Zeta regularizations and q-analogue of ring sine functions

Kazufumi KIMOTO, Nobushige KUROKAWA, Chie SONOKI and Masato WAKAYAMA †

1 Introduction

So called the *zeta regularization* is one of the most effective methods to carry out necessary renormalization calculations in a variety of situations such as the determinant expressions of elliptic operators [KV, Vo] and certain arithmetic applications [D] (see also [KKSW]). In the present paper we focus our interest on a particular class of functions which are defined in forms of the zeta regularized products. Let us recall first the formula essentially due to Lerch [L] as a typical example we deal with:

(1.1)
$$\frac{1}{\Gamma(x)} = \frac{1}{\sqrt{2\pi}} \prod_{n=0}^{\infty} (n+x).$$

Here the symbol \prod denotes so called the *zeta regularized product*, as we explain in §2. It is well known that $1/\Gamma(x)$ is an entire function which has simple zeros at $x = 0, -1, -2, \ldots$. The noteworthy point here is that the zeta regularized product in the left hand side of (1.1) may indicate the location $x = 0, -1, -2, \ldots$ of zeros of $1/\Gamma(x)$ in a quite apparent way. In other words, this is interpreted as a kind of factorization formula, which is comparable with the Weierstrass canonical product expression:

(1.2)
$$\frac{1}{\Gamma(x)} = e^{\gamma x} x \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) e^{-\frac{x}{n}}.$$

With this example, we are naturally lead to study the general situation as follows. Suppose that a family of functions $\{F_n(x)\}_{n\in I}$ satisfying appropriate conditions is given. We hope to define a function F(x) as

(1.3)
$$F(x) := \prod_{n \in I} F_n(x)$$

^{*}Research Fellow of the Japan Society for the Promotion of Science, partially supported by Grant-in-Aid for Scientific Research (C) No.12000766.

[†]Partially supported by Grant-in-Aid for Scientific Research (B) No.11440010, and by Grant-in-Aid for Exploratory Research No.13874004.

The following two questions are basic here:

- (i) When does the regularized product in (1.3) exist?
- (ii) Suppose that the regularized product (1.3) exists. Can we conclude that F(x) is a function whose zeros are exactly given by

$$Z = \prod_{n \in I} \{ a \in \mathbb{C} \mid F_n(a) = 0 \}$$

within multiplicity?

The following (ii)' is equivalent to (ii) substantially, but slightly stronger.

(ii)' Assume that $F(x) := \prod_{n \in I} F_n(x)$ and $G(x) := \prod_{n \in I} G_n(x)$ exist. Can we conclude the multiplicativity $F(x)G(x) = \prod_{n \in I} F_n(x)G_n(x)$?

The first question (i) seems quite delicate. Actually, when we take the geometric progression $F_n(x) = q^{n+x}$ (q > 1), then (1.3) does not exist. (See Example 2.2) Compared with the linear function n + x, it increases pretty too fast. We have hence in [KW2] introduced an extended notion called a generalized zeta regularized product (see Definition 2.3) in order to deal with a wider class of regularized products including the example $\prod_{n\geq 0} q^{n+x}$ above, where we express the generalized zeta regularized product by \prod in stead of \prod . But there are, of course, a lot

of curious and important examples of the sequences $\{F_n(x)\}_{n \in I}$ which do not have regularized products even in the sense of a generalized regularization. For instance,

(1.4)
$$\prod_{n=1}^{\infty} \frac{\Gamma(n+x)}{\Gamma(x)},$$

seems to give the double gamma function $\Gamma_2(x)$ (see [B]) but the product does not exist. The sequence n! seems to increase too fast. However, even if $\boldsymbol{a} = \{a_n\}_{n \in I}$ is of moderate growth, we can not assure the existence of the regularized product $\prod_{n \in I} a_n$ of \boldsymbol{a} . For instance, let p_n be the n-th prime number and consider the sequence $\boldsymbol{p} = \{p_n\}_{n \geq 1}$. Though $p_n = o(n)$ as n tends to infinity, the regularized product $\prod_{n=1}^{\infty} p_n$ does not exist. In fact, $\zeta_{\boldsymbol{p}}(s) = \sum_{n=1}^{\infty} p_n^{-s}$ has a natural boundary $\operatorname{Re}(s) = 0$. Thus an extension of the notion of these zeta regularized products is also an interesting problem.

For the question (ii), Illies [I] deals with the case of linear factors $F_n(x) = a_n - x$ for a given sequence $\mathbf{a} = \{a_n\}_{n \in I}$, and gives an affirmative answer to (ii) whenever the generalized zeta regularized product of \mathbf{a} exits. This is a generalization of Voros's result [Vo] for usual

zeta regularizations. Related to (ii)', a multiplicative anomaly of zeta regularized products is studied in [KV].

In this paper we deal with the case of q-linear factors $f_n(x) = [a_n - x]_q$ (q > 1) for a given sequence $\mathbf{a} = \{a_n\}_{n \in I}$ and establish a relation between the function defined by a generalized zeta regularized product and the one defined by a Weierstrass canonical form (Theorem 3.1). Here we employ the following convention for q-numbers:

(1.5)
$$[a]_q := \frac{q^{a/2} - q^{-a/2}}{q^{1/2} - q^{-1/2}} \quad (a \in \mathbb{C}) \,.$$

Moreover, using the idea similar to the proof of this relation, we also prove the same kind of the factorization for the case $F_n(x)$'s are polynomials whose degree equal d except a finite number of $n \in I$ (see Remark 3.2).

As an important example, we calculate a q-analogue of a ring sine function. A general notion of a ring sine function $S_A(x)$ of a commutative ring A has been introduced in [KMOW] as

(1.6)
$$S_A(x) := \prod_{a \in A} (a - x).$$

Here the product should be suitably interpreted. In the cases of the ring of rational integers \mathbb{Z} and its imaginary quadratic extension $\mathbb{Z}[\tau]$ (τ is an imaginary quadratic integer), the corresponding ring sine functions $S_{\mathbb{Z}}(x)$ and $S_{\mathbb{Z}[\tau]}(x)$ are realized respectively by zeta regularized products as

(1.7)
$$S_{\mathbb{Z}}(x) := \prod_{m \in \mathbb{Z}} (m-x),$$

(1.8)
$$S_{\mathbb{Z}[\tau]}(x) := \prod_{m,n\in\mathbb{Z}} (m+n\tau-x),$$

and these are calculated explicitly; the former is the sine function and the latter is the elliptic theta function essentially.

In Section 4 we introduce and study the q-ring sine function

(1.9)
$$S_{\mathbb{Z}}^{q}(x) := \prod_{n \in \mathbb{Z}} [n-x]_{q},$$

which is a q-analogue of $S_{\mathbb{Z}}(x)$ above. We calculate $S_{\mathbb{Z}}^q(x)$ explicitly by using a q-analogue of the Hurwitz zeta function (see [KW3]), and show that it essentially gives $S_{\mathbb{Z}[\tau]}(x)$ (see Remark 4.4).

2 Zeta regularizations

In this section we recall the usual notion of *the zeta regularization* and the genelarized regularization in order to deal with wider class of sequences.

Definition 2.1. Let $a = \{a_n\}_{n \in I}$ be a divergent sequence of nonzero complex numbers. We define the zeta function attached to a by the Dirichlet series

(2.1)
$$\zeta_{\boldsymbol{a}}(s) := \sum_{n \in I} a_n^{-s}.$$

Throughout this paper we fix a log-branch by $-\pi \leq \arg \log a < \pi$ for $a \in \mathbb{C}^{\times}$.

Assume that the series (2.1) converges absolutely if $\operatorname{Re}(s) > \mu$ for a sufficiently large real number μ . We take such a number μ to be the minimal one, and call it the exponent of convergence of \boldsymbol{a} .

If $\zeta_{\boldsymbol{a}}(s)$ has a meromorphic continuation to some region containing the origin s = 0, then we say \boldsymbol{a} is *(meromorphically zeta-)regularizable*. We first recall the standard definition of zeta regularized products.

Definition 2.2 (Holomorphic regularization). Let \boldsymbol{a} be a regularizable sequence. If $\zeta_{\boldsymbol{a}}(s)$ is holomorphic at s = 0, then the zeta regularized product of \boldsymbol{a} is defined by

(2.2)
$$\prod_{n \in I} a_n := \exp\left(-\zeta_a'(0)\right).$$

This is a usual zeta regularization (see e.g. [D, Vo]).

Example 2.1 (Lerch's formula [L]). Let x > 0 and take $a_n = n + x$ for $n \ge 0$. The attached zeta function

$$\zeta(s,x) := \sum_{n=0}^{\infty} (n+x)^{-s}$$

is called the Hurwitz zeta function. This has a meromorphic continuation to the whole plane and holomorphic at s = 0. In fact, the regularized product of (n + x)'s is given by (1.1).

Since the attached zeta function $\zeta_{\boldsymbol{a}}(s)$ of a simple geometric series $\boldsymbol{a} = \{q^n\}_{n\geq 0} \ (q>1)$ is given by

(2.3)
$$\zeta_{a}(s) = \sum_{n=0}^{\infty} q^{-ns} = \frac{1}{1 - q^{-s}}$$

and has a simple pole at s = 0, the zeta regularized product of a in the sense of (2.2) does not exist. Thus we needed an extended notion of the regularized product in [KW2] as follows.

Definition 2.3 (Meromorphic regularization [KW2]). If $\zeta_{\boldsymbol{a}}(s)$ has a pole at s = 0, then the (generalized) zeta regularized product of \boldsymbol{a} is defined by

$$\prod_{n \in I} a_n := \exp\left(-\operatorname{Res}_{s=0} \frac{\zeta_{\boldsymbol{a}}(s)}{s^2}\right).$$

We use this dotted product symbol if $\zeta_a(s)$ has a pole st s = 0 in order to distinguish this notion from the holomorphic regularization if necessary.

Remark 2.1. Since $\zeta_{\boldsymbol{a}}'(0) = \operatorname{Res}_{s=0} \zeta_{\boldsymbol{a}}(s)/s^2$ if $\zeta_{\boldsymbol{a}}(s)$ is holomorphic at s = 0, it is obvious to see $\mathbf{H} = \mathbf{\Pi}$ in the holomorphic case.

Example 2.2 ([KKSW]). For any q > 1, we have

(2.4)
$$\prod_{n=0}^{\infty} q^{n+x} = q^{-B_2(x)/2}$$

where $B_2(x)$ is the Bernoulli polynomial of degree 2. This follows from the Laurent expansion of the zeta function for $\boldsymbol{a} = \{q^{n+x}\}_{n\geq 0}$,

(2.5)
$$\zeta_{\boldsymbol{a}}(s,x) = \sum_{n=0}^{\infty} q^{-s(n+x)} = \frac{q^{-sx}}{1-q^{-s}} = \frac{1}{s\log q} + B_1(x) + \frac{s}{2}B_2(x)\log q + O(s^2).$$

Example 2.3 (*q*-Lerch's formula [KW2]). A *q*-analogue of Lerch's formula (1.1) is calculated as

(2.6)
$$\prod_{n=0}^{\infty} [n+x]_q = \frac{[\infty]_q!}{\Gamma_q(x)}.$$

Here we denote by $\Gamma_q(x)$ the (modified) Jackson q-gamma function

(2.7)
$$\Gamma_q(x) := \frac{\prod_{n=1}^{\infty} (1 - q^{-n})}{\prod_{n=0}^{\infty} (1 - q^{-(n+x)})} (q^{1/2} - q^{-1/2})^{1-x} q^{x(x-1)/4},$$

which satisfies the functional equation $\Gamma_q(x+1) = [x]_q \Gamma_q(x)$ in our convention. The constant $[\infty]_q!$ is explicitly given by

(2.8)
$$[\infty]_q! := \prod_{n=1}^{\infty} [n]_q = q^{-1/24} (q^{1/2} - q^{-1/2})^{-\log(1-q^{-1})/\log q} \prod_{n=1}^{\infty} (1 - q^{-n}) .$$

This follows from the calculation of the Laurent expansion of the q-Hurwitz zeta function

$$\zeta_q(s,x) := \sum_{n=0}^{\infty} [n+x]_q^{-s} \quad (\operatorname{Re}(s) > 0)$$

See Lemma 4.2 for the analytic continuation of $\zeta_q(s, x)$.

3 Zeta regularizations and canonical forms

As we see typically in the case of Lerch's result, one of the important aspect of a regularized product is that the regularized product representation of a given function is useful to indicate the location of zeros. (For the other important aspect such as "transformation" properties of the regularized product representation, see [KKSW].) In this section we present a relation between a zeta regularization and a Weierstrass canonical form when a function is defined by a regularized product over q-linear factors.

3.1 A factorization theorem

Let \boldsymbol{a} be a sequence of nonzero complex numbers. We denote by μ the exponent of convergence of the sequence \boldsymbol{a} , that is, the associated zeta function $\zeta_{\boldsymbol{a}}(s) = \sum_{n \in I} a_n^{-s}$ converges absolutely in the region $\operatorname{Re}(s) > \mu$, and hence defines a function which is holomorphic in the same region. We also denote by p the integer part of μ , or the minimum integer such that the series $\sum_{n \in I} \frac{1}{|a_n|^{1+p}}$ converges absolutely.

We are interested in the function defined by the zeta regularized product of $[a - x]_q := \{[a_n - x]_q\}_{n \in I}$, say,

(3.1)
$$D^q_{\boldsymbol{a}}(x) := \prod_{n \in I} [a_n - x]_q$$

Since there is a trivial periodicity $q^{x+\tau} = q^x$ ($\tau := 2\pi i/\log q$), we may expect that (3.1) defines a function whose zeros are given by $\boldsymbol{a}(\tau) := \{a_n + k\tau\}_{n \in I, k \in \mathbb{Z}}$. In fact, our goal in this section is to show the following result.

Theorem 3.1. Let $\mathbf{a} = \{a_n\}_{n \in I}$ be a regularizable sequence of real numbers (except a finite number of a_n 's). Denote by μ the exponent of convergence of \mathbf{a} , and let p be the integer part of μ . Assume that there exists a certain connected domain \mathbb{D} such that $\mathbf{a}(\tau) - x := \{a_n + k\tau - x\}_{n \in I, k \in \mathbb{Z}}$ and $[\mathbf{a} - x]_q$ are both regularizable for any $x \in \mathbb{D}$. Then there exists a polynomial function $f_{\mathbf{a}}(x)$ defined on \mathbb{D} such that

(3.2)
$$\prod_{n \in I} [a_n - x]_q = \exp f_{\boldsymbol{a}}(x) \prod_{\substack{n \in I \\ k \in \mathbb{Z}}} \left(1 - \frac{x}{a_n + k\tau}\right) \exp\left(\sum_{j=1}^{p+1} \frac{1}{j} \left(\frac{x}{a_n + k\tau}\right)^j\right).$$

Remark 3.1. Theorem 3.1 is a preferable statement as a special case of the general expectation

(3.3)
$$\prod_{n \in I} F_n(x) = e^{f(x)} \prod_{a \in Z} \left(1 - \frac{x}{a}\right) \exp\left(\sum_j \frac{1}{j} \left(\frac{x}{a}\right)^j\right),$$

where $Z = \prod_n \{ a \in \mathbb{C} \mid F_n(a) = 0 \}$ is the set of all zeros of $\{F_n(x)\}_{n \in I}$.

3.2 Proof of Theorem 3.1

We denote the attached zeta functions for $\boldsymbol{a}(\tau) - x$ and $[\boldsymbol{a} - x]_q$ by

(3.4)
$$\zeta_{\boldsymbol{a}(\tau)}(s,x) := \sum_{\substack{n \in I \\ k \in \mathbb{Z}}} (a_n + k\tau - x)^{-s},$$

(3.5)
$$\zeta_{a}^{q}(s,x) := \sum_{n \in I} [a_{n} - x]_{q}^{-s}.$$

By the assumption of the theorem, $\zeta_{\boldsymbol{a}(\tau)}(s, x)$ converges absolutely in the region $\operatorname{Re}(s) > \mu + 1$. First we remark that $\zeta_{\boldsymbol{a}}^{q}(s, x)$ converges absolutely and defines a holomorphic function in the right half plane $\operatorname{Re}(s) > 0$ since the behavior of $\zeta_{\boldsymbol{a}}^{q}(s, x)$ is comparable with that of

$$\Phi_{\boldsymbol{a}}(s) = \sum_{n \in I} q^{-a_n s},$$

and we have assumed the positivity of a.

We suppose that $\zeta_{\boldsymbol{a}}^q(s,x)$ has a pole of order N at s = 0. Note that $\zeta_{\boldsymbol{a}}^q(s,x)$ satisfies the difference-differential equation

(3.6)
$$\frac{\partial^2}{\partial x^2} \zeta^q_{\boldsymbol{a}}(s,x) = -(\log q)^2 \left(s(s+1)\zeta^q_{\boldsymbol{a}}(s+2,x) + s^2 \zeta^q_{\boldsymbol{a}}(s,x) \right).$$

By using (3.6) successively it follows that $\frac{\partial^{2n}}{\partial x^{2n}}\zeta_{\boldsymbol{a}}^q(s,x)$ is holomorphic at s = 0 if $n \ge N/2$. It is convenient to introduce the function

(3.7)
$$\eta_{\boldsymbol{a}(\tau)}(s,x) := \Gamma(s)\zeta_{\boldsymbol{a}(\tau)}(s,x)$$

which is holomorphic if $\operatorname{Re}(s) \ge p+2$. We immediately check the functional equation

(3.8)
$$\frac{\partial}{\partial x}\eta_{\boldsymbol{a}(\tau)}(s,x) = \eta_{\boldsymbol{a}(\tau)}(s+1,x).$$

An entire function whose zeros are exactly given by $\boldsymbol{a}(\tau)$ is constructed by the Weierstrass canonical product as follows:

(3.9)
$$\Delta_{\boldsymbol{a}}^{q}(x) := \prod_{\substack{n \in I \\ k \in \mathbb{Z}}} \left(1 - \frac{x}{a_n + k\tau} \right) \exp\left(\sum_{j=1}^{p+1} \frac{1}{j} \left(\frac{x}{a_n + k\tau} \right)^j \right).$$

Our destination is to describe a relation between $D^q_{\boldsymbol{a}}(x)$ and $\Delta^q_{\boldsymbol{a}}(x)$, which assures that the generalized regularized product expression of a function indicates the location of its zeros.

We consider the log-derivatives of $\Delta_{\boldsymbol{a}}^q(x)$

(3.10)
$$R_k(x) := \frac{\partial^k}{\partial x^k} \log \Delta_{\boldsymbol{a}}^q(x) \quad (k = 0, 1, 2, \dots)$$

They satisfies the initial condition $R_k(0) = 0$ for k = 0, 1, ..., p + 1, and conversely, $\Delta_a^q(x)$ is a unique entire function of order p determined by these conditions. The following equality is crucial:

(3.11)
$$R_n(x) = \frac{\partial^n}{\partial x^n} \log \Delta_{\boldsymbol{a}}^q(x) = \sum_{\substack{n \in I \\ k \in \mathbb{Z}}} \frac{(n-1)!}{(a_n + k\tau - x)^n} = \eta_{\boldsymbol{a}(\tau)}(n, x)$$

for any $n \ge p+2$.

To calculate the log-derivatives of $D^q_{\boldsymbol{a}}(x)$ in a desirable fashion, we need the following simple lemma.

Lemma 3.2. For $a \neq 0$, we have

(3.12)
$$[a-x]_q = [a]_q q^{-\frac{x}{2} \operatorname{coth}(\frac{a \log q}{2})} \prod_{k \in \mathbb{Z}} \left(1 - \frac{x}{a+k\tau}\right) \exp\left(\frac{x}{a+k\tau}\right).$$

Proof. The set of zeros of the function

$$[a-x]_q = \frac{2}{q^{1/2} - q^{-1/2}} \sinh\left(\frac{(a-x)\log q}{2}\right)$$

is given by $\boldsymbol{a} = \{ a + k\tau \mid k \in \mathbb{Z} \}$. Therefore it must have a canonical product expression of the form

$$[a-x]_q = e^{g(x;a)} \prod_{k \in \mathbb{Z}} \left(1 - \frac{x}{a+k\tau} \right) \exp\left(\frac{x}{a+k\tau}\right)$$

for a suitable entire function g(x; a). Taking the log-derivative of $[a - x]_q$ in two ways according to the two kinds of expressions above, we have

$$-\frac{\log q}{2} \coth\left(\frac{(a-x)\log q}{2}\right) = g'(x;a) - \sum_{k\in\mathbb{Z}} \left(\frac{1}{a+k\tau-x} - \frac{1}{a+k\tau}\right)$$

The fractional expansion of the hyperbolic cotangent function

$$\coth x = \frac{1}{x} + \sum_{k \neq 0} \left(\frac{1}{x - i\pi k} + \frac{1}{i\pi k} \right)$$

yields then $g'(x;a) = -\frac{\log q}{2} \coth\left(\frac{a\log q}{2}\right)$. Thus we have $g(x;a) = -\frac{x\log q}{2} \coth\left(\frac{a\log q}{2}\right) + \log[a]_q$ since $g(0;a) = \log[a]_q$.

By using the lemma above, we have

$$[a-x]_q^{-s} = 1 - s \log[a-x]_q + O(s^2)$$

= $1 - \left(g(0;a) + \sum_{k \in \mathbb{Z}} \left(\log\left(1 - \frac{x}{a+k\tau}\right) + \frac{x}{a+k\tau}\right)\right)s + O(s^2).$

Thus the zeta function attached to $[\boldsymbol{a}]_q$ is

$$(3.13)\quad \zeta^q_{\boldsymbol{a}}(s,x) = \sum_{n \in I} \left(1 - \left(g(0;a_n) + \sum_{k \in \mathbb{Z}} \left(\log \left(1 - \frac{x}{a_n + k\tau} \right) + \frac{x}{a_n + k\tau} \right) \right) s + O(s^2) \right).$$

The implied constant in $O(s^2)$ is depending on x. Differentiating repeatedly, it follows

(3.14)
$$\frac{\partial^m}{\partial x^m} \zeta^q_{\boldsymbol{a}}(s, x) = \sum_{n \in I} \left(-\sum_{k \in \mathbb{Z}} \frac{(m-1)!}{(a_n + k\tau - x)^m} s + O(s^2) \right)$$

if $m \ge p+2$. Since $\frac{\partial^m}{\partial x^m} \zeta^q_{\boldsymbol{a}}(s, x)$ is holomorphic at s = 0 for $m \ge N$, the expression (3.14) gives the Taylor expansion of $\frac{\partial^m}{\partial x^m} \zeta^q_{\boldsymbol{a}}(s, x)$ around the origin s = 0 when $m \ge \max\{p+2, N\}$. Hence we have

(3.15)
$$\frac{\partial^m}{\partial x^m} \operatorname{Res}_{s=0} \frac{\zeta^q_{\boldsymbol{a}}(s,x)}{s^2} = -\eta_{\boldsymbol{a}(\tau)}(m,x).$$

From (3.11) and (3.15), we have

$$\frac{\partial^m}{\partial x^m} \left(\log \Delta_{\boldsymbol{a}}^q(x) + \operatorname{Res}_{s=0} \frac{\zeta_{\boldsymbol{a}}^q(s,x)}{s^2} \right) = 0 \quad (m \ge \max\{p+2,N\}),$$

which implies that there exists a certain polynomial $f_a(x)$ of degree at most $\max\{p+2, N\}$ such that

$$\log \Delta_{\boldsymbol{a}}^{q}(x) - \log D_{\boldsymbol{a}}^{q}(x) = f_{\boldsymbol{a}}(x)$$

This completes the proof of Theorem 3.1.

By a similar discussion we have the following result for polynomial case.

Theorem 3.3. For j = 1, 2, ..., d, let $\mathbf{a}^{(j)} = \{a_{j,n}\}_{n \in I}$ be regularizable sequences of positive numbers, and suppose that the $\sum_{n \in I} a_{j,n}^{-(p+1)}$ converges absolutely for every j. There exists a polynomial function F(x) defined on a certain domain \mathbb{D} such that

$$\prod_{n \in I} (a_{1,n} - x)(a_{2,n} - x) \cdots (a_{d,n} - x)$$

(3.16)

$$= \exp F(x) \prod_{\substack{n \in I \\ 1 \le j \le d}} \left(1 - \frac{x}{a_{j,n}} \right) \exp \left(\sum_{k=1}^p \frac{1}{k} \left(\frac{x}{a_{j,n}} \right)^k \right)$$

for any $x \in \mathbb{D}$. In particular, the following two regularized products

$$\prod_{n \in I} \left(\prod_{j=1}^{d} (a_{j,n} - x) \right), \quad \prod_{j=1}^{d} \left(\prod_{n \in I} (a_{j,n} - x) \right)$$

are equal up to a nonzero elementary factor.

Proof. Denote by $\Delta(x)$ the canonical product appearing in the right hand side of (3.16). The (p+1)-th log-derivative if $\Delta(x)$ is given by

(3.17)
$$\frac{\partial^{p+1}}{\partial x^{p+1}} \log \Delta(x) = \sum_{j=1}^d \sum_{n \in I} \frac{\Gamma(p+1)}{(a_{j,n} - x)^{p+1}}$$

The attached zeta function $\varphi(s, x)$ for $\{(a_{1,n} - x)(a_{2,n} - x) \cdots (a_{d,n} - x)\}_{n \in I}$ is

$$\varphi(s,x) = \sum_{n \in I} \left((a_{1,n} - x) \dots (a_{d,n} - x))^{-s} \right)$$
$$= \sum_{n \in I} \left(1 - s \log \left(a_{1,n} - x \right) \dots \left(a_{d,n} - x \right) + O(s^2) \right).$$

Differentiation with respect to x successively yields

$$\frac{\partial^{p+1}}{\partial x^{p+1}}\varphi(s,x) = \sum_{n \in I} \left(-s \sum_{j=1}^d \frac{p!}{(a_{j,n} - x)^{p+1}} + O(s^2) \right),$$

which implies

(3.18)
$$\frac{\partial^{p+1}}{\partial x^{p+1}} \operatorname{Res}_{s=0} \frac{\varphi(s,x)}{s^2} = -\sum_{j=1}^d \sum_{n \in I} \frac{\Gamma(p+1)}{(a_{j,n}-x)^{p+1}} = -\frac{\partial^{p+1}}{\partial x^{p+1}} \log \Delta(x)$$

in view of (3.17). Thus we have (3.16) by a similar argument of the proof of Theorem 3.1. The latter statement follows immediately. \Box

Remark 3.2. Theorem 3.3 insists that the basic questions proposed in §1 is affirmative in the case of polynomial functions satisfying certain conditions: Assume that all but finite exception of the functions $F_n(x)$ are polynomial functions of degree d such that the sequence consisting of their roots is regularizable. Then the reguralized product $\prod_{n \in I} F_n(x)$ exists, and it gives a function which exhibits the information of the location of zeros.

Example 3.1 (Generalized Lerch's formula [L]: see also [KW1]).

(3.19)
$$\prod_{n=0}^{\infty} \left((n+x)^2 + y^2 \right) = \frac{2\pi}{\Gamma(x+iy)\Gamma(x-iy)} = \prod_{n=0}^{\infty} (n+x+iy) \prod_{n=0}^{\infty} (n+x-iy).$$

The following is a example which does not satisfy the required condition of Theorem 3.3.

Example 3.2 ([KKW]). For $n \ge 3$, we have

(3.20)
$$\prod_{a \in \operatorname{Sym}_n(\mathbb{Z})} \det(a - x) = 1$$

for $x \in \operatorname{Sym}_n(\mathbb{C}) \setminus \operatorname{Sym}_n(\mathbb{Z})$. Here we denote by $\operatorname{Sym}_n(R)$ $(R = \mathbb{Z}, \mathbb{C})$ the set of $n \times n$ symmetric matrices whose entries belong to R.

4 Example: q-sine and theta functions

The ring sine function for a commutative ring A is defined by

$$S_A(x) := \prod_{a \in A} (a - x),$$

where the product " $\prod_{a \in A}$ " over A should be, of course, suitably interpreted like zeta regularized product (see [KMOW]). For example, in the cases of the ring of rational integers \mathbb{Z} and its

imaginary quadratic extension $\mathbb{Z}[\tau]$ (τ is an imaginary quadratic integer), the corresponding ring sine functions $S_{\mathbb{Z}}(x)$ and $S_{\mathbb{Z}[\tau]}(x)$ are realized by zeta regularized products and calculated as follows.

Theorem 4.1 ([KMOW]). We have

(4.1)
$$S_{\mathbb{Z}}(x) := \prod_{m \in \mathbb{Z}} (m-x) = 1 - e^{2\pi i x} \quad (0 < x < 1),$$

$$S_{\mathbb{Z}[\tau]}(x) := \prod_{m,n \in \mathbb{Z}} (m+n\tau-x)$$

(4.2)
$$= (1 - q^{-x/\tau}) \prod_{n=1}^{\infty} (1 - q^{-(n+x/\tau)})(1 - q^{-(n-x/\tau)}) \quad (0 < \operatorname{Im} x < \operatorname{Im} \tau),$$

which are essentially the sine function and the elliptic theta function respectively.

Note that for $(A, K) = (\mathbb{Z}, \mathbb{Q}), (\mathbb{Z}[\tau], \mathbb{Q}(\tau)), S_A(x)$ generates the maximal abelian extension K^{ab} of K, that is, $K^{ab} = K(S_A(K))$ ((\mathbb{Z}, \mathbb{Q}) case is due to Kronecker [Kr], and ($\mathbb{Z}[\tau], \mathbb{Q}(\tau)$) case is due to Takagi [T]).

In this section we introduce a q-analogue $S^q_{\mathbb{Z}}(x)$ of the ring sine function $S_{\mathbb{Z}}(x)$ of \mathbb{Z} by

(4.3)
$$S_{\mathbb{Z}}^{q}(x) := \prod_{n \in \mathbb{Z}} [n-x]_{q}$$

and calculate this explicitly.

Remark 4.1. It is essential to our argument to use the normalization (1.5) of q-numbers. In fact, if we take another convention $\{a\}_q = (q^a - 1)/(q - 1)$, the attached zeta function

(4.4)
$$\xi_q(s,x) := \sum_{n \in \mathbb{Z}} \{n-x\}_q^{-s}$$

for $S^q_{\mathbb{Z}}(x)$ does diverge since the summation is taken over the lattice \mathbb{Z} (not the semi-lattice $\mathbb{Z}_{\geq 0}$ like Example 2.3).

In order to carry out the calculation of $S^q_{\mathbb{Z}}(x)$, it is necessary to have an explicit form of the previously defined q-Hurwitz zeta function.

Lemma 4.2. Assume that $0 < \operatorname{Re} x < 1$ and $-\frac{2\pi}{\log q} \leq \operatorname{Im} x < \frac{2\pi}{\log q}$. The Laurent expansion of the q-Hurwitz zeta function $\zeta_q(s, x) = \sum_{n=0}^{\infty} [n+x]_q^{-s}$ around the origin s = 0 is given by

(4.5)
$$\zeta_q(s,x) = \frac{2}{\log q} \frac{1}{s} + \frac{2\log\left(q^{1/2} - q^{-1/2}\right)}{\log q} - \frac{1}{2}(2x-1) + s\log\frac{\Gamma_q(x)}{[\infty]_q!} + O(s^2).$$

Proof. First we remark that

$$(q^{(n+x)/2}(1-q^{-n-x}))^{-s} = q^{-s(n+x)/2}(1-q^{-n-x})^{-s}$$

for any $n \ge 0$ under the hypothesis of the lemma. It follows hence that

$$\begin{split} \zeta_q(s,x) &= \sum_{n=0}^{\infty} [n+x]_q^{-s} = (q^{1/2} - q^{-1/2})^s \sum_{n=0}^{\infty} (q^{(n+x)/2} (1 - q^{-n-x}))^{-s} \\ &= (q^{1/2} - q^{-1/2})^s \sum_{n=0}^{\infty} q^{-s(n+x)/2} \sum_{k=0}^{\infty} \binom{-s}{k} (-1)^k q^{-(n+x)k} \\ &= (q^{1/2} - q^{-1/2})^s \sum_{k=0}^{\infty} \binom{s+k-1}{k} \frac{q^{(k+s/2)(1-x)}}{q^{k+s/2} - 1}. \end{split}$$

Since $\binom{s+k-1}{k} = \frac{s}{k} + O(s^2)$ if $k \ge 1$, we get

$$\sum_{k=0}^{\infty} \binom{s+k-1}{k} \frac{q^{(k+s/2)(1-x)}}{q^{k+s/2}-1} = \frac{q^{s(1-x)/2}}{q^{s/2}-1} + s \sum_{k=1}^{\infty} \frac{1}{k} \frac{q^{k(1-x)}}{q^k-1} + O(s^2)$$
$$= \frac{2}{\log q} \frac{1}{s} - \frac{1}{2}(2x-1) + \left\{ \left(\frac{x^2}{4} - \frac{x}{4} + \frac{1}{24}\right)\log q + \sum_{k=1}^{\infty} \frac{1}{k} \frac{q^{k(1-x)}}{q^k-1} \right\} s + O(s^2).$$

Hence we obtain the desired expansion of $\zeta_q(s, x)$ around s = 0 as follows:

(4.6)
$$\zeta_{q}(s,x) = \frac{2}{\log q} \frac{1}{s} - \frac{1}{2}(2x-1) + \frac{2}{\log q} \log(q^{1/2} - q^{-1/2}) \\ + \left\{ \left(\frac{x^{2}}{4} - \frac{x}{4} + \frac{1}{24} \right) \log q + \sum_{k=1}^{\infty} \frac{1}{k} \frac{q^{k(1-x)}}{q^{k} - 1} \\ - \frac{1}{2}(2x-1) \log(q^{1/2} - q^{-1/2}) + \frac{1}{\log q} \left(\log(q^{1/2} - q^{-1/2}) \right)^{2} \right\} s + O(s^{2}).$$

It is straightforward to check the coefficient of s is equal to $\log \frac{\Gamma_q(x)}{[\infty]_q!}$. This shows the proof. \Box

Using the lemma above, we can calculate the q-analogue of the ring sine function $S^q_{\mathbb{Z}}(x)$.

Theorem 4.3. Let q > 1 be a fixed parameter and suppose that x lies in the region $0 < \operatorname{Re} x < 1$, $-\frac{2\pi}{\log q} \leq \operatorname{Im} x < \frac{2\pi}{\log q}$. The q-analogue of the ring sine function $S_{\mathbb{Z}}^q(x)$ of \mathbb{Z} is given as follows: (i) If $-\frac{2\pi}{\log q} \leq \operatorname{Im} x < 0$, then

(4.7)
$$S_{\mathbb{Z}}^{q}(x) = ie^{-\pi i x + \frac{\pi^{2}}{\log q}} \left(q^{1/2} - q^{-1/2}\right)^{\frac{2\pi i}{\log q}} \frac{\left(\left[\infty\right]_{q}!\right)^{2}}{\Gamma_{q}(x)\Gamma_{q}(1-x)}.$$

(ii) If $0 \leq \operatorname{Im} x < \frac{2\pi}{\log q}$, then

(4.8)
$$S_{\mathbb{Z}}^{q}(x) = -ie^{\pi i x + \frac{\pi^{2}}{\log q}} \left(q^{1/2} - q^{-1/2}\right)^{-\frac{2\pi i}{\log q}} \frac{\left([\infty]_{q}!\right)^{2}}{\Gamma_{q}(x)\Gamma_{q}(1-x)}.$$

Proof. Let $\xi_q(s, x)$ be the zeta function attached to the sequence $\{[n-x]_q\}$. We divide the sum in $\xi_q(s, x)$ into two parts:

$$\xi_q(s,x) = \sum_{n \in \mathbb{Z}} [n-x]_q^{-s} = \sum_{n \ge 0} [n+(1-x)]^{-s} + \sum_{n \ge 0} [-n-x]^{-s}.$$

We observe that

(4.9)
$$\arg[-n-x]_q = \arg[n+x]_q \pm \pi,$$

where the upper (resp. lower) sign is taken in the case $-\frac{2\pi}{\log q} \leq \operatorname{Im} x < 0$ (resp. $0 \leq \operatorname{Im} x < \frac{2\pi}{\log q}$). In fact, $\operatorname{Im}[-n-x]_q = -\frac{2}{q^{1/2}-q^{-1/2}} \cosh(\frac{n+\operatorname{Re}(x)}{2}\log q) \sin(\frac{\operatorname{Im}(x)}{2}\log q)$, and it is clear that $\cosh(\frac{n+\operatorname{Re}(x)}{2}\log q) > 0$ for any n.

It follows that

$$[-n-x]_q^{-s} = \begin{cases} e^{-\pi i s} [n+x]_q & -\frac{2\pi}{\log q} \le \operatorname{Im} x < 0, \\ e^{\pi i s} [n+x]_q & 0 \le \operatorname{Im} x < \frac{2\pi}{\log q}. \end{cases}$$

Thus we have

$$\xi_q(s,x) = \begin{cases} \zeta_q(s,1-x) + e^{-\pi i s} \zeta_q(s,x) & -\frac{2\pi}{\log q} \le \operatorname{Im} x < 0, \\ \zeta_q(s,1-x) + e^{\pi i s} \zeta_q(s,x) & 0 \le \operatorname{Im} x < \frac{2\pi}{\log q}. \end{cases}$$

By Lemma 4.2 we have

$$\operatorname{Res}_{s=0} \frac{e^{\mp \pi i s} \zeta_q(s, x)}{s^2} = \log \frac{\Gamma_q(x)}{[\infty]_q!} \pm \frac{1}{2} i \pi (2x - 1) \mp 2\pi i \frac{\log(q^{1/2} - q^{-1/2})}{\log q} - \frac{\pi^2}{\log q},$$

and hence we obtain

$$\operatorname{Res}_{s=0} \frac{\xi_q(s,x)}{s^2} = \log \frac{\Gamma_q(x)\Gamma_q(1-x)}{([\infty]_q!)^2} (q^{1/2} - q^{-1/2})^{\frac{\mp 2\pi i}{\log q}} \pm \frac{1}{2}i\pi(2x-1) - \frac{\pi^2}{\log q},$$

where the upper (resp. lower) sign is taken in the case (i) (resp. (ii)). This completes the proof of the theorem. \Box

Corollary 4.4. The function $\xi_q(s, x)$ satisfies the difference-differential equation

(4.10)
$$\frac{\partial^2}{\partial x^2}\xi_q(s,x) = \left(\frac{s\log q}{2}\right)^2\xi_q(s,x) + s(s+1)\left(\frac{\log q}{q^{1/2} - q^{-1/2}}\right)^2\xi_q(s+2,x)$$

In particular, we have

(4.11)
$$\frac{\partial^2}{\partial x^2} \operatorname{Res}_{s=0} \frac{\xi_q(s,x)}{s^2} = \left(\frac{\log q}{2}\right)^2 \operatorname{Res}_{s=0} \xi_q(s,x) + \left(\frac{\log q}{q^{1/2} - q^{-1/2}}\right)^2 \xi_q(2,x)$$

and $\xi_q(2, x)$ essentially gives the Weierstrass \wp -function (see [KW4]).

Remark 4.2. It follows also from (4.11) that our q-ring sine function $S^q_{\mathbb{Z}}(x)$ is determined up to "linear factor", that is,

$$S_{\mathbb{Z}}^q(x) = e^{\alpha x + \beta} \Gamma_q(x)^{-1} \Gamma_q(1-x)^{-1}$$

for some $\alpha, \beta \in \mathbb{C}$ in view of Theorem 3.1.

We give a q-analogue of Kronecker's limit formula. (See Remark 5 in [KMOW])

Theorem 4.5. We have

(4.12)
$$\prod_{n \in \mathbb{Z}} |[n-x]_q| = q^{(x-\overline{x})^2/8} \frac{([\infty]_q!)^2}{|\Gamma_q(x)\Gamma_q(1-x)|}$$

for $0 < \operatorname{Re}(x) < 1$.

Remark 4.3. The two theorems above show that

(4.13)
$$\prod_{n \in \mathbb{Z}} |[n-x]_q| = e^{-\frac{\pi^2}{\log q}} q^{(x-\overline{x})^2/8} \left| \prod_{n \in \mathbb{Z}} [n-x]_q \right|.$$

Proof of Theorem 4.5. We should study the attached zeta function

$$\tilde{\zeta}_q(s,x) := \sum_{n \in \mathbb{Z}} |[n-x]_q|^{-s} = \sum_{n>0} |[n-x]_q|^{-s} + \sum_{n \le 0} |[n-x]_q|^{-s}.$$

First we look at

$$\sum_{n>0} \left| [n-x]_q \right|^{-s} = \sum_{n>0} \left(q^{1/2} - q^{-1/2} \right)^s q^{-\frac{n-\operatorname{Re} x}{2}s} \left| 1 - q^{-n+x} \right|^{-s}.$$

Notice that $|q^{-n+x}| < 1$ since n > 0 and $0 < \operatorname{Re}(x) < 1$. By the binomial expansion we have

$$|1 - q^{-n+x}|^{-s} = (1 - q^{-n+x})^{-s/2} (1 - q^{-n+\bar{x}})^{-s/2}$$
$$= \sum_{\ell=0}^{\infty} \sum_{m=0}^{\infty} {\binom{-s/2}{\ell} \binom{-s/2}{m} (-1)^{\ell+m} q^{(-n+\operatorname{Re}x)(\ell+m)} q^{i\operatorname{Im}x(\ell-m)}}.$$

It follows that

(4.14)
$$\sum_{n>0} |[n-x]_q|^{-s} = \left(q^{1/2} - q^{-1/2}\right)^s \\ \times \left\{ \frac{q^{\frac{1}{2}s \operatorname{Re} x}}{q^{\frac{1}{2}s} - 1} + \sum_{\ell+m>0} \binom{-s/2}{\ell} \binom{-s/2}{m} (-1)^{\ell+m} \frac{q^{\operatorname{Re} x(\ell+m+\frac{1}{2}s)+i\operatorname{Im} x(\ell-m)}}{q^{\ell+m+\frac{1}{2}s} - 1} \right\}.$$

In order to observe the behavior of the zeta function around s = 0, we calculate the Laurent expansions of the casts in (4.14):

(4.15)
$$(q^{1/2} - q^{-1/2})^s = 1 + \{\log(q^{1/2} - q^{-1/2})\}s + \frac{1}{2}\{\log(q^{1/2} - q^{-1/2})\}^2s^2 + O(s^3),$$

(4.16)
$$\frac{q^{\frac{1}{2}s\operatorname{Re}x}}{q^{\frac{1}{2}s}-1} = \frac{2}{\log q}\frac{1}{s} + \frac{1}{2}(2\operatorname{Re}x-1) + \frac{1}{24}\left(6(\operatorname{Re}x)^2 - 6\operatorname{Re}x+1\right)(\log q)s + O(s^2),$$

(4.17)
$$\sum_{\ell+m>0} {\binom{-s/2}{\ell} \binom{-s/2}{m} (-1)^{\ell+m} \frac{q^{\operatorname{Ke} x(\ell+m+\frac{1}{2}s)+i\operatorname{Im} x(\ell-m)}}{q^{\ell+m+\frac{1}{2}s} - 1}} \\ = \left\{ \sum_{m>0} \frac{q^{m\bar{x}}}{2m(q^m-1)} + \sum_{\ell>0} \frac{q^{\ell x}}{2\ell(q^\ell-1)} \right\} s + O(s^2).$$

Combining these calculation we have

$$\sum_{n>0} |[n-x]_q|^{-s} = \frac{2}{\log q} \frac{1}{s} + \left(\frac{2\operatorname{Re} x - 1}{2} + \frac{2}{\log q}\log\left(q^{1/2} - q^{-1/2}\right)\right)$$

$$(4.18) \qquad + \left\{\frac{\left\{\log\left(q^{1/2} - q^{-1/2}\right)\right\}^2}{\log q} + \frac{\left(2\operatorname{Re} x - 1\right)\log\left(q^{1/2} - q^{-1/2}\right)}{2} + \frac{\left(6(\operatorname{Re} x)^2 - 6\operatorname{Re} x + 1\right)\log q}{24} + \sum_{m>0} \frac{q^{m\bar{x}}}{2m(q^m - 1)} + \sum_{\ell>0} \frac{q^{\ell x}}{2\ell(q^\ell - 1)}\right\}s + O(s^2).$$

Hence we have

(4.19)
$$\begin{aligned} &\underset{s=0}{\operatorname{Res}} \frac{\sum_{n>0} |[n-x]_q|^{-s}}{s^2} \\ &+ \frac{\left\{ \log\left(q^{1/2} - q^{-1/2}\right)\right\}^2}{\log q} + \frac{\left(2\operatorname{Re} x - 1\right)\log\left(q^{1/2} - q^{-1/2}\right)}{2} \\ &+ \frac{\left(6(\operatorname{Re} x)^2 - 6\operatorname{Re} x + 1\right)\log q}{24} + \sum_{m>0} \frac{q^{m\bar{x}}}{2m(q^m - 1)} + \sum_{\ell>0} \frac{q^{\ell x}}{2\ell(q^\ell - 1)}. \end{aligned}$$

By the discussion similar to the above, we also have

(4.20)
$$\begin{aligned} &\underset{s=0}{\operatorname{Res}} \frac{\sum_{n \leq 0} |[n-x]_q|^{-s}}{s^2} \\ &= \frac{\left\{ \log \left(q^{1/2} - q^{-1/2} \right) \right\}^2}{\log q} - \frac{\left(2\operatorname{Re} x - 1 \right) \log \left(q^{1/2} - q^{-1/2} \right)}{2} \\ &+ \frac{\left(6(\operatorname{Re} x)^2 - 6\operatorname{Re} x + 1 \right) \log q}{24} + \sum_{m > 0} \frac{q^{m\bar{x}}}{2m(q^m - 1)} + \sum_{\ell > 0} \frac{q^{\ell x}}{2\ell(q^\ell - 1)}. \end{aligned}$$

Therefore, we obtain

(4.21)
$$\operatorname{Res}_{s=0} \frac{\tilde{\zeta}_q(s,x)}{s^2} = \log |\Gamma_q(1-x)\Gamma_q(x)| - \log \left([\infty]! \right)^2 + \frac{1}{2} (\operatorname{Im} x)^2 \log q,$$

which is the desired conclusion.

Remark 4.4. If we put $\tau = -\log q/2\pi i$, then we see that

(4.22)
$$S_{\mathbb{Z}}^{q}(x/\tau) = \left(\frac{q^{-1/2\tau^{2}-1/4\tau} \left(q^{1/2}-q^{-1/2}\right)^{1+1/\tau} \left([\infty]_{q}!\right)^{2}}{\prod_{n=1}^{\infty} (1-q^{-n})^{2}}\right) \times q^{\frac{x(x-\tau-1)}{2\tau^{2}}} S_{\mathbb{Z}[\tau]}(x).$$

Namely, our q-deformation $S^q_{\mathbb{Z}}(x)$ of $S_{\mathbb{Z}}(x)$ essentially gives the ring sine function $S_{\mathbb{Z}}[\tau](x)$ for the ring $\mathbb{Z}[\tau]$.

Remark 4.5. Since the function $S^q_{\mathbb{Z}}(x)$ has an imaginary period $2\pi i/\log q$, classical limit " $q \to 1$ " is corresponding to the limit "(imaginary period) $\to \infty$ ". On the other hand, we can interpret that $S_{\mathbb{Z}[\tau]}(x)$ tends to $S_{\mathbb{Z}}(x)$ by taking a formal limit $\tau \to \infty$, where τ is an imaginary period of $S_{\mathbb{Z}[\tau]}(x)$.

References

- [B] E. W. Barnes: On the theory of the multiple gamma function. Trans. Cambridge Philos. Soc. **19**, 374–425 (1904).
- [D] C. Deninger: Local *L*-factors of motives and regularized determinants. Invent. math. 107, 135–150 (1992).
- [I] G. Illies: Regularized products and determinants. Commun. Math. Phys. 220, 69–94 (2001).
- [KKSW] K. Kimoto, N. Kurokawa, C. Sonoki and M. Wakayama: Some examples of generalized zeta regularized products. Preprint (2002).
- [KKW] K. Kimoto, N. Kurokawa and M. Wakayama: Zeta regularizations of the determinant products and the Eisenstein series of Siegel domains. In preparation.
- [KV] M. Kontsevich and S. Vishik: Geometry of determinants of elliptic operators. Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), Progr. Math. 131, Birkhäuser Boston, Boston, MA, 1995, 173–197.
- [Kr] L. Kronecker: Über die algebraisch auflösbaren Gleichungen (I). Monatsberichte der Königlich Preussischen Akademie der Wissenshaften zu Berlin, 365–374 (1853). Werke IV, 1-11.
- [KMOW] N. Kurokawa, E.M. Müller-Stüler, H. Ochiai and M. Wakayama: Kronecker's Jugendtraum and ring sine functions. J. Ramanujan Math. Soc. 17, 211-220 (2002).
- [KW1] N. Kurokawa and M. Wakayama: A generalization of Lerch's formula. To appear in Czech. Math. J.
- [KW2] N. Kurokawa and M. Wakayama: Generalized zeta regularizations, quantum class number formulas, and Appell's *O*-functions. To appear in The Ramanujan J.
- [KW3] N. Kurokawa and M. Wakayama: On *q*-analogue of the Euler constant and Lerch's limit formula. To appear in Proc. AMS.
- [KW4] N. Kurokawa and M. Wakayama: Certain families of elliptic functions defined by *q*-series. Preprint (2002).
- [L] M. Lerch: Dalši studie v oboru Malmsténovských řad. Rozpravy České Akad. 3 No.28, 1–61 (1894).

18	K. Kimoto <i>et al</i>
[T]	T. Takagi: Über eine Theorie des relativ Abel'schen Zahlköpers. J. of the College of Science, Imperial University of Tokyo 41 No. 9, 1–133 (1920).
[Vo]	A. Voros: Spectral functions, special functions and the Selberg zeta functions. Commun. Math. Phys. 110 , 439–465 (1987).
KAZUFUMI KIMOTO Graduate School of Mathematics, Kyushu University. Hakozaki, Fukuoka, 812-8581 JAPAN. kimoto@math.kyushu-u.ac.jp	
NOBUSHIGE KUROKAWA Department of Mathematics, Tokyo Institute of Technology. Meguro, Tokyo, 152-0033 JAPAN. kurokawa@math.titech.ac.jp	
CHIE SONOKI Graduate School of Mathematics, Kyushu University. Hakozaki, Fukuoka, 812-8581 JAPAN. ma201014@math.kyushu-u.ac.jp	
MASATO WAKAYAMA Faculty of Mathematics, Kyushu University. Hakozaki, Fukuoka, 812-8581 JAPAN. wakayama@math.kyushu-u.ac.jp	