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1 Introduction

So called the zeta regularization is one of the most effective methods to carry out necessary

renormalization calculations in a variety of situations such as the determinant expressions of

elliptic operators [KV, Vo] and certain arithmetic applications [D] (see also [KKSW]). In the

present paper we focus our interest on a particular class of functions which are defined in forms

of the zeta regularized products. Let us recall first the formula essentially due to Lerch [L] as

a typical example we deal with:

(1.1)
1

Γ(x)
=

1√
2π

∞∐∏
n=0

(n + x).

Here the symbol
∐∏

denotes so called the zeta regularized product, as we explain in §2. It

is well known that 1/Γ(x) is an entire function which has simple zeros at x = 0,−1,−2, . . . .

The noteworthy point here is that the zeta regularized product in the left hand side of (1.1)

may indicate the location x = 0,−1,−2, . . . of zeros of 1/Γ(x) in a quite apparent way. In

other words, this is interpreted as a kind of factorization formula, which is comparable with

the Weierstrass canonical product expression:

(1.2)
1

Γ(x)
= eγxx

∞∏
n=1

(
1 +

x

n

)
e−

x
n .

With this example, we are naturally lead to study the general situation as follows. Suppose

that a family of functions {Fn(x)}n∈I satisfying appropriate conditions is given. We hope to

define a function F (x) as

(1.3) F (x) :=
∐∏
n∈I

Fn(x).
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The following two questions are basic here:

(i) When does the regularized product in (1.3) exist?

(ii) Suppose that the regularized product (1.3) exists. Can we conclude that F (x) is a function

whose zeros are exactly given by

Z =
∐
n∈I

{
a ∈ C

∣∣ Fn(a) = 0
}

within multiplicity?

The following (ii)’ is equivalent to (ii) substantially, but slightly stronger.

(ii)’ Assume that F (x) :=
∐∏
n∈I

Fn(x) and G(x) :=
∐∏
n∈I

Gn(x) exist. Can we conclude the

multiplicativity F (x)G(x) =
∐∏
n∈I

Fn(x)Gn(x) ?

The first question (i) seems quite delicate. Actually, when we take the geometric progression

Fn(x) = qn+x (q > 1), then (1.3) does not exist. (See Example 2.2) Compared with the linear

function n + x, it increases pretty too fast. We have hence in [KW2] introduced an extended

notion called a generalized zeta regularized product (see Definition 2.3) in order to deal with

a wider class of regularized products including the example
∐∏
n≥0

qn+x above, where we express

the generalized zeta regularized product by
∐∏

in stead of
∐∏

. But there are, of course, a lot

of curious and important examples of the sequences {Fn(x)}n∈I which do not have regularized

products even in the sense of a generalized regularization. For instance,

(1.4)
“

∞∐∏
n=1

Γ(n + x)

Γ(x)

”

seems to give the double gamma function Γ2(x) (see [B]) but the product does not exist. The

sequence n! seems to increase too fast. However, even if a = {an}n∈I is of moderate growth, we

can not assure the existence of the regularized product
∐∏
n∈I

an of a. For instance, let pn be the

n-th prime number and consider the sequence p = {pn}n≥1. Though pn = o(n) as n tends to

infinity, the regularized product
∞∐∏

n=1

pn does not exist. In fact, ζp(s) =
∑∞

n=1 p−s
n has a natural

boundary Re(s) = 0. Thus an extension of the notion of these zeta regularized products is also

an interesting problem.

For the question (ii), Illies [I] deals with the case of linear factors Fn(x) = an − x for a

given sequence a = {an}n∈I , and gives an affirmative answer to (ii) whenever the generalized

zeta regularized product of a exits. This is a generalization of Voros’s result [Vo] for usual
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zeta regularizations. Related to (ii)’, a multiplicative anomaly of zeta regularized products is

studied in [KV].

In this paper we deal with the case of q-linear factors fn(x) = [an − x]q (q > 1) for a given

sequence a = {an}n∈I and establish a relation between the function defined by a generalized

zeta regularized product and the one defined by a Weierstrass canonical form (Theorem 3.1).

Here we employ the following convention for q-numbers:

(1.5) [a]q :=
qa/2 − q−a/2

q1/2 − q−1/2
(a ∈ C) .

Moreover, using the idea similar to the proof of this relation, we also prove the same kind of the

factorization for the case Fn(x)’s are polynomials whose degree equal d except a finite number

of n ∈ I (see Remark 3.2).

As an important example, we calculate a q-analogue of a ring sine function. A general

notion of a ring sine function SA(x) of a commutative ring A has been introduced in [KMOW]

as

(1.6) SA(x) :=
∏
a∈A

(a − x).

Here the product should be suitably interpreted. In the cases of the ring of rational integers

Z and its imaginary quadratic extension Z[τ ] (τ is an imaginary quadratic integer), the cor-

responding ring sine functions SZ(x) and SZ[τ ](x) are realized respectively by zeta regularized

products as

SZ(x) :=
∐∏
m∈Z

(m − x),(1.7)

SZ[τ ](x) :=
∐∏

m,n∈Z

(m + nτ − x),(1.8)

and these are calculated explicitly; the former is the sine function and the latter is the elliptic

theta function essentially.

In Section 4 we introduce and study the q-ring sine function

(1.9) Sq
Z(x) :=

∐∏
n∈Z

[n − x]q,

which is a q-analogue of SZ(x) above. We calculate Sq
Z(x) explicitly by using a q-analogue of

the Hurwitz zeta function (see [KW3]), and show that it essentially gives SZ[τ ](x) (see Remark

4.4).

2 Zeta regularizations

In this section we recall the usual notion of the zeta regularization and the genelarized regular-

ization in order to deal with wider class of sequences.
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Definition 2.1. Let a = {an}n∈I be a divergent sequence of nonzero complex numbers. We

define the zeta function attached to a by the Dirichlet series

(2.1) ζa(s) :=
∑
n∈I

a−s
n .

Throughout this paper we fix a log-branch by −π ≤ arg log a < π for a ∈ C×.

Assume that the series (2.1) converges absolutely if Re(s) > µ for a sufficiently large real

number µ. We take such a number µ to be the minimal one, and call it the exponent of

convergence of a.

If ζa(s) has a meromorphic continuation to some region containing the origin s = 0, then

we say a is (meromorphically zeta-)regularizable. We first recall the standard definition of zeta

regularized products.

Definition 2.2 (Holomorphic regularization). Let a be a regularizable sequence. If ζa(s) is

holomorphic at s = 0, then the zeta regularized product of a is defined by

(2.2)
∐∏
n∈I

an := exp (−ζ ′
a(0)) .

This is a usual zeta regularization (see e.g. [D, Vo]).

Example 2.1 (Lerch’s formula [L]). Let x > 0 and take an = n + x for n ≥ 0. The attached

zeta function

ζ(s, x) :=
∞∑

n=0

(n + x)−s

is called the Hurwitz zeta function. This has a meromorphic continuation to the whole plane

and holomorphic at s = 0. In fact, the regularized product of (n + x)’s is given by (1.1).

Since the attached zeta function ζa(s) of a simple geometric series a = {qn}n≥0 (q > 1) is

given by

(2.3) ζa(s) =
∞∑

n=0

q−ns =
1

1 − q−s

and has a simple pole at s = 0, the zeta regularized product of a in the sense of (2.2) does not

exist. Thus we needed an extended notion of the regularized product in [KW2] as follows.

Definition 2.3 (Meromorphic regularization [KW2]). If ζa(s) has a pole at s = 0, then the

(generalized) zeta regularized product of a is defined by∐∏
n∈I

an := exp

(
−Res

s=0

ζa(s)

s2

)
.

We use this dotted product symbol if ζa(s) has a pole st s = 0 in order to distinguish this

notion from the holomorphic regularization if necessary.
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Remark 2.1. Since ζ ′
a(0) = Ress=0 ζa(s)/s2 if ζa(s) is holomorphic at s = 0, it is obvious to see∐∏

=
∐∏

in the holomorphic case.

Example 2.2 ([KKSW]). For any q > 1, we have

(2.4)
∞∐∏

n=0

qn+x = q−B2(x)/2,

where B2(x) is the Bernoulli polynomial of degree 2. This follows from the Laurent expansion

of the zeta function for a = {qn+x}n≥0,

(2.5) ζa(s, x) =
∞∑

n=0

q−s(n+x) =
q−sx

1 − q−s
=

1

s log q
+ B1(x) +

s

2
B2(x) log q + O(s2).

Example 2.3 (q-Lerch’s formula [KW2]). A q-analogue of Lerch’s formula (1.1) is calculated

as

(2.6)
∞∐∏

n=0

[n + x]q =
[∞]q!

Γq(x)
.

Here we denote by Γq(x) the (modified) Jackson q-gamma function

(2.7) Γq(x) :=

∏∞
n=1(1 − q−n)∏∞

n=0(1 − q−(n+x))
(q1/2 − q−1/2)1−xqx(x−1)/4,

which satisfies the functional equation Γq(x + 1) = [x]qΓq(x) in our convention. The constant

[∞]q! is explicitly given by

(2.8) [∞]q! :=
∞∐∏

n=1

[n]q = q−1/24(q1/2 − q−1/2)− log(1−q−1)/ log q

∞∏
n=1

(
1 − q−n

)
.

This follows from the calculation of the Laurent expansion of the q-Hurwitz zeta function

ζq(s, x) :=
∞∑

n=0

[n + x]−s
q (Re(s) > 0) .

See Lemma 4.2 for the analytic continuation of ζq(s, x).

3 Zeta regularizations and canonical forms

As we see typically in the case of Lerch’s result, one of the important aspect of a regularized

product is that the regularized product representation of a given function is useful to indicate

the location of zeros. (For the other important aspect such as “transformation” properties

of the regularized product representation, see [KKSW].) In this section we present a relation

between a zeta regularization and a Weierstrass canonical form when a function is defined by

a regularized product over q-linear factors.
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3.1 A factorization theorem

Let a be a sequence of nonzero complex numbers. We denote by µ the exponent of convergence

of the sequence a, that is, the associated zeta function ζa(s) =
∑

n∈I a−s
n converges absolutely in

the region Re(s) > µ, and hence defines a function which is holomorphic in the same region. We

also denote by p the integer part of µ, or the minimum integer such that the series
∑

n∈I
1

|an|1+p

converges absolutely.

We are interested in the function defined by the zeta regularized product of [a − x]q :=

{[an − x]q}n∈I , say,

(3.1) Dq
a(x) :=

∐∏
n∈I

[an − x]q.

Since there is a trivial periodicity qx+τ = qx (τ := 2πi/ log q), we may expect that (3.1) defines

a function whose zeros are given by a(τ) := {an + kτ}n∈I,k∈Z. In fact, our goal in this section

is to show the following result.

Theorem 3.1. Let a = {an}n∈I be a regularizable sequence of real numbers (except a finite

number of an’s). Denote by µ the exponent of convergence of a, and let p be the integer part of µ.

Assume that there exists a certain connected domain D such that a(τ)−x := {an+kτ−x}n∈I,k∈Z

and [a−x]q are both regularizable for any x ∈ D. Then there exists a polynomial function fa(x)

defined on D such that

(3.2)
∐∏
n∈I

[an − x]q = exp fa(x)
∏
n∈I
k∈Z

(
1 − x

an + kτ

)
exp

(
p+1∑
j=1

1

j

(
x

an + kτ

)j
)

.

Remark 3.1. Theorem 3.1 is a preferable statement as a special case of the general expectation

(3.3)
∐∏
n∈I

Fn(x) = ef(x)
∏
a∈Z

(
1 − x

a

)
exp

(∑
j

1

j

(x

a

)j
)

,

where Z =
∐

n

{
a ∈ C

∣∣ Fn(a) = 0
}

is the set of all zeros of {Fn(x)}n∈I .

3.2 Proof of Theorem 3.1

We denote the attached zeta functions for a(τ) − x and [a − x]q by

ζa(τ)(s, x) :=
∑
n∈I
k∈Z

(an + kτ − x)−s,(3.4)

ζq
a(s, x) :=

∑
n∈I

[an − x]−s
q .(3.5)
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By the assumption of the theorem, ζa(τ)(s, x) converges absolutely in the region Re(s) > µ + 1.

First we remark that ζq
a(s, x) converges absolutely and defines a holomorphic function in the

right half plane Re(s) > 0 since the behavior of ζq
a(s, x) is comparable with that of

Φa(s) =
∑
n∈I

q−ans,

and we have assumed the positivity of a.

We suppose that ζq
a(s, x) has a pole of order N at s = 0. Note that ζq

a(s, x) satisfies the

difference-differential equation

(3.6)
∂2

∂x2
ζq
a(s, x) = −(log q)2

(
s(s + 1)ζq

a(s + 2, x) + s2ζq
a(s, x)

)
.

By using (3.6) successively it follows that ∂2n

∂x2n ζq
a(s, x) is holomorphic at s = 0 if n ≥ N/2. It

is convenient to introduce the function

(3.7) ηa(τ)(s, x) := Γ(s)ζa(τ)(s, x),

which is holomorphic if Re(s) ≥ p + 2. We immediately check the functional equation

(3.8)
∂

∂x
ηa(τ)(s, x) = ηa(τ)(s + 1, x).

An entire function whose zeros are exactly given by a(τ) is constructed by the Weierstrass

canonical product as follows:

(3.9) ∆q
a(x) :=

∏
n∈I
k∈Z

(
1 − x

an + kτ

)
exp

(
p+1∑
j=1

1

j

(
x

an + kτ

)j
)

.

Our destination is to describe a relation between Dq
a(x) and ∆q

a(x), which assures that the

generalized regularized product expression of a function indicates the location of its zeros.

We consider the log-derivatives of ∆q
a(x)

(3.10) Rk(x) :=
∂k

∂xk
log ∆q

a(x) (k = 0, 1, 2, . . . ) .

They satisfies the initial condition Rk(0) = 0 for k = 0, 1, . . . , p + 1, and conversely, ∆q
a(x) is

a unique entire function of order p determined by these conditions. The following equality is

crucial:

(3.11) Rn(x) =
∂n

∂xn
log ∆q

a(x) =
∑
n∈I
k∈Z

(n − 1)!

(an + kτ − x)n
= ηa(τ)(n, x)

for any n ≥ p + 2.

To calculate the log-derivatives of Dq
a(x) in a desirable fashion, we need the following simple

lemma.
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Lemma 3.2. For a 6= 0, we have

(3.12) [a − x]q = [a]qq
−x

2
coth( a log q

2
)
∏
k∈Z

(
1 − x

a + kτ

)
exp

(
x

a + kτ

)
.

Proof. The set of zeros of the function

[a − x]q =
2

q1/2 − q−1/2
sinh

(
(a − x) log q

2

)
is given by a =

{
a + kτ

∣∣ k ∈ Z
}
. Therefore it must have a canonical product expression of

the form

[a − x]q = eg(x;a)
∏
k∈Z

(
1 − x

a + kτ

)
exp

(
x

a + kτ

)
for a suitable entire function g(x; a). Taking the log-derivative of [a−x]q in two ways according

to the two kinds of expressions above, we have

− log q

2
coth

(
(a − x) log q

2

)
= g′(x; a) −

∑
k∈Z

(
1

a + kτ − x
− 1

a + kτ

)
.

The fractional expansion of the hyperbolic cotangent function

coth x =
1

x
+

∑
k 6=0

(
1

x − iπk
+

1

iπk

)

yields then g′(x; a) = − log q
2

coth
(

a log q
2

)
. Thus we have g(x; a) = −x log q

2
coth

(
a log q

2

)
+ log[a]q

since g(0; a) = log[a]q.

By using the lemma above, we have

[a − x]−s
q = 1 − s log[a − x]q + O(s2)

= 1 −

(
g(0; a) +

∑
k∈Z

(
log

(
1 − x

a + kτ

)
+

x

a + kτ

))
s + O(s2).

Thus the zeta function attached to [a]q is

(3.13) ζq
a(s, x) =

∑
n∈I

(
1 −

(
g(0; an) +

∑
k∈Z

(
log

(
1 − x

an + kτ

)
+

x

an + kτ

))
s + O(s2)

)
.

The implied constant in O(s2) is depending on x. Differentiating repeatedly, it follows

(3.14)
∂m

∂xm
ζq
a(s, x) =

∑
n∈I

(
−

∑
k∈Z

(m − 1)!

(an + kτ − x)m
s + O(s2)

)
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if m ≥ p + 2. Since ∂m

∂xm ζq
a(s, x) is holomorphic at s = 0 for m ≥ N , the expression (3.14) gives

the Taylor expansion of ∂m

∂xm ζq
a(s, x) around the origin s = 0 when m ≥ max{p + 2, N}. Hence

we have

(3.15)
∂m

∂xm
Res
s=0

ζq
a(s, x)

s2
= −ηa(τ)(m,x).

From (3.11) and (3.15), we have

∂m

∂xm

(
log ∆q

a(x) + Res
s=0

ζq
a(s, x)

s2

)
= 0 (m ≥ max{p + 2, N}) ,

which implies that there exists a certain polynomial fa(x) of degree at most max{p + 2, N}
such that

log ∆q
a(x) − log Dq

a(x) = fa(x).

This completes the proof of Theorem 3.1.

By a similar discussion we have the following result for polynomial case.

Theorem 3.3. For j = 1, 2, . . . , d, let a(j) = {aj,n}n∈I be regularizable sequences of positive

numbers, and suppose that the
∑

n∈I a
−(p+1)
j,n converges absolutely for every j. There exists a

polynomial function F (x) defined on a certain domain D such that∐∏
n∈I

(a1,n − x)(a2,n − x) · · · (ad,n − x)

= exp F (x)
∏
n∈I

1≤j≤d

(
1 − x

aj,n

)
exp

(
p∑

k=1

1

k

(
x

aj,n

)k
)

(3.16)

for any x ∈ D. In particular, the following two regularized products∐∏
n∈I

(
d∏

j=1

(aj,n − x)

)
,

d∏
j=1

(∐∏
n∈I

(aj,n − x)

)
are equal up to a nonzero elementary factor.

Proof. Denote by ∆(x) the canonical product appearing in the right hand side of (3.16). The

(p + 1)-th log-derivative if ∆(x) is given by

(3.17)
∂p+1

∂xp+1
log ∆(x) =

d∑
j=1

∑
n∈I

Γ(p + 1)

(aj,n − x)p+1
.

The attached zeta function ϕ(s, x) for {(a1,n − x)(a2,n − x) · · · (ad,n − x)}n∈I is

ϕ(s, x) =
∑
n∈I

((a1,n − x) . . . (ad,n − x))−s

=
∑
n∈I

(
1 − s log (a1,n − x) . . . (ad,n − x) + O(s2)

)
.
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Differentiation with respect to x successively yields

∂p+1

∂xp+1
ϕ(s, x) =

∑
n∈I

(
−s

d∑
j=1

p!

(aj,n − x)p+1
+ O(s2)

)
,

which implies

(3.18)
∂p+1

∂xp+1
Res
s=0

ϕ(s, x)

s2
= −

d∑
j=1

∑
n∈I

Γ(p + 1)

(aj,n − x)p+1
= − ∂p+1

∂xp+1
log ∆(x)

in view of (3.17). Thus we have (3.16) by a similar argument of the proof of Theorem 3.1. The

latter statement follows immediately.

Remark 3.2. Theorem 3.3 insists that the basic questions proposed in §1 is affirmative in the

case of polynomial functions satisfying certain conditions: Assume that all but finite exception

of the functions Fn(x) are polynomial functions of degree d such that the sequence consisting

of their roots is regularizable. Then the reguralized product
∐∏
n∈I

Fn(x) exists, and it gives a

function which exhibits the information of the location of zeros.

Example 3.1 (Generalized Lerch’s formula [L]: see also [KW1]).

∞∐∏
n=0

(
(n + x)2 + y2

)
=

2π

Γ(x + iy)Γ(x − iy)
=

∞∐∏
n=0

(n + x + iy)
∞∐∏

n=0

(n + x − iy).(3.19)

The following is a example which does not satisfy the required condition of Theorem 3.3.

Example 3.2 ([KKW]). For n ≥ 3, we have∐∏
a∈Symn(Z)

det(a − x) = 1(3.20)

for x ∈ Symn(C)\Symn(Z). Here we denote by Symn(R) (R = Z, C) the set of n×n symmetric

matrices whose entries belong to R.

4 Example: q-sine and theta functions

The ring sine function for a commutative ring A is defined by

SA(x) :=
∏
a∈A

(a − x),

where the product “
∏

a∈A” over A should be, of course, suitably interpreted like zeta regularized

product (see [KMOW]). For example, in the cases of the ring of rational integers Z and its
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imaginary quadratic extension Z[τ ] (τ is an imaginary quadratic integer), the corresponding

ring sine functions SZ(x) and SZ[τ ](x) are realized by zeta regularized products and calculated

as follows.

Theorem 4.1 ([KMOW]). We have

SZ(x) :=
∐∏
m∈Z

(m − x) = 1 − e2πix (0 < x < 1) ,(4.1)

SZ[τ ](x) :=
∐∏

m,n∈Z

(m + nτ − x)

= (1 − q−x/τ )
∞∏

n=1

(1 − q−(n+x/τ))(1 − q−(n−x/τ)) (0 < Im x < Im τ) ,

(4.2)

which are essentially the sine function and the elliptic theta function respectively.

Note that for (A,K) = (Z, Q), (Z[τ ], Q(τ)), SA(x) generates the maximal abelian extension

Kab of K, that is, Kab = K(SA(K)) ((Z, Q) case is due to Kronecker [Kr], and (Z[τ ], Q(τ))

case is due to Takagi [T]).

In this section we introduce a q-analogue Sq
Z(x) of the ring sine function SZ(x) of Z by

(4.3) Sq
Z(x) :=

∐∏
n∈Z

[n − x]q,

and calculate this explicitly.

Remark 4.1. It is essential to our argument to use the normalization (1.5) of q-numbers. In

fact, if we take another convention {a}q = (qa − 1)/(q − 1), the attached zeta function

(4.4) ξq(s, x) :=
∑
n∈Z

{n − x}−s
q

for Sq
Z(x) does diverge since the summation is taken over the lattice Z (not the semi-lattice Z≥0

like Example 2.3).

In order to carry out the calculation of Sq
Z(x), it is necessary to have an explicit form of the

previously defined q-Hurwitz zeta function.

Lemma 4.2. Assume that 0 < Re x < 1 and − 2π
log q

≤ Im x < 2π
log q

. The Laurent expansion of

the q-Hurwitz zeta function ζq(s, x) =
∑∞

n=0[n + x]−s
q around the origin s = 0 is given by

(4.5) ζq(s, x) =
2

log q

1

s
+

2 log
(
q1/2 − q−1/2

)
log q

− 1

2
(2x − 1) + s log

Γq(x)

[∞]q!
+ O(s2).

Proof. First we remark that

(q(n+x)/2(1 − q−n−x))−s = q−s(n+x)/2(1 − q−n−x)−s
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for any n ≥ 0 under the hypothesis of the lemma. It follows hence that

ζq(s, x) =
∞∑

n=0

[n + x]−s
q = (q1/2 − q−1/2)s

∞∑
n=0

(q(n+x)/2(1 − q−n−x))−s

= (q1/2 − q−1/2)s

∞∑
n=0

q−s(n+x)/2

∞∑
k=0

(
−s

k

)
(−1)kq−(n+x)k

= (q1/2 − q−1/2)s

∞∑
k=0

(
s + k − 1

k

)
q(k+s/2)(1−x)

qk+s/2 − 1
.

Since
(

s+k−1
k

)
= s

k
+ O(s2) if k ≥ 1, we get

∞∑
k=0

(
s + k − 1

k

)
q(k+s/2)(1−x)

qk+s/2 − 1
=

qs(1−x)/2

qs/2 − 1
+ s

∞∑
k=1

1

k

qk(1−x)

qk − 1
+ O(s2)

=
2

log q

1

s
− 1

2
(2x − 1) +

{(
x2

4
− x

4
+

1

24

)
log q +

∞∑
k=1

1

k

qk(1−x)

qk − 1

}
s + O(s2).

Hence we obtain the desired expansion of ζq(s, x) around s = 0 as follows:

ζq(s, x) =
2

log q

1

s
− 1

2
(2x − 1) +

2

log q
log(q1/2 − q−1/2)

+

{(
x2

4
− x

4
+

1

24

)
log q +

∞∑
k=1

1

k

qk(1−x)

qk − 1

−1

2
(2x − 1) log(q1/2 − q−1/2) +

1

log q

(
log(q1/2 − q−1/2)

)2

}
s + O(s2).

(4.6)

It is straightforward to check the coefficient of s is equal to log Γq(x)

[∞]q !
. This shows the proof.

Using the lemma above, we can calculate the q-analogue of the ring sine function Sq
Z(x).

Theorem 4.3. Let q > 1 be a fixed parameter and suppose that x lies in the region 0 < Re x < 1,

− 2π
log q

≤ Im x < 2π
log q

. The q-analogue of the ring sine function Sq
Z(x) of Z is given as follows:

(i) If − 2π
log q

≤ Im x < 0, then

Sq
Z(x) = ie−πix+ π2

log q
(
q1/2 − q−1/2

) 2πi
log q

([∞]q!)
2

Γq(x)Γq(1 − x)
.(4.7)

(ii) If 0 ≤ Im x < 2π
log q

, then

Sq
Z(x) = −ieπix+ π2

log q
(
q1/2 − q−1/2

)− 2πi
log q

([∞]q!)
2

Γq(x)Γq(1 − x)
.(4.8)
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Proof. Let ξq(s, x) be the zeta function attached to the sequence {[n−x]q}. We divide the sum

in ξq(s, x) into two parts:

ξq(s, x) =
∑
n∈Z

[n − x]−s
q =

∑
n≥0

[n + (1 − x)]−s +
∑
n≥0

[−n − x]−s.

We observe that

(4.9) arg[−n − x]q = arg[n + x]q ± π,

where the upper (resp. lower) sign is taken in the case − 2π
log q

≤ Im x < 0 (resp. 0 ≤ Im x <
2π

log q
). In fact, Im[−n − x]q = − 2

q1/2−q−1/2 cosh(n+Re(x)
2

log q) sin( Im(x)
2

log q), and it is clear that

cosh(n+Re(x)
2

log q) > 0 for any n.

[n + x]q

[−n − x]q

[−n − x]q

[n + x]q

−π ≤ log q
2

Im x < 0 0 ≤ log q
2

Im x < π

It follows that

[−n − x]−s
q =

{
e−πis[n + x]q − 2π

log q
≤ Im x < 0,

eπis[n + x]q 0 ≤ Im x < 2π
log q

.

Thus we have

ξq(s, x) =

{
ζq(s, 1 − x) + e−πisζq(s, x) − 2π

log q
≤ Im x < 0,

ζq(s, 1 − x) + eπisζq(s, x) 0 ≤ Im x < 2π
log q

.

By Lemma 4.2 we have

Res
s=0

e∓πisζq(s, x)

s2
= log

Γq(x)

[∞]q!
± 1

2
iπ(2x − 1) ∓ 2πi

log(q1/2 − q−1/2)

log q
− π2

log q
,

and hence we obtain

Res
s=0

ξq(s, x)

s2
= log

Γq(x)Γq(1 − x)

([∞]q!)2
(q1/2 − q−1/2)

∓2πi
log q ± 1

2
iπ(2x − 1) − π2

log q
,

where the upper (resp. lower) sign is taken in the case (i) (resp. (ii)). This completes the proof

of the theorem.
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Corollary 4.4. The function ξq(s, x) satisfies the difference-differential equation

(4.10)
∂2

∂x2
ξq(s, x) =

(
s log q

2

)2

ξq(s, x) + s(s + 1)

(
log q

q1/2 − q−1/2

)2

ξq(s + 2, x).

In particular, we have

∂2

∂x2
Res
s=0

ξq(s, x)

s2
=

(
log q

2

)2

Res
s=0

ξq(s, x) +

(
log q

q1/2 − q−1/2

)2

ξq(2, x)(4.11)

and ξq(2, x) essentially gives the Weierstrass ℘-function (see [KW4]).

Remark 4.2. It follows also from (4.11) that our q-ring sine function Sq
Z(x) is determined up to

“linear factor”, that is,

Sq
Z(x) = eαx+βΓq(x)−1Γq(1 − x)−1

for some α, β ∈ C in view of Theorem 3.1.

We give a q-analogue of Kronecker’s limit formula. (See Remark 5 in [KMOW])

Theorem 4.5. We have

(4.12)
∐∏
n∈Z

|[n − x]q| = q(x−x)2/8 ([∞]q!)
2

|Γq(x)Γq(1 − x)|

for 0 < Re(x) < 1.

Remark 4.3. The two theorems above show that

∐∏
n∈Z

|[n − x]q| = e−
π2

log q q(x−x)2/8

∣∣∣∣∣∐∏
n∈Z

[n − x]q

∣∣∣∣∣ .(4.13)

Proof of Theorem 4.5. We should study the attached zeta function

ζ̃q(s, x) :=
∑
n∈Z

|[n − x]q|−s =
∑
n>0

|[n − x]q|−s +
∑
n≤0

|[n − x]q|−s.

First we look at ∑
n>0

|[n − x]q|−s =
∑
n>0

(
q1/2 − q−1/2

)s
q−

n−Re x
2

s
∣∣1 − q−n+x

∣∣−s
.

Notice that |q−n+x| < 1 since n > 0 and 0 < Re(x) < 1. By the binomial expansion we have∣∣1 − q−n+x
∣∣−s

=
(
1 − q−n+x

)−s/2 (
1 − q−n+x̄

)−s/2

=
∞∑

`=0

∞∑
m=0

(
−s/2

`

)(
−s/2

m

)
(−1)`+mq(−n+Re x)(`+m)qi Im x(`−m).
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It follows that∑
n>0

|[n − x]q|−s =
(
q1/2 − q−1/2

)s

×

{
q

1
2
s Re x

q
1
2
s − 1

+
∑

`+m>0

(
−s/2

`

)(
−s/2

m

)
(−1)`+m qRe x(`+m+ 1

2
s)+i Im x(`−m)

q`+m+ 1
2
s − 1

}
.

(4.14)

In order to observe the behavior of the zeta function around s = 0, we calculate the Laurent

expansions of the casts in (4.14):

(4.15)
(
q1/2 − q−1/2

)s
= 1 +

{
log

(
q1/2 − q−1/2

)}
s +

1

2

{
log

(
q1/2 − q−1/2

)}2
s2 + O(s3),

(4.16)
q

1
2
s Re x

q
1
2
s − 1

=
2

log q

1

s
+

1

2
(2 Re x − 1) +

1

24

(
6(Re x)2 − 6 Re x + 1

)
(log q) s + O(s2),

∑
`+m>0

(
−s/2

`

)(
−s/2

m

)
(−1)`+m qRe x(`+m+ 1

2
s)+i Im x(`−m)

q`+m+ 1
2
s − 1

=

{∑
m>0

qmx̄

2m(qm − 1)
+

∑
`>0

q`x

2`(q` − 1)

}
s + O(s2).

(4.17)

Combining these calculation we have∑
n>0

|[n − x]q|−s =
2

log q

1

s
+

(
2 Re x − 1

2
+

2

log q
log

(
q1/2 − q−1/2

))

+

{{
log

(
q1/2 − q−1/2

)}2

log q
+

(2 Re x − 1) log
(
q1/2 − q−1/2

)
2

+
(6(Re x)2 − 6 Re x + 1) log q

24
+

∑
m>0

qmx̄

2m(qm − 1)
+

∑
`>0

q`x

2`(q` − 1)

}
s + O(s2).

(4.18)

Hence we have

Res
s=0

∑
n>0 |[n − x]q|−s

s2

=

{
log

(
q1/2 − q−1/2

)}2

log q
+

(2 Re x − 1) log
(
q1/2 − q−1/2

)
2

+
(6(Re x)2 − 6 Re x + 1) log q

24
+

∑
m>0

qmx̄

2m(qm − 1)
+

∑
`>0

q`x

2`(q` − 1)
.

(4.19)

By the discussion similar to the above, we also have

Res
s=0

∑
n≤0 |[n − x]q|−s

s2

=

{
log

(
q1/2 − q−1/2

)}2

log q
−

(2 Re x − 1) log
(
q1/2 − q−1/2

)
2

+
(6(Re x)2 − 6 Re x + 1) log q

24
+

∑
m>0

qmx̄

2m(qm − 1)
+

∑
`>0

q`x

2`(q` − 1)
.

(4.20)
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Therefore, we obtain

(4.21) Res
s=0

ζ̃q(s, x)

s2
= log |Γq(1 − x)Γq(x)| − log ([∞]!)2 +

1

2
(Im x)2 log q,

which is the desired conclusion.

Remark 4.4. If we put τ = − log q/2πi, then we see that

(4.22) Sq
Z(x/τ) =

(
q−1/2τ2−1/4τ

(
q1/2 − q−1/2

)1+1/τ
([∞]q!)

2∏∞
n=1(1 − q−n)2

)
× q

x(x−τ−1)

2τ2 SZ[τ ](x).

Namely, our q-deformation Sq
Z(x) of SZ(x) essentially gives the ring sine function SZ[τ ](x) for

the ring Z[τ ].

Remark 4.5. Since the function Sq
Z(x) has an imaginary period 2πi/ log q, classical limit “q → 1”

is corresponding to the limit “(imaginary period) → ∞”. On the other hand, we can interpret

that SZ[τ ](x) tends to SZ(x) by taking a formal limit τ → ∞, where τ is an imaginary period

of SZ[τ ](x).
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