情報科学演習

第4回

写真の加工,添付ファイルの送信

目 次

1	本日	の目標	1
2	2進	法, 16 進法, ASCII コード	1
3	実習		3
	3.1	Web browser でファイルを取り寄せる	3
	3.2	写真の加工	3
	3.3	添付ファイル (Attachment file) の送受信	5
	3.4	添付ファイルの保存	5
	3.5	データのバックアップを取る..............................	6
	3.6	レポート課題	7
	3.7	補足 0:後の講義の準備	7
	3.8	補足 1:データ作成上の注意	8
	3.9	補足 2:講義のテキスト	8
	3.10	補足 3:添付ファイルの実際	8

1 本日の目標

- ASCII(アスキー) 文字と2桁の16進数との対応(ASCII コード)の仕組みを知る。
- 画像の切り出し、拡大・縮小の操作を通じて、コンピュータにおける画像の扱いを知る.
- メールにおける添付ファイルの扱いについて知る.
- バックアップの仕方を知る.

2 2進法, 16進法, ASCII コード

現在のコンピュータは電気の有無で、1、0 を表します. コンピュータの中では全てのデータは 0、 1 の列、即ち 2 進法の数です. 2 進法 1 桁を 1bit(ビット、binary digit の略) といいます. 例えば、 Nintendo 64 の 64 は 64 ビットに由来します. さらに 8bit を 1Byte(バイト) といいます. 2 進法の 世界では $1024 = 2^{10}$ 毎に単位が K(キロ)、M(メガ)、G(ギガ)、T(テラ)の単位をつけます.

しかし 2 進法では、簡単な情報を表すのにも膨大な桁数が必要です. そこで、2 進法を 4bit 毎に 区切って、16 進法を使う事が普通です. 16 進法では 1Byte が 2 桁の数になります. 16 進法では 10 進法の 10, 11, 12, 13, 14, 15 に文字 a, b, c, d, e, f (もしくは, A, B, C, D, E, F) を使います.

コンピュータの中では全てが2進法の数ですから、文字も数に変換されています.この文字と数の対応を文字コードといいます¹.文字コードにはいくつかの種類がありますが、ここでは最も良く使われ、かつ簡単なASCII(American Standard Code for Information Interchange) コードを紹介します.次の表で最初の2列は制御文字と呼ばれる物です.

下位\上位	0(0000)	1(0001)	2(0010)	3(0011)	4(0100)	5(0101)	6(0110)	7(0111)
0(0000)	NULL	DLE	Space	0	0	Р	4	р
1(0001)	SOH	DC1	!	1	А	Q	a	q
2(0010)	STX	DC2	"	2	В	R	b	r
3(0011)	ETX	DC3	#	3	С	S	с	r
4(0100)	EOT	DC4	\$	4	D	Т	d	t
5(0101)	ENQ	NAC	%	5	Е	U	е	u
6(0110)	ACK	SYN	&	6	F	V	f	v
7(0111)	BEL	ETB	,	7	G	W	g	w
8(1000)	BS	CAN	(8	Н	Х	h	х
9(1001)	HT	EM)	9	Ι	Y	i	У
A(1010)	LF	SUB	*	:	J	Ζ	j	z
B(1011)	VT	ESC	+	;	Κ	[k	{
C(1100)	FF	FS	,	<	L	\	1	
D(1101)	CR	GS	—	=	М]	m	}
E(1110)	SO	RS		>	Ν	^	n	~
F(1111)	SI	US	/	?	0	-	0	DEL

ASCII コード表

¹より細かくは、利用可能な文字の集合である「文字セット」と、それらをどのように2進法の数に対応させるかという「エンコーディング」の2つの部分からなりますが、そのような話は複雑なので省略します.

表より, Ascii コードでは, 大文字の O は 16 進で数 4F(10 進で 79, 2 進で 01001111) に対応し ます. 通常は 16 進の数は前に, 0x をつけて, 0x4F のように表記します.

文字コードに対するいくつかの注意

- ASCII コードは 7bit 上の表からわかるように、ASCII コードは 7bit です. しかし今のコンピュー タはデータを Byte 単位で処理しますので、最上位のビットを 0 としてそこに埋め込まれます.
- 文字コードは何種類もある 上でも言いましたが、数字と文字の対応表は他にもあります. ASCII 以外で代表的なのが大型汎用計算機 (Main Frame, 銀行のオンラインシステムなどで使われ ている) で使われている EBCDIC と呼ばれる文字コードです.
- 日本語の扱い 日本語,中国語,ハングルなどの文字数の多い言語では,文字コードはより複雑にな ります.日本語の文字コードの代表的な規格は,JIS コード 2 種類と,EBCDIC の 3 つです.
- インターネットでは 通信に於けるデータ交換では、お互いの合意があればどのようなデータ交換 も可能です.しかし、通信をする度に文字コードをいちいち決めていたのでは大変です.そこ で、インターネット通信で標準的に用いられる文字コードが決められています.他の言語を 一緒に送っても問題の出ない文字コードは、日本語については 昔の JIS コードから派生した iso-2022-jp という規格と Unicode から派生した iso-10646 という規格です.
- 過去のしがらみ 以前, JIS X 0201 1976 という 8bit の文字コードが定義されました. これは, 最初 の7ビットの部分を Ascii コードの2カ所に変更を加え, 残った部分にカタカナを定義しま した. この規格は日本のパソコンで多く用いられてきました. これは2000年に新しい JIS 規 格に吸収されましたが, その規格にソフトウェアが対応していないことが数多くあります. こ の規格で定義されているカナ文字が, 半角カナ文字と呼ばれる物です. 上にも述べたように, きちんとした規格通りに動作しないソフトウェアが沢山あるので, これで定義されている半 角カナ文字を使った文書を他人に送ったり渡したりしてはいけません. 迷惑行為です.

現在の Windows 7 の日本語環境では、\ のコードに対して ¥ 記号を表示していますが、これはこの過去のしがらみのためで、実際には間違った表記となっています.

- 半角/全角 元々は印刷業界用語で、文字幅の意味です.文字コードには文字幅は定義されていず、 数と文字の対応だけが定義されています.多くの環境で、1byte文字が2byte文字の半分の幅 で表示されたため、半角文字という俗称が生まれました.2000年にはこの俗称を追認する形 でJIS X 201 1976カナ文字にhalf-widthという名称がつきましたが、今では意味がありませ ん.この授業では(昔の風習を用いて)1byte文字と言う事にします.
- 他の言語では ASCII コードが合衆国でしか通用しないのは明らかです. ヨーロッパ圏やトルコ語, タイ語用の規格として多くで用いられていたのは, ISO-8859-1~ISO-8859-16 と決められて いる物です. これらは最近,下の UTF-8 に置き換わっていっているようです.
- この講義では この講義では、主に UTF-8 と呼ばれるコードを用います. これは上に述べた ISO-10646 とほぼ同じです.
- 昔,日本で売られたパソコンでは MS-Kanji と呼ばれる文字コード,およびこれから派生した文字 コードが使われていました.これはマイクロソフトウェア・アソシエイツと三菱電機(アス

キー社も加わっていた?) が定めた日本語の文字コードを少し変形したものです.上で述べた, JIS X 0201 1976 の規格を 2byte にし,増えた部分に JIS で定められた文字セットを少し番 号をずらして割り振ってできたものです.今でこそ,過去との互換性のために国際的に登録 された文字コードとなっていますが,元となった JIS 規格の規格違反をしている,多数の方言 がある,ASCII 以外のコードとの共存ができない等問題点の多い文字コードです.

文字コードはこれからも変化する 日本語に限っても文字コードはまだまだ不完全な物です.これ から先も変化し続けると考えられます.その変化を追いかける専門家になる事は不要ですが, その変化に対して合理的な行動がとれるように心がけて下さい.

より詳しく知りたいなら Wikipedia(http://ja.wikipedia.org/)の文字コードの項は良い出来.

3 実習

3.1 Web browser でファイルを取り寄せる

前回取った写真が、この講義の Web ペイジに置いてあります. 写真の置き場所は、プライバシーを配慮して、講義のページからはたどれなくしてあります. また、琉球大学外部からは、アクセスを禁止してあります.

- 1. Firefox を起動する.
- 2. URI: http://www.math.u-ryukyu.ac.jp/%7Esuga/joho/2015/photos/ を入力する.
- 3. 写真がクラス毎にありますので、自分のクラス (1 組の人は、1.jpeg) をクリックするとその画 像が表示されます. 先週休んだ人は、flower.jpeg を使って下さい.
- 4. 写真自体を右クリックするとメニューが現れるので、「Save image as ...」を選ぶ.
- 5. zentai.jpegという名前で保存する. デスクトップにそのアイコンが現れる.

URI の記法で、%7E は、% の次の 2 文字は対応する ASCII コードの 16 進表記です. 昔の多く の日本語キーボードでは、チルダー ~ の所に JIS X 0201 1976 のコード 「」が刻印されており、 そのことの混乱を避ける意味で使われます.

3.2 写真の加工

最近のデジタルカメラは高画質なので、Web に載せるには、データ量が大き過ぎます.そこで、ア プリケーション「Gimp」で、写真の加工します.次の手順で、写真を Gimp を使って開きます.

- デスクトップに現れたアイコンを「右」クリックする
- メニューがでて来るので、上から2つ目の「"The Gimp" で開く」を選ぶ.
- いろいろなメッセージが出ますが、「次へ」を4回選ぶと Gimp が起動する.
- 「Gimp 今日の技」というウィンドウが出ますが、「閉じる」を選ぶ.

- 写真を縮小する 画面の上部のメニューから「画像」 「画像拡大縮小」を選びます.(Gimp で開 いた画像自体を「右」クリックするとメニューが表れるので「画像」 「画像拡大縮小」を 選ぶのでも同じ) 拡大縮小のウィンドウが現れるので,画面サイズの「幅(W)」の所に 1/4 の数値(通常 704)をキーボードから入力して ENTER を押すと,高さも自動的に 1/4 になり ます.終ったら,右下の「拡大縮小(S)」をクリックします.もう1度画像を「右」クリックし て,「ファイル」 「別名で保存」を選び,「shukusho.jpeg」の名前で保存してます.この際, 「品質」と言う文字があるウィンドウが現れたら,スライドバーをスライドして値を「100」に して「OK(O)」を選びます.
- 自分の顔写真を切り取る クラス写真から自分の顔写真を切り取ります. 写真は上で作って,画面に 開いたままになっている shukusho.jpeg を利用します. flower.jpeg を使っている人は,バラ の花を切り取って下さい.

1. Gimp のツールパレット (The Gimp と言うタイトルバーのあるウィンドウ) から矩形 選択ツールを選びます (図参照).

- 2. 矩形選択ツールで画像の切り取りたい部分の対角線を、マウスでドラッグします. 選択 された部分が、点線で囲まれます. 範囲が気に入らない人は、気に入る範囲になるまで やり直して下さい. 間違って選択部分の画像が動いてしまった人は、編集メニューから (右クリックでメニューを出して「ファイル」「編集」としても良い.)「フローティ ング選択領域移動のやり直し」を選ぶと元の位置に戻ります.
- 3. 選択部分が決まったら、編集メニューから「コピー」を選びます.
- ファイルメニューから「新規」を選びます.この時画像のサイズの欄があるウィンドウ が現れますが、そのサイズは今コピーした領域のサイズです.100位の数字が出ている はずです.もし 600 位の数であれば、コピーの操作を忘れています.
- 5. サイズが大丈夫であれば、「OK」をクリックすると、新しい画像のウィンドウが現れます.
- 6. 編集メニューから「張り付け」を選ぶと、先程コピーした部分が張り付けられます.

- 7. ファイルメニューから「保存」を選ぶ.
- 8. 名前 (N) の部分に、「myface.jpeg」を入力する.
- 9. 保存をクリックすると、エクスポートする必要があるというウィンドウが現れるので、 「エクスポート」をクリックする.
- 10. 品質のウィンドウが現れるので、スライドバーを動かして 100% にして、「OK」をク リックする.

写真の縮小と、自分の顔写真の切り取りが終った人は、Gimpの画面を閉じて下さい. ウィンドウ右上の×印の所を押すと、ウィンドウが閉じます. 変更を保存するかと言う質問が出たら、「保存しない」として下さい(ここで間違って保存をして、zentai.jpegの画像が乱れた場合は、時間のあるときに、上に述べた手順でクラス写真を縮小しなおしてください.)

3.3 添付ファイル (Attachment file) の送受信

e-mail はテキスト (文字の並び) を送受信するもので、画像データ等はそのままでは遅れません. テキスト以外の内容を送受信するには、添付ファイルと言う仕組みを使います. ただし、テキスト で内容が伝わる物を別形式で無理矢理添付ファイルにする人がいますが、これは良い事ではありま せん. 必要なのは (特に e-mail では) 内容が伝わるかと言う事で、その体裁ではありません.

「Sylpheed」を使用して、自分宛に先程作成した顔写真のファイルを添付して送信します.

- 1. Sylpheed を起動する.
- 2. 上部のメニューから「作成」を選ぶ.
- 3.「宛先」を自分 (e+自分の学籍番号@eve.u-ryukyu.ac.jp) にする
 「件名」を Attatchment test とし、「本文」に「添付ファイルの練習」と書く
- 4. 上の方のアイコンの並びにある「添付」をクリックする.
- 5. 添付ファイルを選ぶウィンドウになるので,先程切り出した自分の写真「myface.jpeg」を選んで「開く」をクリックします. (左の欄でデスクトップをダブルクリックすると,右の欄に出て来る.人によっては下の方にあるのでスクロールする)
- 6. 「送信」ボタンをクリックする.
- 7. しばらく待って、「受信」ボタンをクリックして、メールが届いたかどうかを確かめて下さい.

3.4 添付ファイルの保存

添付ファイルを開くのはとても危険な行為です. 多くのコンピュータウィルスは、メールの添付 ファイルを開くことで感染します. ただし、これは Windows の場合の話で、Linux では、ウィルス の感染の可能性はそれほど高くありません. それでも、知らない人からのメールはもちろん、知っ ている人からのメールであっても、本文が全く無いメールや、添付ファイルの内容を説明していな いメールの添付ファイルは開かずに削除して下さい. 必要のないファイルをメールに添付すること は止めて下さい. 上でも述べましたが、添付ファイルを利用せずに情報を伝える事を常に考えて下 さい. どうしても必要な場合は、添付ファイルの内容を明記して送るようにして下さい. 添付ファイルの保存は、添付ファイル付のメールを開いて、「添付」のタブを選び、添付ファイル を右クリックしてメニューを出せば、保存を含めたいろいろな操作ができます.

3.5 データのバックアップを取る

これから実習でいろいろなデータを作成していきます. それらは情報処理センターのサーバコン ピュータにつながれたディスクに保存されていきます. センターのデータ管理はかなり信頼できま すが、「自分のデータは自分で管理」をするのも情報機器を扱う上での基本です. 必要なデータは バックアップを取るようにして下さい. 重要なデータを、2 重化、3 重化することを常に心がけて下 さい. 機械は必ず壊れます.

今回は USB-メモリを用いたバックアップ方法を述べます.現時点では、バックアップメディアとして、値段や扱いやすさの面で、USB-メモリがもっとも便利です.これ以外にも光ディスク (CD-R, DVD-R 等)を用いてもバックアップが可能だと思いますが、傷や光の作用によるデータ破損が多く、意外に扱いが面倒なので、ここでは述べません.

次回以降,毎回授業の最後に必要なファイルをバックアップする時間を取るようにします.この 講義は,各自の Web ページの作成を以て評価しますが,その際自分のデータが消失したからと言っ て特別な配慮は一切しない予定です.データ消失の原因が,仮に情報処理センターにあったとして も,配慮しないので注意して下さい.

USB-メモリを用いたバックアップ

まず、USB-メモリに Windows 用のセキュリティソフトを導入している人は、自宅等でそれを解除してから利用してください. Windows 用セキュリティソフトは、Linux では使えません.

USB-メモリを本体の USB インターフェイスに差し込むと、10 秒程して「取り外し可能デバイ スが検出された」とのメッセージウィンドウが出ますので、右下にある「OK」をクリックします. そうすると、USB-メモリがシステムにより認識されて、デスクトップにアイコンが現れるとともに、 USB-メモリの内容がデスクトップのウィンドウに表示されます.

ここで,必要なファイルを USB-メモリのアイコン,あるいは,ファイル一覧を表示しているウィンドウに,ドラッグ&ドロップでコピーします.

コピーが終わったら、デスクトップにある USB-メモリのアイコンを右クリックして、現れたメ ニューの中から「アンマウント」を選びます. デスクトップから USB-メモリのアイコンが消えれ ば、バックアップは終わっています.

今回作った、「zentai.jpeg」と「myface.jpeg」をバックアップしてみてください. 必要な人は、 Windows で作ったファイルや、Macintosh で作ったファイルもバックアップしてみてください. こ れらのファイルは前回見たように、「xxx のホーム」をダブルクリックして、ファイル一覧を表示 するウィンドウを出した後、左下の「e1531xx」のところをクリックして、1 つ上に上がると、それ ぞれ、「Mac」、「WIN」というフォルダが有り、その中にファイルがあります.

このようなバックアップの仕方は、共通教育棟 2-200 実習室の Macintosh でも同様にできます. Windows 単体では、現在の情報処理センターの設定では、このようなバックアップの取りかたは不可能です. Linux と Macintosh のホームフォルダには、簡単アクセスすることができないのです.

3.6 レポート課題

この講義の最初の課題です.下記の指示に従い,自己紹介その他を書き,ファイルを添付してメールで送る.

提出期限:5月20日(水)

なお,提出期限が水曜日なのは,水曜日が理学部のコンピュータ室(複201室)の一般解放日だから です.毎週水曜日(10:00~12:00,13:00~17:00)には,理学部の学生はここを自由に使えるように なっていますシステムは,この実習室と全く同じになっていますので,積極的に利用して下さい. レポートを受け取った場合は,その旨をメールで返信します.また提出状況は数日ごとに下記の ページに掲示します.メールやWebページで,提出状況を確認の上,未提出および内容に不備のあ

る人は再送信して下さい. 締め切りまでに提出がない場合は,未提出ということで評価します.

http://www.math.u-ryukyu.ac.jp/~suga/joho/2015/reports/

次の内容を守って、メールを提出して下さい.

- 課題登録を行っている琉大の自分のアカウントから送信すること.
- メールの題名は、「情報科学演習レポート」とする.
- 宛先は johokagaku@math.u-ryukyu.ac.jp
- 1行目に学籍番号,名前(漢字と読み)を書く.
- 下記の1から4の各項目すべてについて,60字以上で記す.5も必ず書く.6については任意. 適当な文字数(35文字程度)で改行を入れること。
 - 1 自己紹介(出身高校と学科を入れること)
 - 2 数理科学科志望の理由,将来希望する職業とその理由
 - 3 現在までの大学の授業で感じたこと(共通教育,語学など専門以外の科目について)
 - 4 現在までの大学の授業で感じたこと(微分積分学等の専門基礎科目や専門科目について)
 - 5 高校時代に学習した情報科目の科目名 (旧課程の人は、情報 A, B, C のうちどれか、新 課程の人は、社会と情報、情報の科学のどちらか).
 - 6 この授業に対しての感想や要望
- 今週作った自分の顔写真のファイル (myface.jpeg) を添付する.授業で使用した写真ではな くデジカメ等で撮影した写真,通常の写真をプリントしたものをスキャナ等で読み取ったも のをレジュメに従って適当なサイズ (byte 数) に加工したものを添付しても良い.撮影の際に 欠席した学生は,これらの方法で顔写真のファイルを作成し添付すること.どうしても顔写 真のファイルが作成出来ない人はバラの写真でも良いが,その場合の評価は低くなる.

3.7 補足 0:後の講義の準備

基礎ゼミのクラス写真に入っていない人は、今日の講義に従って自分のクラス写真を shukusho.jpeg と言う名前で保存して下さい.保存の際にファイルを置き換えるかという質問が出ると思いますが、 置き換えて下さい.

3.8 補足 1:データ作成上の注意

コンピュータでデータを作成する(メールを送る)際には、次の事に注意してください.コンピュー タが行うのはデータ処理で、それに対する合理的な考え方をします.

- 1. ASCII コードにある文字はそのまま ASCII コード (半角文字) を使う.
- 2. 日本語コードにあるローマ数字は使わない. ASCII のアルファベットを使う. 付きの数字 等は使わない. 情報交換において飾りは不要であると考える.
- 3. 日本語コードにある1文字の単位(km,kg等)は使わない.素直にアルファベットを入力する.
- 4. 日本語コードにある1文字の(株)とかも使わない.素直に括弧を入力する.
- 5. 見えない文字に注意する. 空白は半角を使い (ヨーロッパ系言語やコマンドラインの) 語の区 切りに用いる. 空白 (特に全角の空白) で文字位置の調整をしない. メールで有効なのは改行 だけ.

要するに情報の内容の伝達が重要であり、それを飾るものは必要になった時点で別途考えるよう にします.また、今見えているものが別の環境に移ったときに、同じように見える保証はありませ ん.例えば、空白文字の幅や、ウィンドウの大きさは環境が異なれば違ってきます.

3.9 補足 2:講義のテキスト

先週も述べましたが、この講義のテキストは、

http://www.math.u-ryukyu.ac.jp/~suga/joho/2015/

にあります. 各回の講義毎に、Web ページと配布プリントの PDF ファイルを置いていきます. 何 らかの授業で欠席した時には、次の授業までに講義の内容をこなしておいて下さい. 実習室は、 ど こを使っても同じ環境です. また、休んだ際のプリント入手も上のページから行って下さい. 共通 教育棟の実習室にはプリンタがあり、紙に出力する事も出来ます. (ただし、紙にプリントできるの は 1 人あたり年間 500 枚です)

3.10 補足 3:添付ファイルの実際

テキストの最後にある内容は、私宛に添付ファイルでウィルスが送られて着たメールのデータを 少し書き換えたものです.消してありますが、差出人は理学部の教員になっていました.ただし、実 際にその人がウィルスを送ったのではなく、別の人のコンピュータに生息していたウィルスが、その コンピュータ内のファイルにあったメールアドレスを使って、差出人を偽って送ったものです.最 後の2行(以降は省略しました)からがウィルスデータです.posting.zipと言う名前の添付ファイ ルが添えられており、それを何も考えずにWindows環境でダブルクリックすると、ウィルスに感 染するという仕掛けになっています.知っている人からのメールでも、添付ファイルは危ない、と言 う事は覚えておいて下さい.逆に言うと、添付ファイルを用いずに必要な情報を伝えるという努力 は、常に心がけるべきです.

そもそもメール配送システムは、アスキーコード表にあるデータ以外の情報交換を想定していな い形で作られました.従って実際には、下のメールデータを見ればわかる通り、添付ファイルも本文 の(アスキーコードからなる)テキストデータになっています.現在では、メールソフトがそれを解 釈して画像などに変換して表示しています.下の表示は、メールソフトの解釈をさせずに表示させ たものです.

実は、日本語も (例えば、先週見た私から皆さんへのメールは) アスキーコードの表に含まれる データに変換されてメールで送られています. その変換方式が、上で述べた ISO-2022-JP という文 字コードです. これも、メールソフトがその逆変換を行って、日本語として表示しています. 実際の メールデータを見るには、Sylpheed の「表示」メニューから「メッセージのソース」を選ぶと、新 しい Window にそのデータが表示されます.

Return-Path: <xxxxx@sci.u-ryukyu.ac.jp> Received: from math.u-ryukyu.ac.jp (zzzzzz.zzzz.zzz.zz [xxx.xxx.xx]) by yyyyyy.math.u-ryukyu.ac.jp (8.10.1/8.10.1) with SMTP id i2G1fCK19560 for <www@math.u-ryukyu.ac.jp>; Tue, 16 Mar 2004 10:41:12 +0900 (JST) Message-Id: <200403160141.i2G1fCK19560@yyyyyy.math.u-ryukyu.ac.jp> From: xxxxx@sci.u-ryukyu.ac.jp To: xxx@math.u-ryukyu.ac.jp Subject: warning Date: Tue, 16 Mar 2004 19:02:45 -0700 MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="54807803"

stuff about you?

--54807803 Content-Type: application/x-zip-compressed; name="posting.zip" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="posting.zip"

以下略