ。これを以下の例で見よう。

例 4.4 n 回サイコロを投げるとき、i の目の出た回数を X_i とし、奇数の目の出た回数を Y,偶数の目の出た回数を Z とある。相関係数 $\rho(X_1,Y)$, $\rho(X_1,Z)$ を求めよ。また、 $V(X_1-X_2)$ を求めよ。

解: $i\neq j$ とすると、 X_i,X_j は (4.12) を p=q=1/6 で満たす。よって、 $\mathrm{Cov}(X_i,X_j)=-n/36$ となる。また、 X_i は $\mathrm{B}(n,\frac{1}{6})$ に従うから $E[X_i]=n/6,\ V(X_i)=5n/36$ である。よって、 $Y=X_1+X_3+X_5,\ Z=X_2+X_4+X_6$ であるから、

$$Cov(X_1, Y) = Cov(X_1, X_1) + Cov(X_1, X_3) + Cov(X_1, X_5) = \frac{5n}{36} - \frac{n}{36} - \frac{n}{36} = \frac{n}{12},$$

$$Cov(X_1, Z) = Cov(X_1, X_2) + Cov(X_1, X_4) + Cov(X_1, X_6) = -\frac{n}{36} - \frac{n}{36} - \frac{n}{36} = -\frac{n}{12}$$

また、Y,Z はともに $\mathrm{B}(n,\frac{1}{2})$ に従うから、 $V(Y)=V(Z)=\frac{n}{4}$. よって、 $\rho(X_1,Y)=\frac{1}{\sqrt{5}},\ \rho(X_1,Z)=-\frac{1}{\sqrt{5}}$ となる。一方、

$$\begin{split} V(X_1 - X_2) &= \mathrm{Cov}(X_1 - X_2, X_1 - X_2) = \mathrm{Cov}(X_1 - X_2, X_1) - \mathrm{Cov}(X_1 - X_2, X_2) \\ &= \mathrm{Cov}(X_1, X_1) - \mathrm{Cov}(X_2, X_1) - \mathrm{Cov}(X_1, X_2) + \mathrm{Cov}(X_2, X_2) \\ &= V(X_1) - 2\,\mathrm{Cov}(X_1, X_2) + V(X_2) = \frac{5n}{36} - 2\left(-\frac{n}{36}\right) + \frac{5n}{36} = \frac{n}{3} \quad \Box \end{split}$$

定義 4.3 n 次元確率変数 $X=(X_1,\ldots,X_n)$ について、ベクトル $E[X]=(E[X_1],\ldots,E[X_n])$ を X の平均ベクトルという。また、 $Cov(X_i,X_j)$ をその (i,j) 成分とする n 次対称行列を、X の共分散行列といい、V(X) で表す。

定理 **4.12** $X = (X_1, ..., X_n)'$ を n 次元正規分布 $N(\mu, \Sigma)$ に従うとする。 $\mu = (\mu_1, ..., \mu_n)' \in \mathbf{R}^n$, $\Sigma = (\sigma_{ij})$ は正定値対称行列であった。このとき、 $E[X] = \mu$, $V(X) = \Sigma$ となる。

証明: $E[X_k] = \mu_k, 1 \le k \le n$, $Cov(X_k, X_l) = \sigma_{kl}, 1 \le k, l \le n$ を示せばよい。例 2.3 (ii) の記号を用いと、 $X = (X_1, \ldots, X_n)'$ の密度関数は

$$f(x_1,\ldots,x_n) = \frac{1}{(2\pi)^{n/2}(\det \Sigma)^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})'\Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}, \quad \boldsymbol{x} = (x_1,\ldots,x_n)'.$$

 Σ は正定値対称行列なので、線形代数の対角化に関する定理から、直交行列 $P=(p_{ij})$ と対角成分がすべて正の対角行列 $D=(\lambda_{ij})$ がとれて、 $P'\Sigma P=D$ とできる。このとき、 $Y=(Y_1,\ldots,Y_n)'=P'(X-\mu)$ とし、この密度関数 $g(y_1,\ldots,y_n)$ を求めよう。まず、 $y=(y_1,\ldots,y_n)'=P'(x-\mu)$ とすると、

$$(x - \mu)' \Sigma^{-1}(x - \mu) = y' P' \Sigma^{-1} P y = y' D^{-1} y = \sum_{j=1}^{n} \frac{1}{\lambda_{jj}} y_{j}^{2}.$$

また、 $x = Py + \mu$ より $\frac{\partial x}{\partial y} = \det P = \pm 1$, $\det \Sigma = \det D = \prod_{j=1}^n \lambda_{jj}$. よって、

$$g(y_1,\ldots,y_n) = \frac{1}{(2\pi)^{n/2}(\lambda_{11}\cdots\lambda_{nn})^{1/2}}e^{-\frac{1}{2}\sum_{j=1}^n\frac{1}{\lambda_{jj}}y_j^2}\left|\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right| = \prod_{j=1}^n\frac{1}{(2\pi\lambda_{jj})^{1/2}}e^{-\frac{1}{2}\frac{y_j^2}{\lambda_{jj}}}.$$

これは、 Y_1, \ldots, Y_n が独立で、各 Y_j は正規分布 $\mathbf{N}(0, \lambda_{jj})$ に従うことを意味している。特に、

$$E[Y_i] = 0, \ E[Y_i^2] = \lambda_{ii}, \ 1 \le i \le n, \qquad E[Y_i Y_j] = E[Y_i] E[Y_j] = 0, \ 1 \le i < j \le n.$$

今、 $m{X} = Pm{Y} + m{\mu}$ より、 $X_k = \sum_{i=1}^n p_{ki} Y_i + \mu_k$ なので、

$$E[X_k] = \sum_{i=1}^{n} p_{ki} E[Y_i] + \mu_k = \mu_k,$$

$$Cov(X_k, X_l) = E[(X_k - \mu_k)(X_l - \mu_l)] = \sum_{i=1}^n \sum_{j=1}^n p_{ki} p_{lj} E[Y_i Y_j] = \sum_{i=1}^n p_{ki} p_{li} \lambda_{ii} = \sigma_{kl}$$

を得る。最後の等号は $\Sigma = PDP'$ であるが、DP' の (i,l)-成分が $\lambda_{ii}p_{li}$ であるから、PDP' の (k,l)-成分が $\sum_{i=1}^{n}p_{ki}\lambda_{ii}p_{li}$ となることを用いた。

系 **4.2** $X = (X_1, \ldots, X_n)'$ を n 次元正規分布 $N(\mu, \Sigma)$ に従うとする。このとき、 X_1, \ldots, X_n が独立である ための必要十分条件は Σ が対角行列であることである。

証明:必要性は例 2.5 で示した。十分性について。 $\Sigma = (\sigma_{ij})$ とかく。 $i \neq j$ ならば、 X_i, X_j は独立なので定理 4.11 により $\mathrm{Cov}(X_i, X_j) = 0$. よって、定理 4.12 により $\sigma_{ij} = \mathrm{Cov}(X_i, X_j) = 0$ となる。

例 4.5 2 次元確率変数 (X,Y) の同時密度関数が $f(x,y)=\frac{1}{\pi}\exp\left\{-\frac{1}{2}Q(x,y)\right\}, (x,y)\in\mathbf{R}^2,$ であるとする。 ただし、

$$Q(x,y) = x^2 + 2xy + 5y^2 - 2x + 2y + 2$$

とする。このとき、V(X), V(Y) と Cov(X,Y) を求めよ。

解: $Q(x,y)=(x+y-1)^2-(y-1)^2+5y^2+2y+2=(x+y-1)^2+4(y+\frac{1}{2})^2$ に注意して、S=X+Y-1、 $T=2(Y+\frac{1}{2})$ とおく。このとき、(S,T) の同時密度関数 g(s,t) を求めると、 $s=x+y-1,t=2(y+\frac{1}{2})$ より $y=\frac{1}{2}(t-1),x=s-\frac{1}{2}t+\frac{3}{2}$ に注意して、

$$g(s,t) = f\Big(s - \frac{1}{2}t + \frac{3}{2}, \frac{1}{2}(t-1)\Big)\Big|\frac{\partial(x,y)}{\partial(s,t)}\Big| = \frac{1}{\pi}\exp\Big\{-\frac{1}{2}(s^2 + t^2)\Big\}\frac{1}{2} = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}s^2}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}t^2}.$$

これは、S,T は独立でともに標準正規分布 N(0,1) に従うことを示している。よって、

$$E[S] = E[T] = 0,$$
 $E[S^2] = V(S) = E[T^2] = V(T) = 1,$ $E[ST] = Cov(S, T) = 0$

となる。これより、 $Y=\frac{1}{2}(T-1), X=S-\frac{1}{2}T+\frac{3}{2}$ より、

$$\begin{split} E[Y] &= \frac{1}{2} \left(E[T] - 1 \right) = -\frac{1}{2}, \qquad E[X] = E[S] - \frac{1}{2} E[T] + \frac{3}{2} = \frac{3}{2}, \\ V(Y) &= E[(Y - E[Y])^2] = \frac{1}{4} E[T^2] = \frac{1}{4}, \\ V(X) &= E[(X - E[X])^2] = E\left[\left(S - \frac{1}{2}T + \frac{3}{2} - \frac{3}{2}\right)^2\right] = E[S^2] - 2 \cdot \frac{1}{2} E[ST] + \frac{1}{4} E[T^2] = \frac{5}{4}, \\ \operatorname{Cov}(X, Y) &= E[(X - E[X]) \left(Y - E[Y]\right)] = E\left[\left(S - \frac{1}{2}T\right) \frac{1}{2}T\right] = \frac{1}{2} E[ST] - \frac{1}{4} E[T^2] = -\frac{1}{4}. \end{split}$$

4.5 条件付き期待値

 $P(Y \le y|X=x)$ がすべての y で定義されていれば、条件付き期待値 E[h(Y)|X=x] が定義できる。例えば、条件 X=x の下での Y の条件付き密度関数 $f_{Y|X}(y|x)$ がわかっていれば

$$E[h(Y)|X=x] = \int_{-\infty}^{\infty} h(y) f_{Y|X}(y|x) dx$$

と定義される。さらに、条件つき分散を $V(Y|X=x)=E[(Y-E[Y|X=x])^2|X=x]=E[Y^2|X=x]-(E[Y|X=x])^2$ で定める。また、E[h(Y)|X=x] は x の関数であるがそれを $\psi(x)$ で表すとき $\psi(X)$ は 確率変数であるがこれを単に E[h(Y)|X] と表す。同様に V(Y|X) も定義され、これも確率変数である。

例題 **4.3** (1) (X,Y) の密度関数が $f(x,y)=4e^{-2x-y}$ $(0 \le 2x \le y)$, f(x,y)=0 (その他) とする。 x>0 のときの $f_{Y|X}(y|x)$ 及び E[Y|X], V(Y|X) を求めよ。

(2) Λ は $\Gamma(\alpha,\beta)$ に従い、 $\Lambda=\lambda$ の条件のもと Y が $\mathrm{N}(0,1/\lambda)$ に従うとき (cf. 例題 2.1)、 $E[\Lambda|Y]$ および $V(\Lambda|Y)$ を求めよ。

解: (1) $f_X(x)=\int_{2x}^{\infty}4e^{-2x-y}\,dy=4e^{-4x}$ より、 $f_{Y|X}(y|x)=\frac{4e^{-2x-y}}{4e^{-4x}}=e^{2x-y}\;(y\geq 2x),\,f_{Y|X}(y|x)=0$ (その他). よって、x>0 のとき t=y-2x とおくと

$$E[Y|X=x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) \, dy = \int_{2x}^{\infty} y e^{2x-y} \, dy = \int_{0}^{\infty} (t+2x)e^{-t} \, dt = 1 + 2x,$$

$$E[Y^{2}|X=x] = \int_{0}^{\infty} (t+2x)^{2} e^{-t} dt = \left[-\{(t+2x)^{2} + 2(t+2x) + 2\}e^{-t} \right]_{0}^{\infty} = 4x^{2} + 4x + 2,$$

$$V(Y|X) = E[Y^{2}|X=x] - (E[Y|X=x]^{2}) = 4x^{2} + 4x + 2 - (1+2x)^{2} = 1$$

より、E[Y|X] = 2X + 1, V(Y|X) = 1.

(2) 例題 2.1 より $\lambda > 0$ のとき

$$f_{\Lambda|Y}(\lambda|y) = \frac{\left(\beta + \frac{1}{2}y^2\right)^{\alpha + \frac{1}{2}}}{\Gamma(\alpha + \frac{1}{2})} \lambda^{\alpha + \frac{1}{2} - 1} e^{-(\beta + \frac{1}{2}y^2)\lambda},$$

で $\lambda \leq 0$ のとき $f_{\Lambda|Y}(\lambda|y)=0$,即ち、Y=y の条件のもと Λ はガンマ分布 $\Gamma\left(\alpha+\frac{1}{2},\beta+\frac{1}{2}y^2\right)$ に従う。よって、

$$E[\Lambda|Y=y] = \frac{\alpha + \frac{1}{2}}{\beta + \frac{1}{2}y^2}, \qquad V(\Lambda|Y=y) = \frac{\alpha + \frac{1}{2}}{(\beta + \frac{1}{2}y^2)^2}.$$

従って、
$$E[\Lambda|Y] = \frac{\alpha + \frac{1}{2}}{\beta + \frac{1}{2}Y^2}, V(\Lambda|Y) = \frac{\alpha + \frac{1}{2}}{(\beta + \frac{1}{2}Y^2)^2}.$$

定理 4.13 条件つき期待値について以下が成立する。

- (1) E[E[Y|X]] = E[Y].
- (2) E[aY + bZ|X] = aE[Y|X] + bE[Z|X]. (a,b は定数。)
- (3) E[g(X)h(Y)|X] = g(X)E[h(Y)|X], 特に E[g(X)|X] = g(X).
- (4) X, Y が独立なら E[Y|X] = E[Y].
- (5) E[E[Z|X,Y]|X] = E[Z|X].
- (6) $E[(Y-g(X))^2]$ を最小にするのは g(X)=E[Y|X] である。これは確率変数からなるベクトル空間に $\langle X,Y\rangle=E[XY]$ で内積を定義するとき、Y から X への正射影が E[Y|X] であることを表している。
- (7) V(Y) = E[V(Y|X)] + V(E[Y|X]).

ただし、(3) で g,h は "よい" 関数とし、厳密には (2)-(6) については "a.s." として成立する。

証明: (1)–(5) には測度論的確率論の知識を必要とする。(1) について (X,Y) が連続型であれば (2.10) を用いて

$$E[E[Y|X]] = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} y f_{Y|X}(y|x) dt \right) f_X(x) dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \frac{f(x,y)}{f_X(x)} f_X(x) dx dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) dx dy = E[Y]$$

と証明できる。(6) について E[X|Y] は Y の関数だから、

$$E[(X - E[X|Y])h(Y)] \stackrel{\text{(1)}}{=} E[E[(X - E[X|Y])h(Y)|Y]] \stackrel{\text{(3)}}{=} E[E[X - E[X|Y]|Y]h(Y)]$$

$$\stackrel{\text{(2)}}{=} E[(E[X|Y] - E[E[X|Y]|Y])h(Y)] \stackrel{\text{(3)}}{=} E[(E[X|Y] - E[X|Y])h(Y)] = 0$$

となることに注意すると、h(Y) = E[X|Y] - g(Y) とみなして

$$\begin{split} &E\left[(X-g(Y))^2\right] = E[(X-E[X|Y]+E[X|Y]-g(Y))^2] \\ &= E[(X-E[X|Y])^2] + 2E[(X-E[X|Y])(E[X|Y]-g(Y))] + E[(E[X|Y]-g(Y))^2] \\ &= E[(X-E[X|Y])^2] + E[(E[X|Y]-g(Y))^2]. \end{split}$$

 $E[(Y - g(X))^2]$ を最小にするのは g(X) = E[Y|X] である。(7) について:

$$E[V(Y|X)] + V(E[Y|X]) = E[E[Y^2|X] - (E[Y|X])^2] + E[(E[Y|X])^2] - (E[E[Y|X]])^2$$
$$= E[E[Y^2|X]] - (E[E[Y|X]])^2 \stackrel{\text{(1)}}{=} E[Y^2] - (E[Y])^2 = V(Y) \qquad \Box$$

Appendix

参考図書: [OY] 岡安, 吉野, 高橋, 武元 微分積分学入門 裳華房 [SS] 吹田, 新保 著 理工系の微分積分学 学術図書

関数の級数展開について A.1

離散確率分布に用いる、関数のべき級数展開について述べる (cf. [OY] pp.64—, pp.143—)。次の Rolle の 定理の証明は省略する (cf. [OY] p.50)。

定理 A.1 (Rolle の定理) 関数 f(x) が閉区間 [a,b] で連続、(a,b) で微分可能とする。このとき、f(a)=f(b)ならば、f'(c) = 0 を満たす c が存在する。

定理 A.2 (Taylor の定理) 関数 f(x) が閉区間 [a,b] で n 回微分可能とするとき、 R_n を

$$f(b) = f(a) + \frac{f'(a)}{1!}(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1} + R_n$$
(A.1)

で定める。このとき、 R_n は次のように表せる。

(a)
$$R_n = \frac{f^{(n)}(c)}{n!}(b-a)^n \ (a < c < b)$$
 を満たす c が存在する。この R_n を Lagrange の剰余項という。
(b) $R_n = \frac{f^{(n)}(c)}{(n-1)!}(b-c)^{n-1}(b-a) \ (a < c < b)$ を満たす c が存在する。この R_n を Cauchy の剰余項と

証明:pを自然数とし

$$\varphi(x) = f(x) + \sum_{k=1}^{n-1} f^{(k)}(x) \frac{(b-x)^k}{k!} + R_n \cdot \left(\frac{b-x}{b-a}\right)^p$$

とおくと、 $\varphi(a) = \varphi(b) = f(b)$ より Rolle の定理から、 $\varphi(c) = 0$ となる a < c < b が存在する。ここで、

$$\varphi'(x) = f'(x) + \sum_{k=1}^{n-1} \left\{ f^{(k+1)}(x) \frac{(b-x)^k}{k!} - f^{(k)}(x) \frac{k(b-x)^{k-1}}{k!} \right\} - R_n \cdot \frac{p(b-x)^{p-1}}{(b-a)^p}$$
$$= f^{(n)}(x) \frac{(b-x)^{n-1}}{(n-1)!} - R_n \cdot \frac{p(b-x)^{p-1}}{(b-a)^p}.$$

ここで $\varphi'(c)=0$ を p=n として書き直せば (a) の主張を、p=1 として書き直せば (b) の主張を得る。

ここで、a > b の場合も上記が成立することに注意し、さらに、b を x と置き換え、c は a と x の間にあるの で、 $x = a + \theta(x - a)$ $(0 < \theta < 1)$ と表せることに注意して次の系を得る。

系 A.1 関数 f(x) が x = a を含む区間で n 回微分可能とするとき、その区間に属する x に対して

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + R_n$$

とおくと、

$$R_n = \frac{f^{(n)}(a + \theta(x - a))}{n!} (x - a)^n \qquad (0 < \theta < 1)$$
(A.2)

あるいは

$$R_n = \frac{f^{(n)}(a + \theta(x - a))}{(n - 1)!} (1 - \theta)^{n - 1} (x - a)^n \qquad (0 < \theta < 1)$$
(A.3)

と表せる。

この系でもし $R_n \to 0 \ (n \to \infty)$ であれば

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + \dots = \sum_{n=0}^{\infty} f^{(n)}(x) \frac{(x-a)^n}{n!}$$

と表せる。これを f(x) の x=a における Taylor 展開といい、特に a=0 のときを Maclaurin 展開という。

(1)
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $(-\infty < x < \infty)$

(2)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$
 $(-\infty < x < \infty)$
(3) $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$ $(-\infty < x < \infty)$

(3)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
 $(-\infty < x < \infty)$

(4)
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 $(-1 < x \le 1)$

$$(5) \quad (1+x)^{\beta} = 1 + \beta x + \frac{\beta(\beta-1)}{2!} x^2 + \dots + \frac{\beta(\beta-1) \cdots (\beta-n+1)}{n!} x^n + \dots = \sum_{n=0}^{\infty} \binom{\beta}{n} x^n \qquad (|x| < 1)$$
 ただし、 β は任意の実数で、
$$\binom{\beta}{n} = \frac{\beta(\beta-1) \cdots (\beta-n+1)}{n!}, \ n = 0, 1, 2, \dots, \ \mathcal{E}$$
定める。

証明: (1), (5) のみ示す。(2), (3) は (1) と同様に、(4) は $\sum_{k=0}^{n} (-x)^k = \frac{1-(-x)^{n+1}}{1+x}$ の両辺を積分すれば証明

(1) Lagrange の剰余項 (A.2) より $R_n = \frac{e^{\theta x}}{n!} x^n$ で $0 < \theta < 1$ より、 $|R_n| \le e^{|x|} \frac{|x|^n}{n!} \to 0 \ (n \to \infty)$ と示せる。

(5)
$$f(x) = (1+x)^{\beta}$$
 とすると $f^{(n)}(x) = \beta(\beta-1)\cdots(\beta-n+1)(1+x)^{\beta-n}$ より $\frac{f^{(n)}(0)}{n!} = \binom{\beta}{n}$ となるので、 $R_n \to 0 \ (n \to \infty)$ を証明すればよい。Cauchy の剰余項 (A.3) より

$$|R_n| = \left| \frac{\beta(\beta - 1) \cdots (\beta - n + 1)(1 + \theta x)^{\beta - n}}{(n - 1)!} (1 - \theta)^{n - 1} x^n \right|$$
$$= \left| \frac{\beta(\beta - 1) \cdots (\beta - n + 1)}{(n - 1)!} x^n \right| \left(\frac{1 - \theta}{1 + \theta x} \right)^{n - 1} (1 + \theta x)^{\beta - 1}.$$

ここで、|x|<1 であるとき、 $0<\theta<1$ より $1-|x|\leq 1+\theta x\leq 1+|x|$ であり、よって、

$$eta-1 \geq 0$$
 なら $(1+ heta x)^{eta-1} \leq (1+|x|)^{eta-1}, \quad eta-1 < 0$ なら $(1+ heta x)^{eta-1} \leq (1-|x|)^{eta-1}$ であり、

 $0<rac{1- heta}{1+ heta x}<1$ より、 $C_n=rac{eta(eta-1)\cdots(eta-n+1)}{(n-1)!}x^n$ とおいて、 $C_n o 0\;(n o\infty)$ を示せばよい。こ

$$\lim_{n \to \infty} \left| \frac{C_{n+1}}{C_n} \right| = \lim_{n \to \infty} \left| \frac{\beta - n}{n} x \right| = |x| < 1$$

となるので、次の問 A.1 より $C_n \to 0$ を得る。

注意 A.1 例 A.1~(5) を Newton の一般化された二項定理という。特に β が自然数のとき n が β より大きい 自然数であれば $\binom{\beta}{n}=0$ となり、通常の二項定理と一致する。

問 **A.1** 数列 $\{a_n\}$ について、極限 $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=c$ が存在し c<1 であるとする。このとき $\lim_{n\to\infty}a_n=0$ と なることを示せ。

問 **A.2** 定理 A.2 で $\varphi'(c)=0$ を R_n についてその証明を完成させよ。例 A.1 (2),(3),(4) も示せ。

A.2 Stirling の公式

Stirling の公式 ([OY] pp.103—) とその準備として Wallis の公式 ([Y] p.94) について述べる。ここでは、Stirling の公式については参考文献 [SS] pp.121— の証明法を紹介する。[OY] では台形公式とその誤差を用いて証明している。各自その証明も勉強しておくこと。

命題 **A.1**
$$I_n = \int_0^{\pi/2} \sin^n x \, dx = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2}, & n \text{ は偶数}, \\ \frac{(n-1)!!}{n!!}, & n \text{ は奇数}. \end{cases}$$
 ただし、 $n!! = \begin{cases} n(n-2)\cdots 4\cdot 2, & n \text{ は偶数}, \\ n(n-2)\cdots 3\cdot 1, & n \text{ は奇数}. \end{cases}$

証明: $I_0=\frac{\pi}{2},\ I_1=1$ と、部分積分により $I_n=\frac{n-1}{n}I_{n-2},\ n\geq 2,$ となることより従う。(証明は演習問題とする。)

定理 A.3 (Wallis の公式)
$$\sqrt{\pi} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \frac{(2n)!!}{(2n-1)!!} = \lim_{n \to \infty} \frac{2^{2n}}{\sqrt{n}} \frac{(n!)^2}{(2n)!}$$

証明: 命題 A.1 の I_n について、 $\sin^{2n+1}x < \sin^{2n}x < \sin^{2n-1}x$, $(0 < x < \frac{\pi}{2})$ より $I_{2n+1} < I_{2n} < I_{2n-1}$. 即ち、

$$\frac{(2n)!!}{(2n+1)!!} < \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2} < \frac{(2n-2)!!}{(2n-1)!!}$$

ここで、(左辺) =
$$\frac{1}{2n+1}\frac{(2n)!!}{(2n-1)!!}$$
, (右辺) = $\frac{1}{2n}\frac{(2n)!!}{(2n-1)!!}$ なので、 $\frac{(2n)!!}{(2n-1)!!}$ を移項して、

$$\frac{1}{2n+1}\frac{2}{\pi} < \left\{\frac{(2n-1)!!}{(2n)!!}\right\}^2 < \frac{1}{2n}\frac{2}{\pi}, \quad \text{\sharp 5.} \quad \sqrt{\pi} < \frac{1}{\sqrt{n}}\frac{(2n)!!}{(2n-1)!!} < \sqrt{\frac{n}{2n+1}}\frac{\pi}{2}.$$

これより、最初の等式を得る。第 2 の等式は
$$(2n-1)!!=rac{(2n)!}{(2n)!!}$$
 と $(2n)!!=2^n\cdot n!$ より従う。

定理 A.4 (Stirling の公式) $\lim_{n\to\infty} \frac{n!}{n^{n+\frac{1}{2}}e^{-n}} = \sqrt{2\pi}$.

証明: $a_n = \frac{n!}{n^{n+\frac{1}{2}}e^{-n}}$ とおくと、

$$\log \frac{a_n}{a_{n+1}} = \log \frac{n!}{n^{n+\frac{1}{2}}e^{-n}} \frac{(n+1)^{n+1+\frac{1}{2}}e^{-n-1}}{(n+1)!} = \left(n + \frac{1}{2}\right)\log\left(1 + \frac{1}{n}\right) - 1.$$

ここで、y=1/x の [n,n+1] の部分の面積を上下の台形 (下の台形は x=n+1/2 における接線を用いる) の面積比較により、

$$\frac{1}{2} \cdot 2 \cdot \frac{1}{n+1/2} < \int_{n}^{n+1} \frac{1}{x} dx \left(= \log\left(1 + \frac{1}{n}\right) \right) < \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1}\right).$$

よって、 $0<\log\frac{a_n}{a_{n+1}}<\left(n+\frac{1}{2}\right)\frac{1}{2}\left(\frac{1}{n}+\frac{1}{n+1}\right)-1=\frac{1}{4n(n+1)}=\frac{1}{4}\left(\frac{1}{n}-\frac{1}{n+1}\right)$ となるので、

$$0 < \log \frac{a_n}{a_{2n}} = \sum_{k=n}^{2n-1} \log \frac{a_k}{a_{k+1}} < \sum_{k=n}^{2n-1} \frac{1}{4} \left(\frac{1}{k} - \frac{1}{k+1} \right) < \frac{1}{4n}.$$

これより、 $\lim_{n \to \infty} \frac{a_n}{a_{2n}} = 1$ を得る。ここで、Wallis の公式を用いるため、

$$\frac{2^{2n}}{\sqrt{n}} \frac{(n!)^2}{(2n)!} = \frac{2^{2n} (a_n n^{n+\frac{1}{2}} e^{-n})^2}{\sqrt{n} \cdot a_{2n} (2n)^{2n+\frac{1}{2}} e^{-n}} = \frac{a_n^2}{\sqrt{2} a_{2n}}$$

と変形すれば、
$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\sqrt{2}\frac{a_{2n}}{a_n}\frac{2^{2n}}{\sqrt{n}}\frac{(n!)^2}{(2n)!}=\sqrt{2}\cdot 1\cdot \sqrt{\pi}=\sqrt{2\pi}$$
 となり主張を得る。 \square

A.3 (整級数ともいう。)

べき級数 $\sum_{n=0}^{\infty} a_n (x-c)^n$ についての収束性とその項別微分等について復習する (cf. [OY] pp.136—, pp.224—)。簡単のため、c=0 の場合

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

について述べる。(べき級数のことを整級数ともいう。)

定理 A.5 (Abel の補題) 整級数 $\sum_{n=0}^{\infty} a_n x^n$ が $x = x_0 (\neq 0)$ で収束すれば、 $|x| < |x_0|$ なるすべての x について絶対収束する。

証明: 仮定より $a_nx_0^n\to 0$ $(n\to\infty)$ より $\{a_nx_0^n\}$ は有界な数列。 $|a_nx_0^n|\le M,\ n=0,1,\ldots,$ とすると、 $|x|<|x_0|$ ならば

$$\sum_{n=0}^{\infty} |a_n x^n| = \sum_{n=0}^{\infty} |a_n x_0^n| \frac{|x|^n}{|x_0|^n} \le \sum_{n=0}^{\infty} M \Big(\frac{|x|}{|x_0|}\Big)^n = \frac{M}{1 - |x|/|x_0|} < \infty$$

となり絶対収束することが示された。

整級数 $\sum_{n=0}^{\infty} a_n x^n$ の収束、発散について Abel の補題より次がわかる。

- (i) x = 0 以外のすべての x について発散する。
- (ii) すべての実数xについて収束する。
- (iii) ある $0 < R < \infty$ があって、|x| < R なるすべての x に対して絶対収束、|x| > R ならすべての x に対して発散する。
- (iii) の R を整級数 $\sum_{n=0}^{\infty} a_n x^n$ の収束半径という。 (i) の場合には R=0, (ii) の場合には $R=\infty$ と規約する。

例 A.2
$$\sum_{n=0}^{\infty} a^n x^n$$
 のとき $R=1/a, (a\neq 0$ は定数), $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ のとき $R=\infty$, $\sum_{n=0}^{\infty} n^n x^n$ のとき $R=0$.

定理 **A.6** (1) $\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=r$ または、(2) $\lim_{n\to\infty}\sqrt[n]{|a_n|}=r$ (0 $\leq r\leq\infty$) が存在するとき、R=1/r である。ただし、 $1/0=\infty,\,1/\infty=0$ とする。

証明: (1) $\lim_{n \to \infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} = r|x|, \ (2)$ $\lim_{n \to \infty} \sqrt[n]{|a_nx^n|} = r|x|$ であるから、それぞれ次の補題 A.1(1), (2) より、整級数 $\sum_{n=0}^{\infty} a_nx^n$ は r|x| < 1 なら収束、r|x| > 1 なら発散する。

補題 **A.1** 級数 $\sum\limits_{n=0}^{\infty}a_n$ について、(1) $\lim\limits_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=c$ または、(2) $\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=c$ $(0\leq c\leq\infty)$ が存在するとき、c<1 なら絶対収束し、c>1 なら発散する。

証明: (1) のみ示す。(2) は演習問題とする。c < 1 のとき、 $0 < \varepsilon < 1 - c$ に対して、ある $N \in \mathbb{N}$ があって、 $n \ge N$ なら $\left| \frac{|a_{n+1}|}{|a_n|} - c \right| < \varepsilon$ 、即ち、 $|a_{n+1}| \le (c+\varepsilon)|a_n|$. 特に、 $|a_n| \le (c+\varepsilon)^{n-N}|a_N|$, $n \ge N$ を得る。よって、 $0 < c + \varepsilon < 1$ に注意して、

$$\sum_{n=0}^{\infty} |a_n| \le \sum_{n=0}^{N-1} |a_n| + \sum_{n=N}^{\infty} (c+\varepsilon)^{n-N} |a_N| = \sum_{n=0}^{N-1} |a_n| + \frac{|a_N|}{1 - (c+\varepsilon)} < \infty.$$

c>1 のとき、同様に $0<\varepsilon< c-1$ に対して、ある $N\in \mathbf{N}$ があって、 $n\geq N$ なら $\left| \frac{|a_{n+1}|}{|a_n|} - c \right| < \varepsilon,$ 即ち、 $|a_{n+1}| \geq (c-\varepsilon)|a_n|$. 特に、 $c-\varepsilon > 1$ に注意して、 $|a_n| \geq (c-\varepsilon)^{n-N}|a_N| \to \infty, n \to \infty$ となるので、級数 $\sum_{n=0}^{\infty} a_n$ は発散する。

問 A.3 上記の補題 A.1(2) を示せ。また、例 A.2 を確かめよ。さらに、次の整級数の収束半径 R を求めよ。 ただし、 $p \in \mathbf{R}$, $\alpha > 0$ は定数とする。解: (1) R = 1, (2) R = 1, (3) R = 1/e, (4) $R = \alpha^{-1/2}$. (1) $\sum_{n=0}^{\infty} (n+1)^p x^n$, (2) $\sum_{n=0}^{\infty} \binom{-\alpha}{n} x^n$, (3) $\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$, (4) $\sum_{n=0}^{\infty} \alpha^n x^{2n}$,

(1)
$$\sum_{n=0}^{\infty} (n+1)^p x^n$$
,

(2)
$$\sum_{n=0}^{\infty} {\binom{-\alpha}{n}} x^n$$
,

$$(3) \sum_{n=0}^{\infty} \frac{n^n}{n!} x^n,$$

$$(4) \sum_{n=0}^{\infty} \alpha^n x^{2n}$$

定理 $\mathbf{A.7}$ 整級数 $\sum_{n=0}^{\infty} a_n x^n$ の収束半径を R $(0 < R \le \infty)$ とし、 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ とする。

- (1) この級数は |x| < R で絶対収束し、さらに、(-R,R) に含まれる任意の閉区間で一様収束する。特に、

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \sum_{n=0}^{\infty} a_{n} x^{n} dx = \sum_{n=0}^{\infty} \int_{a}^{b} a_{n} x^{n} dx = \sum_{n=0}^{\infty} \left[\frac{a_{n}}{n+1} x^{n+1} \right]_{a}^{b}.$$

(3) f(x) は (-R,R) で微分可能で、項別微分できる。

$$f'(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

項別微分してできる整級数の収束半径も R である。

証明には有限和 $f_n(x) = \sum_{k=0}^n a_k x^k$ に対して、次の関数列の収束に関する定理を用いる (cf. [OY] pp.224—)。 証明は省略する

定理 A.8 (1) 関数列の一様収束極限は連続である。

(2) 閉区間 [a,b] 上連続な関数列 $\{f_n(x)\}$ が [a,b] 上 f(x) の一様収束するとき、 $\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx$. (3) 区間 I 上の C^1 -関数の列 $\{f_n(x)\}$ がある 1 点 $x_0 \in I$ で収束し、さらに $\{f'_n(x)\}$ が I 上一様収束するとき、 $\{f_n(x)\}$ は I 上のすべての点で収束し、極限関数 f(x) も I 上で C^1 級であって、 $\lim_{n \to \infty} f_n'(x) = f'(x)$ となる。

また、関数項級数に対する次の一様収束に関する定理を用いる (cf. [OY] p.227)。証明は演習問題とする。

定理 ${\bf A.9}$ (Weierstrass の判定法) 区間 I 上の関数項級数 $\sum\limits_{n=1}^{\infty}f_n(x)$ に関して、数列 $\{M_n\}$ で

$$|f_n(x)| \le M_n \quad (n \in \mathbf{N}, \ x \in I), \qquad \text{fig. } \sum_{n=1}^{\infty} M_n < \infty$$

を満たすものがあるとき、 $\sum_{i=1}^{\infty} f_n(x)$ は I 上一様収束する。

定理 A.7 の証明: (1) 任意の 0 < r < R をとり、 $|x| \le r$ で一様収束することを示せばよい。r < R より、 $\sum a_n x^n$ は x=r で絶対収束する。すなわち、 $\sum |a_n| r^n < \infty$. $|x| \le r$ のとき $|a_n x^n| \le |a_n| r^n$ であるから、 Weierstrass の判定法より、 $\sum a_n x^n$ は一様収束する。よって、定理 A.8 (1) より、f(x) の連続性が従う。

- (2)(1)と定理 A.8(2)より成立する。
- (3) まず、 $\sum\limits_{n=1}^{\infty}na_nx^{n-1}$ の収束半径 R' が R に等しいことを示す。 $\sum\limits_{n=1}^{\infty}na_nx^n$ の収束半径も明らかに R' である。 $|a_nx^n|\leq |na_nx^n|$ であるから、 $R'\leq R$. 次に、|x|< R なる任意の x を固定して、 $|x|< \xi< R$ なる ξ

をとると、 $|na_nx^n|=n|x/\xi|^n|a_n\xi^n|$. ここで、 $|x/\xi|<1$ より $n|x/\xi|^n\to 0$ $(n\to\infty)$,従って、 $\{n|x/\xi|^n\}$ は有界なので、 $\sum |a_n\xi^n|$ の収束性から、 $\sum |a_nx^n|$ の収束性が従う。よって、 $|x|\le R'$. これが |x|< R なる任意の x について成立するので $R\le R'$. 以上より R=R'.

よって、(1) より $\sum\limits_{n=1}^\infty na_nx^n$ は (-R,R) に含まれる任意の閉区間で一様収束する。 これと定理 A.8 (3) より $\sum\limits_{n=1}^\infty a_nx^n$ は項別微分してよいことがわかる。 \square

定理 A.7(3) を繰り返し用いることにより、次の系を得る。

系 A.2 整級数 $\sum\limits_{n=0}^{\infty}a_nx^n$ の収束半径を R $(0< R\leq \infty)$ とすると、(-R,R) において $\sum\limits_{n=0}^{\infty}a_nx^n$ は何回でも微分可能で、しかも項別微分できる。

A.4 Cantor 集合と Cantor 関数

注意 2.3 で述べた Cantor 関数と Cantor 集合を紹介する。

参考図書: 伊藤清三 著 ルベーグ積分入門 裳華房 pp.41-45.

[0,1] の閉部分集合の減少列 $K_n,\, n=1,2,\ldots,$ を次のように定め、 $K=\bigcap_{n=1}^\infty K_n$ とおく。

$$K_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right] = \left[0, 1\right] \setminus \left(\frac{1}{3}, \frac{2}{3}\right), \qquad K_n = K_{n-1} \setminus \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{k}{3^{n-1}} + \frac{1}{3^n}, \frac{k}{3^{n-1}} + \frac{2}{3^n}\right), \ n = 2, 3, \dots$$

ここで、各 K_n はコンパクトなので $K \neq \emptyset$ であることに注意する。この K を Cantor 集合という。

定理 A.10 Cantor 集合 K は連続濃度をもつ長さ 0 の集合となる。

証明: 各 K_n は 2^n 個の長さ $1/3^n$ の区間の和集合なので、 K_n の長さは $2^n/3^n$ となる。特に、K の長さは 0 となる。

K が連続濃度をもつことを示すためには K から [0,1] への全射 F を定義すればよい。

各 $n \in \mathbb{N}$ に対して、 $F_n : \mathbf{R} \to [0,1]$ を $F_n(0) = 0$ で K_n 上でのみ傾き $(3/2)^n$ で増大し、それ以外では傾き 0 となる折れ線と定義する。例えば、 $F_1(x) = 0$, x < 0, $F_1(x) = 1$, x > 1 で

$$F_1(x) = \frac{3}{2}x, \ 0 \le x \le \frac{1}{3}, \quad F_1(x) = \frac{1}{2}, \ \frac{1}{3} < x < \frac{2}{3}, \quad F_1(x) = \frac{3}{2}\left(x - \frac{2}{3}\right) + \frac{1}{2}, \ \frac{1}{3} \le x \le 1,$$

となる。このとき、構成法より $|F_{n+1}(x)-F_n(x)| \leq 1/2^n$ となることに注意する。よって、m>n とすると、

$$|F_m(x) - F_n(x)| \le \sum_{k=n}^{m-1} |F_{k+1}(x) - F_k(x)| \le \sum_{k=n}^{m-1} \frac{1}{2^k} = 2\left(\frac{1}{2^n} - \frac{1}{2^m}\right) \to 0, \quad m, n \to \infty$$

となり、 $\{F_n(x)\}$ は一様収束の意味で Cauchy 列をなすので、連続関数 F(x) が存在して一様収束する。

構成法より $x \notin K_n$ のとき $m \ge n$ なら $F_m(x) = F_n(x) = k/2^n$ となる $k = 0, 1, \ldots, 2^n$ があるので、F(x) は K_n の補集合の各開区間では定数関数となる。すなわち、F(x) は K 上でのみ増加する連続関数なので、F(x) が K から [0,1] への全射となっていることが示された。

注意 **A.2** 定理 A.10 の証明で定義した F(x) を **Cantor** 関数という。F(x) は $F(x) \equiv 0, x < 0, F(x) \equiv 1, x > 1$ と拡張すると、F(x) はある確率変数の分布関数となるが、密度関数は持たない。K の外で定数なので、F'(x) = 0 となる。すなわち K の Lebesgue 測度が 0 であるから、F' = 0 a.e. となるので、 $\int_0^1 F'(t) \, dt = 0,$ 一方 F(1) - F(0) = 1 となるためである。