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Abstract

In this paper we prove that the Laplacian ∆K attached to a totally ordered
category K is positive definite in a framework of representation theory of ordered
categories. We also study the spectra of the Laplacians for the categories PB and
Mod(Fq). We show that the corresponding spectral zeta functions exist and define
holomorphic functions in a region Re(s) > 1 − ε for these case.

1 Introduction

Let K be a given category. We denote by Ob(K) the set of objects of K, Mor(K) the set of

all morphisms in K and MorK(X,Y ) the set of all morphisms from X to Y . In [I, KuW],

the following problem is proposed and several examples of categories are studied.

Problem 1.1 ([I, KuW]). Does a given ‘nice’ category K satisfy the Cauchy-Schwarz

type inequality

# MorK(X,Y )# MorK(Y,X) ≤ # MorK(X,X)# MorK(Y, Y ) (1.1)

if all quantities in (1.1) are finite?

This is regarded as the special case of the following general problem. Analogous to

the Laplacian (or the adjacency matrix) of a given oriented graph, the Laplacian ∆K of

a given category K is introduced in [KuST] by

∆K
def
= (# MorK(X,Y ))X,Y ∈Obo(K) (1.2)

where Obo(K) denotes the subset of Ob(K) such that the number # MorK(X,Y ) is finite

for every pair (X,Y ) of elements in Obo(K).

Problem 1.2 ([KuST, KuW]). Is the Laplacian ∆K of a given ‘nice’ category K positive

definite?

1



2 Kimoto, K.

Actually, we notice that the Cauchy-Schwarz inequality (1.1) is equivalent to the

positive definiteness of a 2-minor(
# MorK(X,X) # MorK(X,Y )
# MorK(Y,X) # MorK(Y, Y )

)
of ∆K. We expect that the positive definiteness of the Laplacian ∆K is true for ‘good’

categories categories whose objects have some algebraic structure, for instance

but it seems difficult to treat this problem with full generality.

Remark 1.1 (Counterexample to Problem 1.1). It is easy to construct an artificial coun-

terexample to our problem, which is suggested by Professor Anton Deitmar. Let K be a

category which has only two objects, say X and Y , and the morphisms are given by

MorK(X,X) = {0, 1}, MorK(Y, Y ) = {0, 1},

MorK(X,Y ) = {0}, MorK(Y,X) = {a1, a2, . . . , an}

with the following composition rules:

0 · p = 0, p · 0 = 0, 1 · p = 1, p · 1 = 1 (p ∈ Mor(K)) .

Then we have

# MorK(X,Y )# MorK(Y,X) = n,

# MorK(X,X)# MorK(Y, Y ) = 4.

Therefore the inequality (1.1) does not hold if n > 4.

One of the main purpose of this paper is to give an affirmative answer to this problem of

positive definiteness of the Laplacian ∆K when K is a totally ordered category (Theorem

3.3). This is achieved by using representation theory of ordered categories. In fact, we will

see that the key proposition in our description is an irreducible decomposition formula of

certain modules (Proposition 3.1).

A study of the Laplacian ∆K of a given category K is originally motivated by the

study of the zeta functions of categories introduced by Kurokawa for the sake of unifying

various zeta functions [Ku]. Let us recall the definition of the zeta function of a category.

Assume that K is a category with a zero object, that is, an object which is initial and

terminal. An object X is called simple if the set MorK(X,Y ) of morphisms is consisting

of monomorphisms for any object Y ∈ Ob(K). Denote by Prim(K) the set consisting of
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isomorphism classes of simple finite objects in K. The zeta function of the category K

is defined by the Euler product

ζ(s,K)
def
=

∏
P∈Prim(K)

(1 − N(P )−s)−1, (1.3)

where we put N(P ) = # EndK(X) for X ∈ P .

For example, let us see the zeta function ζ(s,Ab) of the category Ab of abelian

groups. A simple object of Ab is a cyclic group of prime order, and hence we have

Prim(Ab) =
{
Z/pZ

∣∣ p : prime
}

and N(Z/pZ) = p. Therefore we have

ζ(s,Ab) =
∏

P∈Prim(Ab)

(1 − N(P )−s)−1 =
∏

p : prime

(1 − p−s)−1 = ζ(s),

which is nothing but the Riemann zeta function. Thus the Riemann zeta function ζ(s)

permits us an interpretation as a zeta function of the category Ab. Related to this fact,

the spectrum of ∆Ab is studied experimentally in [KuST].

Another motivation to study the Laplacian ∆K of a category K is an appropriate for-

mulation of Selberg-type zeta functions of infinite-dimensional groups. In particular, our

main concern is a reasonable formulation of a Selberg zeta function of infinite symmetric

groups; the group S∞ defined by the inductive limit of the finite symmetric groups Sn,

and the group Sω defined by the full permutation group of the set Z+ = {1, 2, 3, . . . }.
According to Olshanskii and Neretin, there are two guiding principles in dealing with

an infinite-dimensional group as follows [Ne].

Principle of semigroup extension (Olshanskii). Let G be an infinite-dimensional

group. Then G is not so much a group, but rather the visible part of some semigroup

Γ ⊃ G which is not visible to the naked eye. Any unitary representation of G can be

uniquely extended to that of Γ.

Principle of categorical extension (Neretin). An infinite-dimensional group G is

merely the visible part of a certain category K which is not visible to the naked eye.

The group G is the automorphism group AutK(X) of a certain object X ∈ Ob(K),

while the semigroup Γ appearing in the principle above is the semigroup EndK(X) of

endomorphisms of the same object X. Any unitary representation of G can be uniquely

extended to that of K.

These principles suggest that we should broaden our perspective from the (infinite-

dimensional) group G itself to a certain category KG which contains the group G as an
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automorphic group of some object. Hence one reasonable way to define a Selberg zeta

function Z(s; G) is taking it as an appropriate zeta function Z(s;KG) defined for an

associated category KG.

However, it is difficult to find such an adequate formulation of zeta functions. For

instance, let us see the case of full symmetric group Sω. In this papar we take the

category called PB (see Section 4 for definition) as an associated category of Sω. If we

employ the zeta function of a category (1.3), then it is easy to see that Prim(PB) = {[1]}
and N([1]) = 2, and hence we have

ζ(s,PB) = (1 − 2−s)−1,

which is not very interesting. Thus this formulation of a zeta function does not seem

appropriate in the present case.

In [Ki] we dealt with the case of S∞, and calculated a candidate of a Selberg-type zeta

function of S∞ as a limit function of zeta functions defined for finite symmetric groups. In

that case we have a clue to introduce a notion corresponding to the ‘fundamental group’,

which enable us to formulate a considerably nice zeta function. But, in the categorical

picture, it is not clear at this moment how to define such a fundamental group. This

prevents us from the formulation of a zeta function of Sω in a ‘geometric’ manner.

However, we have another strategy to introduce a zeta function of Sω. We recall

that the Selberg zeta function ZX(s) of a locally symmetric space X has a determinant

expression via the Laplacian ∆X on X

ZX(s) = det(∆X − s(2ρ − s)) × (some factor).

Here ρ is a certain constant depending only on X. This fact suggests that we would define

a Selberg-type zeta function Z(s;K) of a category K in a ‘spectral’ manner, that is, by

a determinant formula of the Laplacian ∆K. This would also provide us a formulation

of a fundamental group of a category K conversely. Thus it is important to study the

spectrum of Laplacians of categories.

This paper is organized as follows. In Section 2 we recall necessary notions and facts

on representation theory of ordered categories according to Neretin [Ne]. In Section 3

we prove the positive definiteness of Laplacians attached to totally ordered categories.

This is achieved via irreducible decomposition of certain semigroup representations. In

Sections 4 and 5 we study the categories PB and Mod(Fq) respectively, which are totally

ordered. We show that in these cases the spectral zeta function of the Laplacian exists

and defines a holomorphic function in a region Re(s) > 1 − ε for some small ε > 0.
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2 Representation theory of ordered categories

In this section we recall the fundamental notions and facts in representation theory of

ordered categories according to Neretin [Ne].

For a given category K, we denote by Ob(K) the set of all objects in K, Mor(K) the

set consisting of all morphisms of K, and MorK(X,Y ) the set of the morphisms from X

to Y for X,Y ∈ Ob(K). We may often write P : X → Y instead of P ∈ MorK(X,Y ) if

the category K can be specified from the context.

We first recall the definition of an ordered category. Let Σ = (Σ,≤) be a partially

ordered set (we often say poset briefly) such that every finite subset S ⊂ Σ has an upper

bound, i.e. there exists an element σ ∈ Σ which satisfies s ≤ σ for all s ∈ S. Assume that

the set Ob(K) is numbered by Σ, and write Ob(K) =
{
Xσ

∣∣ σ ∈ Σ
}
. We say K is purely

ordered if there exist distinguished morphisms λβα : Xα → Xβ and µαβ : Xβ → Xα for

every ordered pair α ≤ β in Σ, and satisfy the conditions

µαβλβα = 1α (α ≤ β) , (2.1)

λγβλβα = λγα (α ≤ β ≤ γ) , (2.2)

µαβµβγ = µαγ (α ≤ β ≤ γ) . (2.3)

Here 1σ is the identity element in EndK(Xσ). We also put θα
β

def
= λβαµαβ ∈ EndK(Xβ),

which is an idempotent element. A category which is equivalent to a purely ordered

category is called ordered. In particular, if K is equivalent to an ordered category whose

index poset Σ of K is totally ordered, then we say K is a totally ordered category.

Next we give the definition of an ∗-category. If there is a map Mor(K) 3 P 7→ P ∗ ∈
Mor(K) of morphisms such that

P : X → Y =⇒ P ∗ : Y → X,

P ∗∗ = P, (PQ)∗ = Q∗P ∗,

we say K is a ∗-category with the involution ∗. Further, if K is ordered and the

involution ∗ satisfies the additional condition

λ∗
βα = µαβ (α ≤ β) ,

we say K is an ordered ∗-category with the involution ∗.
In the sequel we fix an ordered ∗-category K with an index poset Σ and an involution

∗, and let Ob(K) =
{
Xσ

∣∣ σ ∈ Σ
}
. For abbreviation we put Γσ

def
= EndK(Xσ) for σ ∈ Σ.



6 Kimoto, K.

Example 2.1. Let A be the category of Hilbert spaces over the complex number field

C and bounded operators. Then the usual adjoint operation ∗ with respect to the inner

products defines an involution on A, and A becomes an (totally) ordered ∗-category with

the involution ∗.
In fact, let A0 be the category whose objects are given by Ob(A0) =

{
Vn = Cn

∣∣
n ∈ N

} ∐
{V∞ = `2} (N = {0, 1, 2, . . . }) and they are equipped with the standard inner

product. We define the operator λnm to be the standard embedding and µmn the standard

projection for m ≥ n. Namely, we put

λnm(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),

µmn(x1, . . . , xn) = (x1, . . . , xm).

Then A0 becomes a purely ordered category, and hence A is ordered since A is equivalent

to A0.

We make use of representation theory of ordered categories to prove the positive defi-

niteness of the Laplacian ∆K. In fact, the desired result is obtained from the irreducible

decomposition of certain modules. In the following subsections we give necessary results

on the representations of ordered categories and semigroups respectively.

2.1 Representations of ordered categories

A (linear) representation of a category K is by definition a covariant functor ρ from

K to A, the category of Hilbert spaces and bounded operators as we defined in Example

2.1. If K is a ∗-category and ρ satisfies

ρ(P ∗) = ρ(P )∗

for every morphism P ∈ Mor(K), we say that ρ is a ∗-representation of K. For a repre-

sentation ρ of an ordered category K, we denote by ρσ the subordinate representation

of Γσ on ρ(Xσ) for σ ∈ Σ, which is a semigroup homomorphism defined by

ρσ : Γσ 3 P 7→ ρ(P ) ∈ EndA(ρ(Xσ)).

A representation τ of K is a subrepresentation of ρ if τ(X) is a closed subspace of ρ(X)

for every X ∈ Ob(K) and τ(P ) = ρ(P )
∣∣
τ(X)

for every P : X → Y . If ρ has no nontrivial

subrepresentation, we say ρ is irreducible.

For a given representations ρ, ρ′ of K, a family

T =
{
Tσ : ρ(Xσ) → ρ′(Xσ)

∣∣ σ ∈ Σ
}
⊂ Mor(A)
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of bounded operators is called an intertwiner of ρ and ρ′ if

ρ′(P )Tα = Tβρ(P )

for all α, β ∈ Σ and all P : Xα → Xβ. We say T is invertible if Tσ is invertible whenever

ρ(Xσ) 6= 0. Two representations ρ, ρ′ of K are said to be equivalent if there is an

invertible intertwiner T between them. We denote by K̂ the set of equivalence classes of

irreducible ∗-representations of K. The following fact is remarkable.

Proposition 2.1 ([Ne, Lemma 3.4.3]). Let ρ be a representation of an ordered category

K. Then the following conditions are equivalent.

(a) ρ is irreducible.

(b) Every nonzero subordinate representation ρσ (σ ∈ Σ) is irreducible.

For an ordered pair α ≤ β, we define an embedding

Uβα : Γα 3 P 7→ λβαPµαβ ∈ Γβ, (2.4)

which is indeed a semigroup homomorphism because of the identity (2.1). For a repre-

sentation π of Γβ, we can define the representation Fαβπ of Γα by

Fαβπ(P )
def
= π(Uβα(P )) (P ∈ Γα) , (2.5)

where the representation space of Fαβπ is im π(θα
β ).

Let R = {Rσ ∈ Γ̂σ}σ∈Σ be a set of irreducible representations. We call R a compatible

system if

Rα
∼= FαβRβ (2.6)

for all ordered pair α ≤ β. The following fact is crucial.

Proposition 2.2 ([Ne, Proposition 3.4.11]). For any irreducible representation ρ ∈ K̂ of

K, the system Rρ = {ρσ}σ∈Σ is a compatible system. Conversely, for any given compatible

system R = {Rσ}σ∈Σ, there is a unique irreducible representation ρ ∈ K̂ such that ρσ
∼= Rσ

for all σ ∈ Σ.
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2.2 Representations of semigroups

Since we deal with the subordinate representations of a given representation of a category,

we prepare several notions and summrize basic facts on this subject.

Let Γ be a finite semigroup with an involution ∗. A homomorphism π : Γ → End(V )

is called a ∗-representation of Γ if π(γ∗) = π(γ)∗ for every γ ∈ Γ. It is immediate to

see that any finite dimensional ∗-representation of Γ is completely reducible.

Standard notion in representation theory of groups are naturally imported to that of

∗-semigroups with a slight modification, and the both theories are almost parallel to some

extent. Roughly speaking, the operation g 7→ g−1 is replaced by γ 7→ γ∗. For instance,

when a representation (π, V ) of Γ is given, the contragradient representation (π∗, V ∗)

of (π, V ) is defined by

(π∗(γ)F )(v)
def
= F (π(γ∗)v) (F ∈ V ∗, v ∈ V ) . (2.7)

Let (π1, V ), (π2,W ) be ∗-representations of Γ. A linear map T : V → W is called an

(Γ-)intertwiner of (π1, V ) and (π2,W ) if the equality

Tπ1(γ) = π2(γ)T

holds for every γ ∈ Γ. We say π1 and π2 are equivalent and write π1
∼= π2 if there exists

an invertible intertwiner of (π1, V ) and (π2, W ). We also denote by HomΓ(V,W ) the set

of Γ-intertwiners from V to W .

Remark 2.1. When two representations (π1, V ) and (π2,W ) of Γ are given, the space

Hom(V,W ) naturally becomes a Γ-module by

$(γ)P
def
= π1(γ)Pπ2(γ)∗,

and HomΓ(V,W ) is a submodule of Hom(V,W ) as well as Hom(V,W )Γ, the subspace con-

sisting of Γ-invariants. But these are not equal in general: HomΓ(V,W ) 6= Hom(V,W )Γ.

By a similar discussion as in the group case, we have the following Schur’s lemma

for ∗-semigroups.

Lemma 2.3 (Schur’s lemma). Let (π1, V ), (π2,W ) be irreducible ∗-representations of a

finite ∗-semigroup Γ. Then we have

HomΓ(V,W ) ∼=

{
C π1

∼= π2,

0 π1 6∼= π2.
(2.8)
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The following basic fact is a direct conclusion of the lemma above.

Proposition 2.4 (Irreducible decomposition theorem). Let (π, V ) be a finite dimensional

∗-representation of a finite ∗-semigroup Γ. Then we have

V ∼=
∑⊕

π∈bΓ

HomΓ(Wπ, V ) ⊗ Wπ, (2.9)

where Wπ is an irreducible Γ-module corresponding to π ∈ Γ̂.

3 Positive definiteness of Laplacians

In this section we prove the positive definiteness of Laplacians attached to totally ordered

categories. In the sequel we suppose that MorK(Xβ, Xα) is finite for any α, β ∈ Σ, that

is, Ob(K) = Obo(K). The semigroup Γα ×Γβ naturally acts on the set MorK(Xβ, Xα) by

(a, b).P
def
= aPb∗

for a ∈ Γα, b ∈ Γβ and P ∈ MorK(Xβ, Xα). We denote by L(MorK(Xβ, Xα)) the induced

Γα ×Γβ-module consisting of L2-functions on MorK(Xβ, Xα) with respect to the counting

measure on MorK(Xβ, Xα). Analogous to the well-known decomposition theorem

L(G) ∼=
∑⊕

π∈ bG

π∗ £ π (as a G × G-module) (3.1)

of regular representation L(G) of a finite group G, we show a decomposition theorem for

L(MorK(Xβ, Xα)) when α and β are comparable.

Proposition 3.1. Let K be an ordered ∗-category. Take α, β ∈ Σ such that α ≤ β and

suppose that MorK(Xβ, Xα) is finite. Then we have the following decomposition

L(MorK(Xβ, Xα)) ∼=
∑⊕

ρ∈ bK

ρ∗
α £ ρβ (3.2)

as a Γα × Γβ-module.

Proof. Put M
def
= MorK(Xβ, Xα) for abbreviation. Let (τ, L(M)) be the given representa-

tion

(τ(a, b)F ) (P )
def
= F (a∗Pb) (a ∈ Γα, b ∈ Γβ, P ∈ M) (3.3)
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of the semigroup Γα × Γβ. First we decompose L(M) as a Γβ-module by using (2.9):

L(M) ∼=
∑⊕

π∈bΓβ

HomΓβ
(Wπ, L(M)) ⊗ Wπ (3.4)

where we denote by Wπ the irreducible Γβ-module corresponding to π. In the sequel we

argue the equivalence for each component.

Fix π ∈ Γ̂β. Since K is ordered, there exists a unique irreducible representation

ρ ∈ K̂ of K such that its subordinate representation satisfies the equivalence ρβ
∼= π

(Proposition 2.2). Thus it is enough to prove that HomΓβ
(Wπ, L(M)) is equivalent to

ρ∗
α as a Γα-module. Remark that the subordinate representation ρα is equivalent to the

representation σ
def
= Fαβπ on the space im π(θα

β ) ⊂ Wπ.

We show that the following map gives an invertible intertwiner of HomΓβ
(Wπ, L(M))

and im π(θα
β )∗:

(Tψ)(x)
def
= (ψx)(µαβ)

(
x ∈ im π(θα

β ) ⊂ Wπ

)
(3.5)

for ψ ∈ HomΓβ
(Wπ, L(M)). In fact, we have

(σ∗(a)Tψ)(x) = (Tψ)(σ(a∗)x)

= (ψπ(λβαa∗µαβ)x)(µαβ)

= ρ(1, λβαa∗µαβ)(ψx)(µαβ) (∵ ψ is a Γβ-intertwiner)

= (ψx)(µαβ · λβαa∗µαβ)

= (ψx)(a∗µαβ) (∵ µαβλβα = 1α)

= (τ(a, 1)ψx)(µαβ)

= (Tτ(a, 1)ψ)(x)

as we required.

At last we see that T is injective (which automatically implies that T is bijective since

the finiteness of dimension). For ψ ∈ HomΓβ
(Wπ, L(M)), we have

Tψ = 0 =⇒ (ψx)(µαβ) = 0
(
∀x ∈ im π(θα

β )
)

=⇒ (ψx)(µαβb) = 0
(
∀x ∈ im π(θα

β ),∀b ∈ Γβ

)
,

which implies that ψ ≡ 0 because it is easy to check that MorK(Xβ, Xα) = µαβΓβ.

Hence T is an invertible intertwiner and we have

HomΓβ
(Wπ, L(M)) ∼= im π(θα

β )∗ = Fαβπ∗ ∼= Fαβρ∗
β
∼= ρ∗

α,

which implies the desired decomposition formula.
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As a corollary of Proposition 3.1, we have immediately the following key formula.

Theorem 3.2. Let K be a totally ordered ∗-category. Suppose that every set of morphisms

is finite. Then we have

# MorK(Xα, Xβ) =
∑
ρ∈ bK

dim ρα dim ρβ (3.6)

for any α, β ∈ Σ.

Proof. In fact, this formula is immediately obtained by looking at the dimensions of each

modules in (3.2).

Finally we have the desired conclusion.

Theorem 3.3 (Positive definiteness of the Laplacian). Let K be a totally ordered ∗-
category. Suppose that every set of morphisms is finite. Then the Laplacian ∆K of the

category K is positive definite.

Proof. It is enough to prove the positivity of the principal minor determinants of ∆K.

This is immediate from the Cauchy-Lagrange identity

det (ai · aj)1≤i,j≤m =
∑

#k=m

det(aki,j)
2
1≤i,j≤m (3.7)

for n-dimensional vectors ai = (aij)1≤j≤n ∈ Cn (1 ≤ i ≤ m ≤ n).

Now the Cauchy-Schwarz inequality is obtained by seeing the positivity of 2-minor

determinant of ∆K.

Corollary 3.4 (The Cauchy-Schwarz inequality). A totally ordered ∗-category K

satisfies the Cauchy-Schwarz type inequality

# MorK(Xα, Xβ)# MorK(Xβ, Xα) ≤ # EndK(Xα)# EndK(Xβ) (3.8)

for every Xα, Xβ ∈ Obo(K).

Example 3.1. We consider the category Mod(Fq) of finite dimensional Fq-linear spaces

and Fq-linear maps. The structure of an ordered category is introduced just the same as

A in Example 2.1. Thus we have Theorem 2 in [KuST] again: the Laplacian ∆Mod(Fq) of

Mod(Fq) is positive definite.
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Example 3.2. Let Ab0 be the category consisting of finite abelian groups, which is a

subcategory of Ab. The set Ob(Ab0) itself naturally becomes a partially ordered set with

respect to the inclusion map. For every pair H < G of finite abelian groups, there exist

an abelian group H ′ such that G ∼= H × H ′. Thus λGH : H → G and µHG : G → H are

defined by

λGH(h)
def
= h (inclusion map) ,

µHG(g)
def
= hg

(
G 3 g 7→ (hg, h

′
g) ∈ H × H ′) .

For G1, G2 ∈ Ob(Ab0) and f : G1 → G2, f∗ : Ĝ2 → Ĝ1 is defined by

(f∗(λ))(g1)
def
= λ(f(g1))

(
λ ∈ Ĝ2, g1 ∈ G1

)
.

By the duality of finite abelian groups, this map defines an involution. Thus the category

Ab0 is an ordered ∗-category. Hence, if we take an inductive system A = {Aj}j≥0 of finite

abelian groups, then the Laplacian ∆A
def
= (# MorAb(Ai, Aj))i,j attached to A is positive

definite.

We remark that Theorem 3.3 is not applicable to the category Ab0 since Ab0 is not

totally ordered.

4 Spectrum of the category PB

In this section we treat the category PB of partial bijections, which is originally in-

troduced to study the representation of full symmetric group Sω of all bijections on

Z+ = {1, 2, 3, . . . } (see [Ne]). Let us recall the definition of PB. An object in PB is

a fintie set [n] = {1, 2, . . . , n}. A morphism from [m] to [n] is given by a partial bi-

jection, that is, the triplet (ϕ,Dϕ, Rϕ), where Dϕ ⊂ [m] and Rϕ ⊂ [n] have the same

cardinality and ϕ : Dϕ → Rϕ is a bijection. For given two morphisms ϕ : [l] → [m]

and ψ : [m] → [n], the composition ψϕ : [l] → [n] of ϕ and ψ is defined to be a partial

bijection from Dψϕ
def
= ϕ−1(Rϕ ∩Dψ) to Rψϕ

def
= ψ(Rϕ ∩Dψ). The maps λnm[m] → [n] and

µmn : [n] → [m] are defined by

λnm : [m] 3 x 7→ x ∈ [m] ⊂ [n],

µmn : [n] ⊃ [m] 3 x 7→ x ∈ [m],

for n ≤ m. For a given partial bijection ϕ : Dϕ → Rϕ, ϕ∗ is defined to be the partial

bijection ϕ∗ : Rϕ 3 x 7→ ϕ−1(x) ∈ Dϕ.
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Proposition 4.1. The category PB is a totally ordered ∗-category, and hence, the Lapla-

cian ∆PB is positive definite.

By an elementary combinatorial calculation we see that the number of morphisms are

given by

dmn
def
= # MorPB([m], [n]) =

min(m,n)∑
k=0

(
m

k

)(
n

k

)
k!. (4.1)

Irreducible representations of PB are labeled by Young diagrams. Denote by ρλ

the attached irreducible representation of PB, and by ρλ
n the subordinate representation

which is the restriction of ρλ to Γn.

Proposition 4.2 ([Ne]). We have

dim ρλ
n =

(
n

|λ|

)
dim λ (4.2)

for any λ ∈ Y. Here we denote by dim λ the dimension of the irreducible S|λ|-module

corresponding to λ. We remark that
(

n
k

)
= 0 if k > n.

By using Theorem 3.2 and the well-known fact∑
|λ|=k

(dim λ)2 = k!,

we have in fact

# MorPB([m], [n]) =
∑
λ∈Y

{(
m

|λ|

)
dim λ ×

(
n

|λ|

)
dim λ

}

=

min(m,n)∑
k=0

(
m

k

)(
n

k

)
k!

(4.3)

for m,n ∈ N, which (of course) coincides with the result (4.1) of a combinatorial calcula-

tion.

We write the Laplacian ∆ = ∆PB briefly. The main concern of this section is a study

of the spectrum of the Laplacian ∆ and attached spectral zeta function ζ∆(s). We put

∆N = (dij)0≤i,j≤N , the principal N -minor of the Laplacian ∆. Let us denote by λN,j

(0 ≤ j ≤ N) the (j + 1)-th eigenvalue of ∆N , that is,

0 < λN,0 ≤ λN,1 ≤ · · · ≤ λN,N .

One of the main purpose is to prove the following theorem concerning the existence of

the spectrum of ∆.

Theorem 4.3 (Existence of the spectrum). For every k ≥ 0, there exists the limit λk
def
=

limN→∞ λN,k > 0.
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4.1 Preliminary calculations

Proposition 4.4. The inverse ∆−1
N of the principal N-minor ∆N is given by

∆−1
N =

(
(−1)i+j

N∑
k=0

(
k

i

)(
k

j

)
1

k!

)
0≤i,j≤N

. (4.4)

Proof. Denote by fml(N) the cofactors of ∆N . Let

im,1 < im,2 < · · · < im,N , im = {im,1, im,2, . . . , im,N} = [0, N ] \ {m},

jl,1 < jl,2 < · · · < jl,N , jl = {jl,1, jl,2, . . . , jl,N} = [0, N ] \ {l}.

Here we put [0, N ]
def
= {0, 1, 2, . . . , N}. Remarking that the number dij of morphisms is

given by

dij =
N∑

k=0

ikjk

k!
,

we have

fml(N) = det(dim,αjl,β
)1≤α,β≤N

=
∑

σ∈SN

(−1)σdim,σ(1)jl,1
dim,σ(2)jl,2

· · · dim,σ(N)jl,N

=
∑

0≤k1,...,kN≤N

∑
σ∈SN

(−1)σ im,σ(1)
k1jl,1

k1

k1!
· · ·

im,σ(N)
kN jl,N

kN

kN !

=
∑

0≤k1,...,kN≤N

jl,1
k1

k1!
· · · jl,N

kN

kN !

∑
σ∈SN

(−1)σim,σ(1)
k1 · · · im,σ(N)

kN

=
∑

0≤k1,...,kN≤N

jm,1
k1

k1!
· · · jl,N

kN

kN !
det(im,α

kl,β)1≤α,β≤N .

Since the factor det(im,α
kβ)1≤α,β≤N does not vanish only if k1, . . . , kN are distinct members,

we have

fml(N) =
N∑

p=0

∑
σ∈SN

jl,1
kp,σ(1)

kp,σ(1)!
· · · jl,N

kp,σ(N)

kp,σ(N)!
det(im,α

kp,σ(β))1≤α,β≤N

where kp,j’s are given by the condition

kp,1 < kp,2 < · · · < kp,N , k = {kp,1, kp,2, . . . , kp,N} = [N ] \ {p}.
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Notice that det(im,α
kp,σ(β))1≤α,β≤N = (−1)σ det(im,α

kp,β)1≤α,β≤N . Thus it follows that

fml(N) =
N∑

p=0

det(im,α
kp,β)1≤α,β≤N

∑
σ∈SN

(−1)σ jl,1
kp,σ(1)

kp,σ(1)!
· · · jl,N

kp,σ(N)

kp,σ(N)!

=
N∑

p=0

det(im,α
kp,β)1≤α,β≤N det

(
jl,α

kp,β

kβ!

)
1≤α,β≤N

=
1

0!1! · · ·N !

N∑
p=0

det(im,α
kp,β)1≤α,β≤N det(jl,α

kp,β )1≤α,β≤N × p!.

Therefore it is enough to calculate the determinant det(im,α
kp,β)1≤α,β≤N for each m, p.

When m > p, it is easy to see that det(im,α
kp,β)1≤α,β≤N = 0. When m = p, the ma-

trix (im,α
kp,β)1≤α,β≤N becomes triangular and we immediately have det(im,α

kp,β)1≤α,β≤N =

(0!1! · · ·N !)/m!. Finally, if m < p then it follows from the block decomposition that

det(im,α
kp,β )1≤α,β≤N

= det(im,α
kp,β)1≤α,β≤m det(im,α

kp,β)m<α,β≤p det(im,α
kp,β)p<α,β≤N

= det((α − 1)β−1)1≤α,β≤m det(αβ−1)m<α,β≤p det(αβ)p<α,β≤N .

The matrices in the first and the third determinants are triangular, and we see

det((α − 1)β−1)1≤α,β≤m = 0!1! · · · (m − 1)!, det(αβ)p<α,β≤N = (p + 1)! · · ·N !.

The second determinant is given by

det(αβ−1)m<α,β≤p = (m + 1)! · · · p! × det(1/(α − β + 1)!)1≤α,β≤p−m

where we put 1/k! = 0 for negative integer k (interpreted as the values of 1/Γ(z)). Notice

that the determinant det(1/(α− β + 1)!)1≤α,β≤p−m depends only on the difference p−m,

and it is proved by induction that det(1/(α − β + 1)!)1≤α,β≤r = 1/r!. Therefore we have

det(im,α
kp,β )1≤α,β≤N =

0!1! · · ·N !

m!(p − m)!
,

which is also true when p ≤ m. Thus we have

fml(N) =
1

0!1! · · ·N !

N∑
p=0

0!1! · · ·N !

m!(p − m)!
× 0!1! · · ·N !

l!(p − l)!
× p!

= 0!1! · · ·N !
N∑

p=0

p!

m!(p − m)!l!(p − l)!

= 0!1! · · ·N !
N∑

p=0

1

p!

(
p

m

)(
p

l

)
.
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Since we have in particular det ∆N = fN+1,N+1(N + 1) = 0!1! · · ·N !, we conclude that

∆−1
N =

(
(−1)i+j fji(N)

det ∆N

)
i,j

=

(
(−1)i+j

N∑
p=0

1

p!

(
p

i

)(
p

j

))
i,j

.

Theorem 4.5. We have

lim
N→∞

N∑
k=0

(
k

i

)(
k

j

)
1

k!
=

dije

i!j!
, (4.5)

or equivalently, the inverse of the Laplacian ∆ is given by

∆−1 =

(
(−1)i+jdije

i!j!

)
i,j≥0

. (4.6)

Proof. We should check the equality

(−1)i+j

∞∑
k=0

(
k

i

)(
k

j

)
1

k!
=

(−1)i+jdije

i!j!
. (4.7)

In order to achieve this, we introduce the following generating functions

FN(x, y)
def
=

N∑
i,j=0

{
(−1)i+j

N∑
k=0

(
k

i

)(
k

j

)
1

k!

}
xiyj,

F(x, y)
def
=

∑
i,j≥0

{
(−1)i+jdije

i!j!

}
xiyj.

Then it is elementary to see that

FN(x, y) =
N∑

k=0

(1 − x)k(1 − y)k

k!
,

F(x, y) = e(1−x)(1−y).

Thus we have

lim
N→∞

FN(x, y) = F(x, y),

which converges absolutely and uniformly on any compact subset of C. The conclusion is

obtained by the comparison of coefficients.

We show that the limit value tr ∆−m = limN→∞ tr ∆−m
N , which is regarded as a special

value of the spectral zeta function ζ∆(s) of ∆, exists for every m ≥ 1 as follows.
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Theorem 4.6. We have

tr ∆−m =
∑

k1,...,km≥0

1

k1! . . . km!

(
k1 + k2

k1

)(
k2 + k3

k2

)
· · ·

(
km + k1

km

)
. (4.8)

Proof. In fact, for any N ≥ 0 we have

tr ∆−m
N =

N∑
i1,...,im=0

(
N∑

k1=0

(
k1

i1

)(
k1

i2

)
1

k1!

)
· · ·

(
N∑

km=0

(
km

im

)(
k1

i1

)
1

km!

)

=
N∑

k1,...,km=0

1

k1! · · · km!

(
N∑

i1=0

(
km

i1

)(
k1

ii

))
· · ·

(
N∑

im=0

(
km−1

im

)(
km

im

))

=
N∑

k1,...,km=0

1

k1! · · · km!

(
km + k1

k1

)
· · ·

(
km−1 + km

km

)
,

where the last equality holds by the convolution formula∑
k

(
r

m + k

)(
s

n − k

)
=

(
r + s

m + n

)
.

In particular, we have

tr ∆−1 =
∞∑

k=0

1

k!

k∑
m=0

(
k

m

)2

=
∞∑

k=0

1

k!

(
2k

k

)
, (4.9)

tr ∆−2 =
∞∑

k=0

1

k!

k∑
m=0

(
k

m

)3

. (4.10)

Since every power sum
∑N

j=0 λ−m
N,j = tr ∆−m

N converges to a certain finite value as

N → ∞, the value

ed(λN)
def
=

∑
0≤i1<···<id≤N

λ−1
N,i1

· · ·λ−1
N,id

also converges as N → ∞ because this is expressible by tr ∆−k
N ’s.

Remark 4.1. The value tr ∆−1 is also given by

tr ∆−1 = e
∞∑

k=0

dkk

(k!)2
= e

∞∑
k=0

k∑
l=0

(
k

l

)(
k

l

)
l!

1

(k!)2

= e

∞∑
l=0

∞∑
k=l

1

l!((k − l)!)2
= e

∞∑
l=0

1

l!

∞∑
k=0

1

(k!)2

=
∞∑

k=0

( e

k!

)2

.
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Hence we have an identity
∞∑

k=0

( e

k!

)2

=
∞∑

k=0

1

k!

(
2k

k

)
,

which is also given as a special value of the Bessel function

J0(z) = 0F1(1;−z2/4) = e−iz
1F1(1/2; 1; 2iz) (4.11)

at z = 2i. Here 1F1(a; c; z) denotes the confluent hypergeometric function of Kummer’s

type. It is interesting to note that special values of 1F1(a; c; z) also appear in the calcu-

lations of zeta functions for S∞ [Ki].

We also note the numerical estimation of tr ∆−1:

0 < tr ∆−1
N < tr ∆−1 = 16.8439836812589880674... < 17. (4.12)

4.2 Existence of the spectral zeta function

We put

PN(x)
def
=

det(∆N − x)

det ∆N

=
N∏

j=0

(
1 − x

λN,j

)
=

N+1∑
d=0

(−1)ded(λN)xd,

which is a normalized characteristic polynomial of ∆N .

Proposition 4.7. The sequence {PN(x)}N≥0 of polynomials converges absolutely and

uniformly to a certain holomorphic function P (x) on any compact subset of C. Hence

P (x) gives an entire function.

Proof. Let us prove that {PN(x)}N≥0 converges absolutely and uniformly on the disk{
z ∈ C

∣∣ |z| ≤ R
}

for any R > 0. For any ε > 0, if we take N > M À 1 then we have

|ed(λN) − ed(λM)| <
ε

2Rd

because {ed(λN)}N≥0 converges to a certain finite value. On the other hand each ed(λN)

is roughly evaluated as

0 < ed(λN) =
∑

i1<···<id

λ−1
N,i1

· · ·λ−1
N,id

≤ 1

d!

∑
i1,...,id

λ−1
N,i1

· · ·λ−1
N,id

≤ 17d

d!
.

Here we use a rough estimation (4.12) of
∑

i λ
−1
N,i < 17. It is elementary to see that

N∑
d=M+1

(17R)d

d!
<

ε

2
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when M is large enough. Therefore we have

|PN(x) − PM(x)| ≤
M∑

d=0

|ed(λN) − ed(λM)|Rd +
N∑

d=M+1

|ed(λN)|Rd < ε

for any |x| < R.

By approximating P (x) by the polynomial PN(x) on the interval [0, 1], we can check

that PN(1) < 0 for N À 1, which means that 0 is not an exceptional value of P (x). Hence

P (x) has infinitely many zeros.

Proposition 4.8. Let a = {an}n≥0 be the zeros of P (x) such that 0 < |a0| ≤ |a1| ≤ · · · .
Put Ω(N,R) :=

{
|z| < R

∣∣ PN(z) = 0
}
⊂ C for R > 0. Then the number #Ω(N,R) is

independent of N for every N À 1 and R /∈ a.

Proof. For any R /∈ a, put ε = min|z|=R |P (z)| > 0. By the uniform convergence of

{PN(z)}, we have |PN(x) − P (x)| < ε ≤ |P (z)| for N À 1. The conclusion is now clear

by Rouché’s theorem.

Now we prove Theorem 4.3, the existence of the spectrum of ∆.

Proof of Theorem 4.3. Put rj = |aj| for j ≥ 0. For any ε > 0 and each j ≥ 0, we have

# (Ω(N, rj + ε) \ Ω(N, rj − ε)) ≥ 1

for N À 1, which implies that {λN,j}N>M is monotone decreasing. Hence we have

limN→∞ λN,j = rj. Since limN→∞ P (λN,j) = 0 for every j ≥ 0, we also see that every

rj is a zero of P (x), which implies rj = aj.

We show the numerical estimation of first 10 eigenvalues up to 10 digits (Table 1).

These values are calculated as limits of λN,k’s.

Since the series
∑∞

k=0 λ−1
k converges, we have the

Theorem 4.9. The spectral zeta function ζ∆(s) of ∆ = ∆PB is well-defined, that is, there

exists some small ε > 0 such that

ζ∆(s)
def
= tr ∆−s =

∞∑
k=0

λ−s
k

converges absolutely and hence defines a holomorphic function in the region Re(s) >

1 − ε.
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λ0 = 0.08487190949 . . .

λ1 = 0.2919019234 . . .

λ2 = 0.8906738137 . . .

λ3 = 2.607762169 . . .

λ4 = 9.640545861 . . .

λ5 = 46.47152499 . . .

λ6 = 273.9773421 . . .

λ7 = 1899.150590 . . .

λ8 = 15101.52483 . . .

λ9 = 135369.6103 . . .

Table 1: First 10 eigenvalues of ∆PB

Now it also follows immediately the

Corollary 4.10. The canonical product expression of P (x) is given by

P (x) =
∞∏

k=0

(
1 − x

λk

)
. (4.13)

5 Spectrum of the category Mod(Fq)

In this section we treat another interesting case of K = Mod(Fq), the category of Fq-

modules. We write the Laplacian ∆ = ∆K in short.

An object of Mod(Fq) is a n-dimensional vector space Fn
q over the finite field Fq. The

number of morphisms from Fm
q to Fn

q is given by qmn. We put ∆N = (qij)0≤i,j≤N , the

principal N -minor of the Laplacian ∆. Let us denote by λN,j (0 ≤ j ≤ N) the (j + 1)-th

eigenvalue of ∆N , that is,

0 < λN,0 ≤ λN,1 ≤ · · · ≤ λN,N .

By a similar argument as in Section 4, we can prove the following existence theorem of

spectrum.

Theorem 5.1 (Existence of the spectrum). For every k ≥ 0, there exists the limit λk
def
=

limN→∞ λN,k > 0.
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Thus we only give a necessary calculation concerning the inverse of the N -minor ∆N

of the Laplacian ∆.

Proposition 5.2. Let ∆N be the principal N-minor of the Laplacian ∆. Then we have

∆−1
N =

(
(−1)i+j

N∏
k=1

(1 − q−k)−1e
(N)
i (q; j)e

(N)
j (q; 0)

)
0≤i,j≤N

. (5.1)

Here we define

e(N)
n (q; i)

def
=

∑
S⊂[0,N ]
#S=n
i/∈S

q−S

where q−S def
= q−(s1+···+sn) if S = {s1, . . . , sn}, and we put [0, N ] = {0, 1, 2, . . . , N}.

Remark 5.1. It is easy to see that

e(N)
n (q; i) =

n∑
k=0

(−qi)ke
(N)
n−k(q)

where we put

e(N)
n (q)

def
=

∑
S⊂[0,N ]
#S=n

q−S.

To calculate the cofactor of ∆N , we need the following lemma concerning the special-

ization of symmetric functions.

Lemma 5.3 ([Ma1, p.44]). For a Young diagram λ ∈ Y, we denote by sλ(z1, . . . , zN) the

Schur function attached to λ defined by the Jacobi-Trudi type identity

sλ(z1, . . . , zN) =
det(z

λj+N−j
i )1≤i,j≤N

det(zN−j
i )1≤i,j≤N

. (5.2)

If we substitute zj = qj−1 for every j, then we have the following formula

sλ(1, q, . . . , q
N−1) = qn(λ)

∏
x∈λ′

1 − qN−c(x)

1 − qh(x)
. (5.3)

Here λ′ is the conjugate diagram of λ defined by flipping λ with respect to the diagonal

line. The number n(λ) is defined by

n(λ) =
∑
i≥1

(i − 1)λi.
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For each entry x = (i, j) ∈ λ of i-th row and j-th column, the content c(x) of x and the

hook length h(x) of x are defined respectively by

c(x) = j − i, h(x) = λi + λ′
j − i − j + 1.

Proof of Proposition 5.2. Denote by fml(N) the cofactors of ∆N . For simplicity we put

xj
def
= qj for 0 ≤ j ≤ N . We also let

im,1 < im,2 < · · · < im,N , im = {im,1, im,2, . . . , im,N} = [0, N ] \ {m}.

First we remark that

(N,N − 1, . . . , l + 1, l − 1, . . . , 1, 0) = (N − 1, N − 2, . . . , 1, 0) + (

N−l︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0).

Therefore, if we put λ = (1N−l), then we have

fml(N) = det
(
x

λβ+N−β
iα

)
1≤α,β≤N

= sλ(xi1 , . . . , xiN ) det
(
xN−β

iα

)
1≤α,β≤N

= eN−l(xi1 , . . . , xiN )
∏

1≤α<β≤N

(xiβ − xiα)

by the Jacobi-Trudi identity (5.2). Here we denote by ej(z1, . . . , zN) the j-th elementary

symmetric function of variables z1, . . . , zN . Since it follows that∏
1≤α<β≤N

(xiβ − xiα)

=
∏

0≤α<β≤N

(xβ − xα) × {(xi − x0) · · · (xi − xi−1) · (xi+1 − xi) · · · (xN − xi)}−1

= det ∆N × (−1)m
∏

0≤k 6=m≤N

(xk − xm)−1,

we have

fml(N)

det ∆N

= eN−l(xi1 , . . . , xiN ) × (−1)m
∏

0≤k 6=m≤N

(xk − xm)−1

= el(x
−1
i1

, . . . , x−1
iN

) × xi1 · · ·xiN × (−1)m
∏

0≤k 6=m≤N

(xk − xm)−1

= el(x
−1
i1

, . . . , x−1
iN

) × (−1)m
∏

0≤k 6=m≤N

(
1 − xm

xk

)−1

.
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Now we replace xj by qj. Then it follows that

fml(N)

det ∆N

= e
(N)
l (q; m) × (−1)m

∏
0≤k 6=m≤N

(
1 − qm−k

)−1

= e
(N)
l (q; m) × (−1)m

m−1∏
k=0

(
1 − qm−k

)−1
N∏

k=m+1

(
1 − qm−k

)−1

=
N∏

k=1

(
1 − q−k

)−1
e
(N)
l (q; m)q−m(m+1)/2

m∏
k=1

1 − q−(N−k+1)

1 − q−k
.

By the lemma above, we have

e(N)
m (q; N) = e

(N)
k (1, q−1, . . . , q−(N−1)) = q−m(m−1)/2

m∏
j=1

1 − q−N+j−1

1 − q−j
.

Thus we have
fml(N)

det ∆N

=
N∏

k=1

(
1 − q−k

)−1
e
(N)
l (q; m)e(N)

m (q; N)q−m.

It is immediate to see by definition that the identity e
(N)
m (q; N)q−m = e

(N)
m (q; 0) holds.

Thus we have the conclusion.

Remark 5.2. We know that the quantity e
(N)
l (q; m)e

(N)
m (q; 0) appearing in the cofactor

fml(N) is symmetric in m and l because of the symmetry of ∆N . But this expression does

not exhibit the symmetry in apparent manner. At this moment it does not seem a very

easy question to find an another expression of e
(N)
l (q; m)e

(N)
m (q; 0) such that the symmetry

in m and l is obviously seen. This is an interesting problem of its own right.

By taking a limit N → ∞ in Theorem 5.2, we have

Theorem 5.4. The inverse ∆−1 of the Laplacian ∆ attached to Mod(Fq) is given by

∆−1 =

(
(−1)i+j

∞∏
k=1

(1 − q−k)−1

j∏
k=1

(qk − 1)−1ei(q; j)

)
i,j≥0

. (5.4)

Here we define

en(q; i)
def
=

∑
S⊂N

#S=n
i/∈S

q−S.

By a similar discussion as in the case of the category PB, we can prove the existence

of the spectral zeta function ζ∆(s) of the Laplacian ∆ = ∆Mod(Fq) for Mod(Fq).



24 Kimoto, K.

Theorem 5.5. The spectral zeta function ζ∆(s) of ∆ = ∆Mod(Fq) is well-defined, that is,

there exists some small ε > 0 such that

ζ∆(s)
def
= tr ∆−s =

∞∑
k=0

λ−s
k

converges absolutely and hence defines a holomorphic function in the region Re(s) >

1 − ε.
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