微分積分学 AD I, 数学序論演習 I テスト 出題日 2006 年 5 月 9 日

1. (1) log₂ 3 が無理数であることを示せ。

(ヒント: $\log_2 3$ が有理数、即ち、自然数 p,q により $\log_2 3 = \frac{p}{q}$ と表せた として矛盾を導け。)

- (2) $A = [0, \log_2 3] \cap \mathbf{Q}$ とおくとき、 $\max A$ が存在しないことを証明せよ。
- 2. $\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=0$ を arepsilon- n_0 論法で証明せよ。
- 3. (1) $\{a_n\}$ が lpha に収束するとき、 $\lim_{n o\infty}a_{n-1}=lpha$ を示せ。
- (2) eの定義 $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ から、 $\lim_{n \to \infty} \left(1 \frac{1}{n}\right)^n = \frac{1}{e}$ を導け。
- 4. 数列 $\{a_n\}$, $\{b_n\}$ は収束し、 $\lim_{n \to \infty} a_n = lpha$, $\lim_{n \to \infty} b_n = eta$ とする。
- (1) $\{a_n\}$ が有界であることを示せ。
- (2) $\lim_{n \to \infty} a_n b_n = lpha eta$ を示せ。 $(arepsilon n_0$ 論法を用いよ。)
- 5. 「はさみうち」を利用して次を示せ。
- (1) $\lim_{n \to \infty} \frac{n}{2^n} = 0$ (ヒント: $(1+1)^n$ に二項定理を用いよ。)
- $(2) \quad \lim_{n\to\infty} (1+2^n+3^n)^{1/n} = 3 \qquad \qquad (注意: \lim_{n\to\infty} a^{\frac{1}{n}} = 1 \; (a>0) \; \texttt{は既知としてよい。})$
- 6. $a_1=rac{1}{2},\,a_{n+1}=rac{1}{4}(a_n{}^2+2)\,\,(n\geq 1)$ によって数列 $\{a_n\}$ を定める。
- (1) $\{a_n\}$ が有界な単調増加列であることを示せ。
- (2) $\lim_{n\to\infty}a_n$ を求めよ。