微分積分学 AD I, 数学序論演習 I テスト 出題日 2007 年 5 月 8 日

1. 数列 $\{a_n\}$ が α に収束し、別の数列 $\{b_n\}$ が

$$|b_n - \alpha| \le |a_n - \alpha|$$

を満たせば、 $\{b_n\}$ も α に収束することを ε -N 論法を用いて示せ。

2. b を正数とする。次の公理 I $(アルキメデスの公理) から <math>\lim_{n \to \infty} bn = \infty$ を導け。公理 I: 正数 a,b に対し a < bN をみたす自然数 N が存在する。

3. $\lim_{n \to \infty} \sqrt[2n]{\frac{1}{(2n)!}} = 0$ を証明せよ。ただし、 $\lim_{n \to \infty} \sqrt{\frac{1}{n}} = 0$ は既知としてよい。

4. 0 < a < bとし、数列 $\{a_n\}$, $\{b_n\}$ を $a_1 = a$, $b_1 = b$,

$$a_{n+1} = \sqrt{a_n b_n}, b_{n+1} = \frac{a_n + b_n}{2} n = 1, 2, \dots$$

で定義する。以下を示せ。

(1) $a_n < b_n, n = 1, 2, \ldots,$ を示せ。

(2) $\{a_n\}$ が単調増加であることおよび $\{b_n\}$ が単調減少であることを示せ。

(3) $b_{n+1}-a_{n+1} \leq \frac{1}{2}(b_n-a_n), \ n=1,2,\ldots,$ を示し、 $\lim_{n\to\infty}(b_n-a_n)=0$ を示せ。

5. 数列 $\{a_n\}$ を $a_1=1,\,a_{n+1}=rac{1}{a_1+a_2+\cdots+a_n}$ $(n=1,2,\dots)$ と定める。

(1) 数列 $\{a_n\}$ は下に有界な単調減少数列であることを示せ。

(2) $\lim_{n\to\infty}a_n$ を求めよ。

6. $a_1=2,\,a_{n+1}=2+rac{1}{2+a_n}\;(n=1,2,\dots)$ によって数列 $\{a_n\}$ を定める。 $\{a_n\}$ が Cauchy の判定条件をみたすことを示し、 $\lim_{n\to\infty}a_n$ を求めよ。