Zeta regularizations and q-analogue of ring sine functions

Kazufumi KIMOTO, Nobushige KUROKAWA, Chie SONOKI and Masato WAKAYAMA ${ }^{\dagger}$

1 Introduction

So called the zeta regularization is one of the most effective methods to carry out necessary renormalization calculations in a variety of situations such as the determinant expressions of elliptic operators [KV, Vo] and certain arithmetic applications [D] (see also [KKSW]). In the present paper we focus our interest on a particular class of functions which are defined in forms of the zeta regularized products. Let us recall first the formula essentially due to Lerch [L] as a typical example we deal with:

$$
\begin{equation*}
\frac{1}{\Gamma(x)}=\frac{1}{\sqrt{2 \pi}} \prod_{n=0}^{\infty}(n+x) . \tag{1.1}
\end{equation*}
$$

Here the symbol \coprod denotes so called the zeta regularized product, as we explain in $\S 2$. It is well known that $1 / \Gamma(x)$ is an entire function which has simple zeros at $x=0,-1,-2, \ldots$. The noteworthy point here is that the zeta regularized product in the left hand side of (1.1) may indicate the location $x=0,-1,-2, \ldots$ of zeros of $1 / \Gamma(x)$ in a quite apparent way. In other words, this is interpreted as a kind of factorization formula, which is comparable with the Weierstrass canonical product expression:

$$
\begin{equation*}
\frac{1}{\Gamma(x)}=e^{\gamma x} x \prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right) e^{-\frac{x}{n}} . \tag{1.2}
\end{equation*}
$$

With this example, we are naturally lead to study the general situation as follows. Suppose that a family of functions $\left\{F_{n}(x)\right\}_{n \in I}$ satisfying appropriate conditions is given. We hope to define a function $F(x)$ as

$$
\begin{equation*}
F(x):=\prod_{n \in I} F_{n}(x) \tag{1.3}
\end{equation*}
$$

[^0]The following two questions are basic here:
(i) When does the regularized product in (1.3) exist?
(ii) Suppose that the regularized product (1.3) exists. Can we conclude that $F(x)$ is a function whose zeros are exactly given by

$$
Z=\coprod_{n \in I}\left\{a \in \mathbb{C} \mid F_{n}(a)=0\right\}
$$

within multiplicity?
The following (ii)' is equivalent to (ii) substantially, but slightly stronger.
(ii)' Assume that $F(x):=\prod_{n \in I} F_{n}(x)$ and $G(x):=\prod_{n \in I} G_{n}(x)$ exist. Can we conclude the multiplicativity $F(x) G(x)=\prod_{n \in I} F_{n}(x) G_{n}(x)$?
The first question (i) seems quite delicate. Actually, when we take the geometric progression $F_{n}(x)=q^{n+x}(q>1)$, then (1.3) does not exist. (See Example 2.2) Compared with the linear function $n+x$, it increases pretty too fast. We have hence in [KW2] introduced an extended notion called a generalized zeta regularized product (see Definition 2.3) in order to deal with a wider class of regularized products including the example $\prod_{n \geq 0} q^{n+x}$ above, where we express the generalized zeta regularized product by \lceil in stead of \rrbracket. But there are, of course, a lot of curious and important examples of the sequences $\left\{F_{n}(x)\right\}_{n \in I}$ which do not have regularized products even in the sense of a generalized regularization. For instance,

$$
\begin{equation*}
" \prod_{n=1}^{\infty} \frac{\Gamma(n+x)}{\Gamma(x)} " \tag{1.4}
\end{equation*}
$$

seems to give the double gamma function $\Gamma_{2}(x)$ (see $[\mathrm{B}]$) but the product does not exist. The sequence n ! seems to increase too fast. However, even if $\boldsymbol{a}=\left\{a_{n}\right\}_{n \in I}$ is of moderate growth, we can not assure the existence of the regularized product $\prod_{n \in I} a_{n}$ of \boldsymbol{a}. For instance, let p_{n} be the n-th prime number and consider the sequence $\boldsymbol{p}=\left\{p_{n}\right\}_{n \geq 1}$. Though $p_{n}=o(n)$ as n tends to infinity, the regularized product $\prod_{n=1}^{\infty} p_{n}$ does not exist. In fact, $\zeta_{\boldsymbol{p}}(s)=\sum_{n=1}^{\infty} p_{n}^{-s}$ has a natural boundary $\operatorname{Re}(s)=0$. Thus an extension of the notion of these zeta regularized products is also an interesting problem.

For the question (ii), Illies [I] deals with the case of linear factors $F_{n}(x)=a_{n}-x$ for a given sequence $\boldsymbol{a}=\left\{a_{n}\right\}_{n \in I}$, and gives an affirmative answer to (ii) whenever the generalized zeta regularized product of \boldsymbol{a} exits. This is a generalization of Voros's result [Vo] for usual
zeta regularizations. Related to (ii)', a multiplicative anomaly of zeta regularized products is studied in [KV].

In this paper we deal with the case of q-linear factors $f_{n}(x)=\left[a_{n}-x\right]_{q}(q>1)$ for a given sequence $\boldsymbol{a}=\left\{a_{n}\right\}_{n \in I}$ and establish a relation between the function defined by a generalized zeta regularized product and the one defined by a Weierstrass canonical form (Theorem 3.1). Here we employ the following convention for q-numbers:

$$
\begin{equation*}
[a]_{q}:=\frac{q^{a / 2}-q^{-a / 2}}{q^{1 / 2}-q^{-1 / 2}} \quad(a \in \mathbb{C}) \tag{1.5}
\end{equation*}
$$

Moreover, using the idea similar to the proof of this relation, we also prove the same kind of the factorization for the case $F_{n}(x)$'s are polynomials whose degree equal d except a finite number of $n \in I$ (see Remark 3.2).

As an important example, we calculate a q-analogue of a ring sine function. A general notion of a ring sine function $S_{A}(x)$ of a commutative ring A has been introduced in [KMOW] as

$$
\begin{equation*}
S_{A}(x):=\prod_{a \in A}(a-x) . \tag{1.6}
\end{equation*}
$$

Here the product should be suitably interpreted. In the cases of the ring of rational integers \mathbb{Z} and its imaginary quadratic extension $\mathbb{Z}[\tau]$ (τ is an imaginary quadratic integer), the corresponding ring sine functions $S_{\mathbb{Z}}(x)$ and $S_{\mathbb{Z}[\tau]}(x)$ are realized respectively by zeta regularized products as

$$
\begin{align*}
S_{\mathbb{Z}}(x) & :=\prod_{m \in \mathbb{Z}}(m-x), \tag{1.7}\\
S_{\mathbb{Z}[\tau]}(x) & :=\prod_{m, n \in \mathbb{Z}}(m+n \tau-x), \tag{1.8}
\end{align*}
$$

and these are calculated explicitly; the former is the sine function and the latter is the elliptic theta function essentially.

In Section 4 we introduce and study the q-ring sine function

$$
\begin{equation*}
S_{\mathbb{Z}}^{q}(x):=\prod_{n \in \mathbb{Z}}[n-x]_{q}, \tag{1.9}
\end{equation*}
$$

which is a q-analogue of $S_{\mathbb{Z}}(x)$ above. We calculate $S_{\mathbb{Z}}^{q}(x)$ explicitly by using a q-analogue of the Hurwitz zeta function (see [KW3]), and show that it essentially gives $S_{\mathbb{Z}[\tau]}(x)$ (see Remark 4.4).

2 Zeta regularizations

In this section we recall the usual notion of the zeta regularization and the genelarized regularization in order to deal with wider class of sequences.

Definition 2.1. Let $\boldsymbol{a}=\left\{a_{n}\right\}_{n \in I}$ be a divergent sequence of nonzero complex numbers. We define the zeta function attached to \boldsymbol{a} by the Dirichlet series

$$
\begin{equation*}
\zeta_{\boldsymbol{a}}(s):=\sum_{n \in I} a_{n}^{-s} . \tag{2.1}
\end{equation*}
$$

Throughout this paper we fix a log-branch by $-\pi \leq \arg \log a<\pi$ for $a \in \mathbb{C}^{\times}$.
Assume that the series (2.1) converges absolutely if $\operatorname{Re}(s)>\mu$ for a sufficiently large real number μ. We take such a number μ to be the minimal one, and call it the exponent of convergence of \boldsymbol{a}.

If $\zeta_{\boldsymbol{a}}(s)$ has a meromorphic continuation to some region containing the origin $s=0$, then we say \boldsymbol{a} is (meromorphically zeta-)regularizable. We first recall the standard definition of zeta regularized products.

Definition 2.2 (Holomorphic regularization). Let \boldsymbol{a} be a regularizable sequence. If $\zeta_{\boldsymbol{a}}(s)$ is holomorphic at $s=0$, then the zeta regularized product of \boldsymbol{a} is defined by

$$
\begin{equation*}
\prod_{n \in I} a_{n}:=\exp \left(-\zeta_{\boldsymbol{a}}^{\prime}(0)\right) \tag{2.2}
\end{equation*}
$$

This is a usual zeta regularization (see e.g. [D, Vo]).
Example 2.1 (Lerch's formula [L]). Let $x>0$ and take $a_{n}=n+x$ for $n \geq 0$. The attached zeta function

$$
\zeta(s, x):=\sum_{n=0}^{\infty}(n+x)^{-s}
$$

is called the Hurwitz zeta function. This has a meromorphic continuation to the whole plane and holomorphic at $s=0$. In fact, the regularized product of $(n+x)$'s is given by (1.1).

Since the attached zeta function $\zeta_{\boldsymbol{a}}(s)$ of a simple geometric series $\boldsymbol{a}=\left\{q^{n}\right\}_{n \geq 0}(q>1)$ is given by

$$
\begin{equation*}
\zeta_{\boldsymbol{a}}(s)=\sum_{n=0}^{\infty} q^{-n s}=\frac{1}{1-q^{-s}} \tag{2.3}
\end{equation*}
$$

and has a simple pole at $s=0$, the zeta regularized product of \boldsymbol{a} in the sense of (2.2) does not exist. Thus we needed an extended notion of the regularized product in [KW2] as follows.

Definition 2.3 (Meromorphic regularization [KW2]). If $\zeta_{\boldsymbol{a}}(s)$ has a pole at $s=0$, then the (generalized) zeta regularized product of \boldsymbol{a} is defined by

$$
\prod_{n \in I} a_{n}:=\exp \left(-\operatorname{Res}_{s=0} \frac{\zeta_{\boldsymbol{a}}(s)}{s^{2}}\right) .
$$

We use this dotted product symbol if $\zeta_{a}(s)$ has a pole st $s=0$ in order to distinguish this notion from the holomorphic regularization if necessary.

Remark 2.1. Since $\zeta_{\boldsymbol{a}}^{\prime}(0)=\operatorname{Res}_{s=0} \zeta_{\boldsymbol{a}}(s) / s^{2}$ if $\zeta_{\boldsymbol{a}}(s)$ is holomorphic at $s=0$, it is obvious to see $\Pi=\rrbracket$ in the holomorphic case.

Example 2.2 ([KKSW]). For any $q>1$, we have

$$
\begin{equation*}
\varliminf_{n=0}^{\infty} q^{n+x}=q^{-B_{2}(x) / 2}, \tag{2.4}
\end{equation*}
$$

where $B_{2}(x)$ is the Bernoulli polynomial of degree 2. This follows from the Laurent expansion of the zeta function for $\boldsymbol{a}=\left\{q^{n+x}\right\}_{n \geq 0}$,

$$
\begin{equation*}
\zeta_{\boldsymbol{a}}(s, x)=\sum_{n=0}^{\infty} q^{-s(n+x)}=\frac{q^{-s x}}{1-q^{-s}}=\frac{1}{s \log q}+B_{1}(x)+\frac{s}{2} B_{2}(x) \log q+O\left(s^{2}\right) \tag{2.5}
\end{equation*}
$$

Example 2.3 (q-Lerch's formula [KW2]). A q-analogue of Lerch's formula (1.1) is calculated as

$$
\begin{equation*}
\prod_{n=0}^{\infty}[n+x]_{q}=\frac{[\infty]_{q}!}{\Gamma_{q}(x)} \tag{2.6}
\end{equation*}
$$

Here we denote by $\Gamma_{q}(x)$ the (modified) Jackson q-gamma function

$$
\begin{equation*}
\Gamma_{q}(x):=\frac{\prod_{n=1}^{\infty}\left(1-q^{-n}\right)}{\prod_{n=0}^{\infty}\left(1-q^{-(n+x)}\right)}\left(q^{1 / 2}-q^{-1 / 2}\right)^{1-x} q^{x(x-1) / 4} \tag{2.7}
\end{equation*}
$$

which satisfies the functional equation $\Gamma_{q}(x+1)=[x]_{q} \Gamma_{q}(x)$ in our convention. The constant $[\infty]_{q}!$ is explicitly given by

$$
\begin{equation*}
[\infty]_{q}!:=\prod_{n=1}^{\infty}[n]_{q}=q^{-1 / 24}\left(q^{1 / 2}-q^{-1 / 2}\right)^{-\log \left(1-q^{-1}\right) / \log q} \prod_{n=1}^{\infty}\left(1-q^{-n}\right) . \tag{2.8}
\end{equation*}
$$

This follows from the calculation of the Laurent expansion of the q-Hurwitz zeta function

$$
\zeta_{q}(s, x):=\sum_{n=0}^{\infty}[n+x]_{q}^{-s} \quad(\operatorname{Re}(s)>0)
$$

See Lemma 4.2 for the analytic continuation of $\zeta_{q}(s, x)$.

3 Zeta regularizations and canonical forms

As we see typically in the case of Lerch's result, one of the important aspect of a regularized product is that the regularized product representation of a given function is useful to indicate the location of zeros. (For the other important aspect such as "transformation" properties of the regularized product representation, see [KKSW].) In this section we present a relation between a zeta regularization and a Weierstrass canonical form when a function is defined by a regularized product over q-linear factors.

3.1 A factorization theorem

Let \boldsymbol{a} be a sequence of nonzero complex numbers. We denote by μ the exponent of convergence of the sequence \boldsymbol{a}, that is, the associated zeta function $\zeta_{\boldsymbol{a}}(s)=\sum_{n \in I} a_{n}^{-s}$ converges absolutely in the region $\operatorname{Re}(s)>\mu$, and hence defines a function which is holomorphic in the same region. We also denote by p the integer part of μ, or the minimum integer such that the series $\sum_{n \in I} \frac{1}{\left|a_{n}\right|^{1+p}}$ converges absolutely.

We are interested in the function defined by the zeta regularized product of $[\boldsymbol{a}-x]_{q}:=$ $\left\{\left[a_{n}-x\right]_{q}\right\}_{n \in I}$, say,

$$
\begin{equation*}
D_{\boldsymbol{a}}^{q}(x):=\varlimsup_{n \in I}\left[a_{n}-x\right]_{q} . \tag{3.1}
\end{equation*}
$$

Since there is a trivial periodicity $q^{x+\tau}=q^{x}(\tau:=2 \pi i / \log q)$, we may expect that (3.1) defines a function whose zeros are given by $\boldsymbol{a}(\tau):=\left\{a_{n}+k \tau\right\}_{n \in I, k \in \mathbb{Z}}$. In fact, our goal in this section is to show the following result.

Theorem 3.1. Let $\boldsymbol{a}=\left\{a_{n}\right\}_{n \in I}$ be a regularizable sequence of real numbers (except a finite number of a_{n} 's). Denote by μ the exponent of convergence of \boldsymbol{a}, and let p be the integer part of μ. Assume that there exists a certain connected domain \mathbb{D} such that $\boldsymbol{a}(\tau)-x:=\left\{a_{n}+k \tau-x\right\}_{n \in I, k \in \mathbb{Z}}$ and $[\boldsymbol{a}-x]_{q}$ are both regularizable for any $x \in \mathbb{D}$. Then there exists a polynomial function $f_{\boldsymbol{a}}(x)$ defined on \mathbb{D} such that

$$
\begin{equation*}
\prod_{n \in I}\left[a_{n}-x\right]_{q}=\exp f_{\boldsymbol{a}}(x) \prod_{\substack{n \in I \\ k \in \mathbb{Z}}}\left(1-\frac{x}{a_{n}+k \tau}\right) \exp \left(\sum_{j=1}^{p+1} \frac{1}{j}\left(\frac{x}{a_{n}+k \tau}\right)^{j}\right) \tag{3.2}
\end{equation*}
$$

Remark 3.1. Theorem 3.1 is a preferable statement as a special case of the general expectation

$$
\begin{equation*}
\varlimsup_{n \in I} F_{n}(x)=e^{f(x)} \prod_{a \in Z}\left(1-\frac{x}{a}\right) \exp \left(\sum_{j} \frac{1}{j}\left(\frac{x}{a}\right)^{j}\right), \tag{3.3}
\end{equation*}
$$

where $Z=\coprod_{n}\left\{a \in \mathbb{C} \mid F_{n}(a)=0\right\}$ is the set of all zeros of $\left\{F_{n}(x)\right\}_{n \in I}$.

3.2 Proof of Theorem 3.1

We denote the attached zeta functions for $\boldsymbol{a}(\tau)-x$ and $[\boldsymbol{a}-x]_{q}$ by

$$
\begin{align*}
\zeta_{\boldsymbol{a}(\tau)}(s, x) & :=\sum_{\substack{n \in I \\
k \in \mathbb{Z}}}\left(a_{n}+k \tau-x\right)^{-s}, \tag{3.4}\\
\zeta_{\boldsymbol{a}}^{q}(s, x) & :=\sum_{n \in I}\left[a_{n}-x\right]_{q}^{-s} . \tag{3.5}
\end{align*}
$$

By the assumption of the theorem, $\zeta_{\boldsymbol{a}(\tau)}(s, x)$ converges absolutely in the region $\operatorname{Re}(s)>\mu+1$. First we remark that $\zeta_{\boldsymbol{a}}^{q}(s, x)$ converges absolutely and defines a holomorphic function in the right half plane $\operatorname{Re}(s)>0$ since the behavior of $\zeta_{a}^{q}(s, x)$ is comparable with that of

$$
\Phi_{\boldsymbol{a}}(s)=\sum_{n \in I} q^{-a_{n} s},
$$

and we have assumed the positivity of \boldsymbol{a}.
We suppose that $\zeta_{\boldsymbol{a}}^{q}(s, x)$ has a pole of order N at $s=0$. Note that $\zeta_{\boldsymbol{a}}^{q}(s, x)$ satisfies the difference-differential equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \zeta_{\boldsymbol{a}}^{q}(s, x)=-(\log q)^{2}\left(s(s+1) \zeta_{\boldsymbol{a}}^{q}(s+2, x)+s^{2} \zeta_{\boldsymbol{a}}^{q}(s, x)\right) \tag{3.6}
\end{equation*}
$$

By using (3.6) successively it follows that $\frac{\partial^{2 n}}{\partial x^{2 n}} \zeta_{\boldsymbol{a}}^{q}(s, x)$ is holomorphic at $s=0$ if $n \geq N / 2$. It is convenient to introduce the function

$$
\begin{equation*}
\eta_{\boldsymbol{a}(\tau)}(s, x):=\Gamma(s) \zeta_{\boldsymbol{a}(\tau)}(s, x) \tag{3.7}
\end{equation*}
$$

which is holomorphic if $\operatorname{Re}(s) \geq p+2$. We immediately check the functional equation

$$
\begin{equation*}
\frac{\partial}{\partial x} \eta_{\boldsymbol{a}(\tau)}(s, x)=\eta_{\boldsymbol{a}(\tau)}(s+1, x) \tag{3.8}
\end{equation*}
$$

An entire function whose zeros are exactly given by $\boldsymbol{a}(\tau)$ is constructed by the Weierstrass canonical product as follows:

$$
\begin{equation*}
\Delta_{a}^{q}(x):=\prod_{\substack{n \in I \\ k \in \mathbb{Z}}}\left(1-\frac{x}{a_{n}+k \tau}\right) \exp \left(\sum_{j=1}^{p+1} \frac{1}{j}\left(\frac{x}{a_{n}+k \tau}\right)^{j}\right) . \tag{3.9}
\end{equation*}
$$

Our destination is to describe a relation between $D_{a}^{q}(x)$ and $\Delta_{a}^{q}(x)$, which assures that the generalized regularized product expression of a function indicates the location of its zeros.

We consider the log-derivatives of $\Delta_{a}^{q}(x)$

$$
\begin{equation*}
R_{k}(x):=\frac{\partial^{k}}{\partial x^{k}} \log \Delta_{a}^{q}(x) \quad(k=0,1,2, \ldots) \tag{3.10}
\end{equation*}
$$

They satisfies the initial condition $R_{k}(0)=0$ for $k=0,1, \ldots, p+1$, and conversely, $\Delta_{\boldsymbol{a}}^{q}(x)$ is a unique entire function of order p determined by these conditions. The following equality is crucial:

$$
\begin{equation*}
R_{n}(x)=\frac{\partial^{n}}{\partial x^{n}} \log \Delta_{\boldsymbol{a}}^{q}(x)=\sum_{\substack{n \in I \\ k \in \mathbb{Z}}} \frac{(n-1)!}{\left(a_{n}+k \tau-x\right)^{n}}=\eta_{\boldsymbol{a}(\tau)}(n, x) \tag{3.11}
\end{equation*}
$$

for any $n \geq p+2$.
To calculate the log-derivatives of $D_{\boldsymbol{a}}^{q}(x)$ in a desirable fashion, we need the following simple lemma.

Lemma 3.2. For $a \neq 0$, we have

$$
\begin{equation*}
[a-x]_{q}=[a]_{q} q^{-\frac{x}{2} \operatorname{coth}\left(\frac{a \log q}{2}\right)} \prod_{k \in \mathbb{Z}}\left(1-\frac{x}{a+k \tau}\right) \exp \left(\frac{x}{a+k \tau}\right) . \tag{3.12}
\end{equation*}
$$

Proof. The set of zeros of the function

$$
[a-x]_{q}=\frac{2}{q^{1 / 2}-q^{-1 / 2}} \sinh \left(\frac{(a-x) \log q}{2}\right)
$$

is given by $\boldsymbol{a}=\{a+k \tau \mid k \in \mathbb{Z}\}$. Therefore it must have a canonical product expression of the form

$$
[a-x]_{q}=e^{g(x ; a)} \prod_{k \in \mathbb{Z}}\left(1-\frac{x}{a+k \tau}\right) \exp \left(\frac{x}{a+k \tau}\right)
$$

for a suitable entire function $g(x ; a)$. Taking the log-derivative of $[a-x]_{q}$ in two ways according to the two kinds of expressions above, we have

$$
-\frac{\log q}{2} \operatorname{coth}\left(\frac{(a-x) \log q}{2}\right)=g^{\prime}(x ; a)-\sum_{k \in \mathbb{Z}}\left(\frac{1}{a+k \tau-x}-\frac{1}{a+k \tau}\right) .
$$

The fractional expansion of the hyperbolic cotangent function

$$
\operatorname{coth} x=\frac{1}{x}+\sum_{k \neq 0}\left(\frac{1}{x-i \pi k}+\frac{1}{i \pi k}\right)
$$

yields then $g^{\prime}(x ; a)=-\frac{\log q}{2} \operatorname{coth}\left(\frac{a \log q}{2}\right)$. Thus we have $g(x ; a)=-\frac{x \log q}{2} \operatorname{coth}\left(\frac{a \log q}{2}\right)+\log [a]_{q}$ since $g(0 ; a)=\log [a]_{q}$.

By using the lemma above, we have

$$
\begin{aligned}
{[a-x]_{q}^{-s} } & =1-s \log [a-x]_{q}+O\left(s^{2}\right) \\
& =1-\left(g(0 ; a)+\sum_{k \in \mathbb{Z}}\left(\log \left(1-\frac{x}{a+k \tau}\right)+\frac{x}{a+k \tau}\right)\right) s+O\left(s^{2}\right) .
\end{aligned}
$$

Thus the zeta function attached to $[\boldsymbol{a}]_{q}$ is

$$
\begin{equation*}
\zeta_{\boldsymbol{a}}^{q}(s, x)=\sum_{n \in I}\left(1-\left(g\left(0 ; a_{n}\right)+\sum_{k \in \mathbb{Z}}\left(\log \left(1-\frac{x}{a_{n}+k \tau}\right)+\frac{x}{a_{n}+k \tau}\right)\right) s+O\left(s^{2}\right)\right) . \tag{3.13}
\end{equation*}
$$

The implied constant in $O\left(s^{2}\right)$ is depending on x. Differentiating repeatedly, it follows

$$
\begin{equation*}
\frac{\partial^{m}}{\partial x^{m}} \zeta_{\boldsymbol{a}}^{q}(s, x)=\sum_{n \in I}\left(-\sum_{k \in \mathbb{Z}} \frac{(m-1)!}{\left(a_{n}+k \tau-x\right)^{m}} s+O\left(s^{2}\right)\right) \tag{3.14}
\end{equation*}
$$

if $m \geq p+2$. Since $\frac{\partial^{m}}{\partial x^{m}} \zeta_{\boldsymbol{a}}^{q}(s, x)$ is holomorphic at $s=0$ for $m \geq N$, the expression (3.14) gives the Taylor expansion of $\frac{\partial^{m}}{\partial x^{m}} \zeta_{\boldsymbol{a}}^{q}(s, x)$ around the origin $s=0$ when $m \geq \max \{p+2, N\}$. Hence we have

$$
\begin{equation*}
\frac{\partial^{m}}{\partial x^{m}} \operatorname{Res} \frac{\zeta_{\boldsymbol{a}}^{q}(s, x)}{s^{2}}=-\eta_{\boldsymbol{a}(\tau)}(m, x) \tag{3.15}
\end{equation*}
$$

From (3.11) and (3.15), we have

$$
\frac{\partial^{m}}{\partial x^{m}}\left(\log \Delta_{\boldsymbol{a}}^{q}(x)+\operatorname{Res}_{s=0} \frac{\zeta_{\boldsymbol{a}}^{q}(s, x)}{s^{2}}\right)=0 \quad(m \geq \max \{p+2, N\})
$$

which implies that there exists a certain polynomial $f_{\boldsymbol{a}}(x)$ of degree at most max $\{p+2, N\}$ such that

$$
\log \Delta_{\boldsymbol{a}}^{q}(x)-\log D_{\boldsymbol{a}}^{q}(x)=f_{\boldsymbol{a}}(x)
$$

This completes the proof of Theorem 3.1.
By a similar discussion we have the following result for polynomial case.
Theorem 3.3. For $j=1,2, \ldots$, d, let $\boldsymbol{a}^{(j)}=\left\{a_{j, n}\right\}_{n \in I}$ be regularizable sequences of positive numbers, and suppose that the $\sum_{n \in I} a_{j, n}^{-(p+1)}$ converges absolutely for every j. There exists a polynomial function $F(x)$ defined on a certain domain \mathbb{D} such that

$$
\begin{align*}
& \bigoplus_{n \in I}\left(a_{1, n}-x\right)\left(a_{2, n}-x\right) \cdots\left(a_{d, n}-x\right) \\
= & \exp F(x) \prod_{\substack{n \in I \\
1 \leq j \leq d}}\left(1-\frac{x}{a_{j, n}}\right) \exp \left(\sum_{k=1}^{p} \frac{1}{k}\left(\frac{x}{a_{j, n}}\right)^{k}\right) \tag{3.16}
\end{align*}
$$

for any $x \in \mathbb{D}$. In particular, the following two regularized products

$$
\prod_{n \in I}\left(\prod_{j=1}^{d}\left(a_{j, n}-x\right)\right), \quad \prod_{j=1}^{d}\left(\prod_{n \in I}\left(a_{j, n}-x\right)\right)
$$

are equal up to a nonzero elementary factor.
Proof. Denote by $\Delta(x)$ the canonical product appearing in the right hand side of (3.16). The $(p+1)$-th \log-derivative if $\Delta(x)$ is given by

$$
\begin{equation*}
\frac{\partial^{p+1}}{\partial x^{p+1}} \log \Delta(x)=\sum_{j=1}^{d} \sum_{n \in I} \frac{\Gamma(p+1)}{\left(a_{j, n}-x\right)^{p+1}} \tag{3.17}
\end{equation*}
$$

The attached zeta function $\varphi(s, x)$ for $\left\{\left(a_{1, n}-x\right)\left(a_{2, n}-x\right) \cdots\left(a_{d, n}-x\right)\right\}_{n \in I}$ is

$$
\begin{aligned}
\varphi(s, x) & =\sum_{n \in I}\left(\left(a_{1, n}-x\right) \ldots\left(a_{d, n}-x\right)\right)^{-s} \\
& =\sum_{n \in I}\left(1-s \log \left(a_{1, n}-x\right) \ldots\left(a_{d, n}-x\right)+O\left(s^{2}\right)\right) .
\end{aligned}
$$

Differentiation with respect to x successively yields

$$
\frac{\partial^{p+1}}{\partial x^{p+1}} \varphi(s, x)=\sum_{n \in I}\left(-s \sum_{j=1}^{d} \frac{p!}{\left(a_{j, n}-x\right)^{p+1}}+O\left(s^{2}\right)\right)
$$

which implies

$$
\begin{equation*}
\frac{\partial^{p+1}}{\partial x^{p+1}} \operatorname{Res}_{s=0} \frac{\varphi(s, x)}{s^{2}}=-\sum_{j=1}^{d} \sum_{n \in I} \frac{\Gamma(p+1)}{\left(a_{j, n}-x\right)^{p+1}}=-\frac{\partial^{p+1}}{\partial x^{p+1}} \log \Delta(x) \tag{3.18}
\end{equation*}
$$

in view of (3.17). Thus we have (3.16) by a similar argument of the proof of Theorem 3.1. The latter statement follows immediately.

Remark 3.2. Theorem 3.3 insists that the basic questions proposed in $\S 1$ is affirmative in the case of polynomial functions satisfying certain conditions: Assume that all but finite exception of the functions $F_{n}(x)$ are polynomial functions of degree d such that the sequence consisting of their roots is regularizable. Then the reguralized product $\prod_{n \in I} F_{n}(x)$ exists, and it gives a function which exhibits the information of the location of zeros.

Example 3.1 (Generalized Lerch's formula [L]: see also [KW1]).

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left((n+x)^{2}+y^{2}\right)=\frac{2 \pi}{\Gamma(x+i y) \Gamma(x-i y)}=\prod_{n=0}^{\infty}(n+x+i y) \prod_{n=0}^{\infty}(n+x-i y) \tag{3.19}
\end{equation*}
$$

The following is a example which does not satisfy the required condition of Theorem 3.3.
Example 3.2 ([KKW]). For $n \geq 3$, we have

$$
\begin{equation*}
\coprod_{a \in \operatorname{Sym}_{n}(\mathbb{Z})} \operatorname{det}(a-x)=1 \tag{3.20}
\end{equation*}
$$

for $x \in \operatorname{Sym}_{n}(\mathbb{C}) \backslash \operatorname{Sym}_{n}(\mathbb{Z})$. Here we denote by $\operatorname{Sym}_{n}(R)(R=\mathbb{Z}, \mathbb{C})$ the set of $n \times n$ symmetric matrices whose entries belong to R.

4 Example: q-sine and theta functions

The ring sine function for a commutative ring A is defined by

$$
S_{A}(x):=\prod_{a \in A}(a-x),
$$

where the product " $\prod_{a \in A}$ " over A should be, of course, suitably interpreted like zeta regularized product (see [KMOW]). For example, in the cases of the ring of rational integers \mathbb{Z} and its
imaginary quadratic extension $\mathbb{Z}[\tau]$ (τ is an imaginary quadratic integer), the corresponding ring sine functions $S_{\mathbb{Z}}(x)$ and $S_{\mathbb{Z}[\tau]}(x)$ are realized by zeta regularized products and calculated as follows.

Theorem 4.1 ([KMOW]). We have

$$
\begin{align*}
S_{\mathbb{Z}}(x) & :=\prod_{m \in \mathbb{Z}}(m-x)=1-e^{2 \pi i x} \quad(0<x<1), \tag{4.1}\\
S_{\mathbb{Z}[\tau]}(x) & :=\prod_{m, n \in \mathbb{Z}}(m+n \tau-x) \\
& =\left(1-q^{-x / \tau}\right) \prod_{n=1}^{\infty}\left(1-q^{-(n+x / \tau)}\right)\left(1-q^{-(n-x / \tau)}\right) \quad(0<\operatorname{Im} x<\operatorname{Im} \tau), \tag{4.2}
\end{align*}
$$

which are essentially the sine function and the elliptic theta function respectively.
Note that for $(A, K)=(\mathbb{Z}, \mathbb{Q}),(\mathbb{Z}[\tau], \mathbb{Q}(\tau)), S_{A}(x)$ generates the maximal abelian extension K^{ab} of K, that is, $K^{\mathrm{ab}}=K\left(S_{A}(K)\right)((\mathbb{Z}, \mathbb{Q})$ case is due to Kronecker $[\mathrm{Kr}]$, and $(\mathbb{Z}[\tau], \mathbb{Q}(\tau))$ case is due to Takagi $[\mathrm{T}]$).

In this section we introduce a q-analogue $S_{\mathbb{Z}}^{q}(x)$ of the ring sine function $S_{\mathbb{Z}}(x)$ of \mathbb{Z} by

$$
\begin{equation*}
S_{\mathbb{Z}}^{q}(x):=\prod_{n \in \mathbb{Z}}[n-x]_{q}, \tag{4.3}
\end{equation*}
$$

and calculate this explicitly.
Remark 4.1. It is essential to our argument to use the normalization (1.5) of q-numbers. In fact, if we take another convention $\{a\}_{q}=\left(q^{a}-1\right) /(q-1)$, the attached zeta function

$$
\begin{equation*}
\xi_{q}(s, x):=\sum_{n \in \mathbb{Z}}\{n-x\}_{q}^{-s} \tag{4.4}
\end{equation*}
$$

for $S_{\mathbb{Z}}^{q}(x)$ does diverge since the summation is taken over the lattice \mathbb{Z} (not the semi-lattice $\mathbb{Z}_{\geq 0}$ like Example 2.3).

In order to carry out the calculation of $S_{\mathbb{Z}}^{q}(x)$, it is necessary to have an explicit form of the previously defined q-Hurwitz zeta function.

Lemma 4.2. Assume that $0<\operatorname{Re} x<1$ and $-\frac{2 \pi}{\log q} \leq \operatorname{Im} x<\frac{2 \pi}{\log q}$. The Laurent expansion of the q-Hurwitz zeta function $\zeta_{q}(s, x)=\sum_{n=0}^{\infty}[n+x]_{q}^{-s}$ around the origin $s=0$ is given by

$$
\begin{equation*}
\zeta_{q}(s, x)=\frac{2}{\log q} \frac{1}{s}+\frac{2 \log \left(q^{1 / 2}-q^{-1 / 2}\right)}{\log q}-\frac{1}{2}(2 x-1)+s \log \frac{\Gamma_{q}(x)}{[\infty]_{q}!}+O\left(s^{2}\right) . \tag{4.5}
\end{equation*}
$$

Proof. First we remark that

$$
\left(q^{(n+x) / 2}\left(1-q^{-n-x}\right)\right)^{-s}=q^{-s(n+x) / 2}\left(1-q^{-n-x}\right)^{-s}
$$

for any $n \geq 0$ under the hypothesis of the lemma. It follows hence that

$$
\begin{aligned}
\zeta_{q}(s, x) & =\sum_{n=0}^{\infty}[n+x]_{q}^{-s}=\left(q^{1 / 2}-q^{-1 / 2}\right)^{s} \sum_{n=0}^{\infty}\left(q^{(n+x) / 2}\left(1-q^{-n-x}\right)\right)^{-s} \\
& =\left(q^{1 / 2}-q^{-1 / 2}\right)^{s} \sum_{n=0}^{\infty} q^{-s(n+x) / 2} \sum_{k=0}^{\infty}\binom{-s}{k}(-1)^{k} q^{-(n+x) k} \\
& =\left(q^{1 / 2}-q^{-1 / 2}\right)^{s} \sum_{k=0}^{\infty}\binom{s+k-1}{k} \frac{q^{(k+s / 2)(1-x)}}{q^{k+s / 2}-1} .
\end{aligned}
$$

Since $\binom{s+k-1}{k}=\frac{s}{k}+O\left(s^{2}\right)$ if $k \geq 1$, we get

$$
\begin{array}{r}
\sum_{k=0}^{\infty}\binom{s+k-1}{k} \frac{q^{(k+s / 2)(1-x)}}{q^{k+s / 2}-1}=\frac{q^{s(1-x) / 2}}{q^{s / 2}-1}+s \sum_{k=1}^{\infty} \frac{1}{k} \frac{q^{k(1-x)}}{q^{k}-1}+O\left(s^{2}\right) \\
=\frac{2}{\log q} \frac{1}{s}-\frac{1}{2}(2 x-1)+\left\{\left(\frac{x^{2}}{4}-\frac{x}{4}+\frac{1}{24}\right) \log q+\sum_{k=1}^{\infty} \frac{1}{k} \frac{q^{k(1-x)}}{q^{k}-1}\right\} s+O\left(s^{2}\right) .
\end{array}
$$

Hence we obtain the desired expansion of $\zeta_{q}(s, x)$ around $s=0$ as follows:

$$
\begin{align*}
\zeta_{q}(s, x) & =\frac{2}{\log q} \frac{1}{s}-\frac{1}{2}(2 x-1)+\frac{2}{\log q} \log \left(q^{1 / 2}-q^{-1 / 2}\right) \\
+ & \left\{\left(\frac{x^{2}}{4}-\frac{x}{4}+\frac{1}{24}\right) \log q+\sum_{k=1}^{\infty} \frac{1}{k} \frac{q^{k(1-x)}}{q^{k}-1}\right. \tag{4.6}\\
& \left.-\frac{1}{2}(2 x-1) \log \left(q^{1 / 2}-q^{-1 / 2}\right)+\frac{1}{\log q}\left(\log \left(q^{1 / 2}-q^{-1 / 2}\right)\right)^{2}\right\} s+O\left(s^{2}\right) .
\end{align*}
$$

It is straightforward to check the coefficient of s is equal to $\log \frac{\Gamma_{q}(x)}{[\infty]_{q}!}$. This shows the proof.
Using the lemma above, we can calculate the q-analogue of the ring sine function $S_{\mathbb{Z}}^{q}(x)$.
Theorem 4.3. Let $q>1$ be a fixed parameter and suppose that x lies in the region $0<\operatorname{Re} x<1$, $-\frac{2 \pi}{\log q} \leq \operatorname{Im} x<\frac{2 \pi}{\log q}$. The q-analogue of the ring sine function $S_{\mathbb{Z}}^{q}(x)$ of \mathbb{Z} is given as follows:
(i) If $-\frac{2 \pi}{\log q} \leq \operatorname{Im} x<0$, then

$$
\begin{equation*}
S_{\mathbb{Z}}^{q}(x)=i e^{-\pi i x+\frac{\pi^{2}}{\log q}}\left(q^{1 / 2}-q^{-1 / 2}\right)^{\frac{2 \pi i}{\log q}} \frac{\left([\infty]_{q}!\right)^{2}}{\Gamma_{q}(x) \Gamma_{q}(1-x)} \tag{4.7}
\end{equation*}
$$

(ii) If $0 \leq \operatorname{Im} x<\frac{2 \pi}{\log q}$, then

$$
\begin{equation*}
S_{\mathbb{Z}}^{q}(x)=-i e^{\pi i x+\frac{\pi^{2}}{\log q}}\left(q^{1 / 2}-q^{-1 / 2}\right)^{-\frac{2 \pi i}{\log q}} \frac{\left([\infty]_{q}!\right)^{2}}{\Gamma_{q}(x) \Gamma_{q}(1-x)} \tag{4.8}
\end{equation*}
$$

Proof. Let $\xi_{q}(s, x)$ be the zeta function attached to the sequence $\left\{[n-x]_{q}\right\}$. We divide the sum in $\xi_{q}(s, x)$ into two parts:

$$
\xi_{q}(s, x)=\sum_{n \in \mathbb{Z}}[n-x]_{q}^{-s}=\sum_{n \geq 0}[n+(1-x)]^{-s}+\sum_{n \geq 0}[-n-x]^{-s} .
$$

We observe that

$$
\begin{equation*}
\arg [-n-x]_{q}=\arg [n+x]_{q} \pm \pi \tag{4.9}
\end{equation*}
$$

where the upper (resp. lower) sign is taken in the case $-\frac{2 \pi}{\log q} \leq \operatorname{Im} x<0$ (resp. $0 \leq \operatorname{Im} x<$ $\left.\frac{2 \pi}{\log q}\right)$. In fact, $\operatorname{Im}[-n-x]_{q}=-\frac{2}{q^{1 / 2}-q^{-1 / 2}} \cosh \left(\frac{n+\operatorname{Re}(x)}{2} \log q\right) \sin \left(\frac{\operatorname{Im}(x)}{2} \log q\right)$, and it is clear that $\cosh \left(\frac{n+\operatorname{Re}(x)}{2} \log q\right)>0$ for any n.

It follows that

$$
[-n-x]_{q}^{-s}= \begin{cases}e^{-\pi i s}[n+x]_{q} & -\frac{2 \pi}{\log q} \leq \operatorname{Im} x<0 \\ e^{\pi i s}[n+x]_{q} & 0 \leq \operatorname{Im} x<\frac{2 \pi}{\log q}\end{cases}
$$

Thus we have

$$
\xi_{q}(s, x)= \begin{cases}\zeta_{q}(s, 1-x)+e^{-\pi i s} \zeta_{q}(s, x) & -\frac{2 \pi}{\log q} \leq \operatorname{Im} x<0 \\ \zeta_{q}(s, 1-x)+e^{\pi i s} \zeta_{q}(s, x) & 0 \leq \operatorname{Im} x<\frac{2 \pi}{\log q}\end{cases}
$$

By Lemma 4.2 we have

$$
\operatorname{Res}_{s=0} \frac{e^{\mp \pi i s} \zeta_{q}(s, x)}{s^{2}}=\log \frac{\Gamma_{q}(x)}{[\infty]_{q}!} \pm \frac{1}{2} i \pi(2 x-1) \mp 2 \pi i \frac{\log \left(q^{1 / 2}-q^{-1 / 2}\right)}{\log q}-\frac{\pi^{2}}{\log q},
$$

and hence we obtain

$$
\operatorname{Res}_{s=0} \frac{\xi_{q}(s, x)}{s^{2}}=\log \frac{\Gamma_{q}(x) \Gamma_{q}(1-x)}{\left([\infty]_{q}!\right)^{2}}\left(q^{1 / 2}-q^{-1 / 2}\right)^{\frac{\text { 年 } 2 \pi i}{\log q}} \pm \frac{1}{2} i \pi(2 x-1)-\frac{\pi^{2}}{\log q},
$$

where the upper (resp. lower) sign is taken in the case (i) (resp. (ii)). This completes the proof of the theorem.

Corollary 4.4. The function $\xi_{q}(s, x)$ satisfies the difference-differential equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \xi_{q}(s, x)=\left(\frac{s \log q}{2}\right)^{2} \xi_{q}(s, x)+s(s+1)\left(\frac{\log q}{q^{1 / 2}-q^{-1 / 2}}\right)^{2} \xi_{q}(s+2, x) \tag{4.10}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \operatorname{Res}_{s=0} \frac{\xi_{q}(s, x)}{s^{2}}=\left(\frac{\log q}{2}\right)^{2} \operatorname{Res}_{s=0} \xi_{q}(s, x)+\left(\frac{\log q}{q^{1 / 2}-q^{-1 / 2}}\right)^{2} \xi_{q}(2, x) \tag{4.11}
\end{equation*}
$$

and $\xi_{q}(2, x)$ essentially gives the Weierstrass $\wp-$-function (see [KW4]).
Remark 4.2. It follows also from (4.11) that our q-ring sine function $S_{\mathbb{Z}}^{q}(x)$ is determined up to "linear factor", that is,

$$
S_{\mathbb{Z}}^{q}(x)=e^{\alpha x+\beta} \Gamma_{q}(x)^{-1} \Gamma_{q}(1-x)^{-1}
$$

for some $\alpha, \beta \in \mathbb{C}$ in view of Theorem 3.1.
We give a q-analogue of Kronecker's limit formula. (See Remark 5 in [KMOW])
Theorem 4.5. We have

$$
\begin{equation*}
\bigoplus_{n \in \mathbb{Z}}\left|[n-x]_{q}\right|=q^{(x-\bar{x})^{2} / 8} \frac{\left([\infty]_{q}!\right)^{2}}{\left|\Gamma_{q}(x) \Gamma_{q}(1-x)\right|} \tag{4.12}
\end{equation*}
$$

for $0<\operatorname{Re}(x)<1$.
Remark 4.3. The two theorems above show that

$$
\begin{equation*}
\varlimsup_{n \in \mathbb{Z}}\left|[n-x]_{q}\right|=e^{-\frac{\pi^{2}}{\log q}} q^{(x-\bar{x})^{2} / 8}\left|\prod_{n \in \mathbb{Z}}[n-x]_{q}\right| . \tag{4.13}
\end{equation*}
$$

Proof of Theorem 4.5. We should study the attached zeta function

$$
\tilde{\zeta}_{q}(s, x):=\sum_{n \in \mathbb{Z}}\left|[n-x]_{q}\right|^{-s}=\sum_{n>0}\left|[n-x]_{q}\right|^{-s}+\sum_{n \leq 0}\left|[n-x]_{q}\right|^{-s} .
$$

First we look at

$$
\sum_{n>0}\left|[n-x]_{q}\right|^{-s}=\sum_{n>0}\left(q^{1 / 2}-q^{-1 / 2}\right)^{s} q^{-\frac{n-\mathrm{Re} x}{2} s}\left|1-q^{-n+x}\right|^{-s} .
$$

Notice that $\left|q^{-n+x}\right|<1$ since $n>0$ and $0<\operatorname{Re}(x)<1$. By the binomial expansion we have

$$
\begin{aligned}
\left|1-q^{-n+x}\right|^{-s} & =\left(1-q^{-n+x}\right)^{-s / 2}\left(1-q^{-n+\bar{x}}\right)^{-s / 2} \\
& =\sum_{\ell=0}^{\infty} \sum_{m=0}^{\infty}\binom{-s / 2}{\ell}\binom{-s / 2}{m}(-1)^{\ell+m} q^{(-n+\operatorname{Re} x)(\ell+m)} q^{i \operatorname{Im} x(\ell-m)} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \sum_{n>0}\left|[n-x]_{q}\right|^{-s}=\left(q^{1 / 2}-q^{-1 / 2}\right)^{s} \\
& \times\left\{\frac{q^{\frac{1}{2} s \operatorname{Re} x}}{q^{\frac{1}{2} s}-1}+\sum_{\ell+m>0}\binom{-s / 2}{\ell}\binom{-s / 2}{m}(-1)^{\ell+m} \frac{q^{\operatorname{Re} x\left(\ell+m+\frac{1}{2} s\right)+i \operatorname{Im} x(\ell-m)}}{q^{\ell+m+\frac{1}{2} s}-1}\right\} . \tag{4.14}
\end{align*}
$$

In order to observe the behavior of the zeta function around $s=0$, we calculate the Laurent expansions of the casts in (4.14):

$$
\begin{gather*}
\left(q^{1 / 2}-q^{-1 / 2}\right)^{s}=1+\left\{\log \left(q^{1 / 2}-q^{-1 / 2}\right)\right\} s+\frac{1}{2}\left\{\log \left(q^{1 / 2}-q^{-1 / 2}\right)\right\}^{2} s^{2}+O\left(s^{3}\right), \tag{4.15}\\
\frac{q^{\frac{1}{2} s \operatorname{Re} x}}{q^{\frac{1}{2} s}-1}=\frac{2}{\log q} \frac{1}{s}+\frac{1}{2}(2 \operatorname{Re} x-1)+\frac{1}{24}\left(6(\operatorname{Re} x)^{2}-6 \operatorname{Re} x+1\right)(\log q) s+O\left(s^{2}\right), \\
\sum_{\ell+m>0}\binom{-s / 2}{\ell}\binom{-s / 2}{m}(-1)^{\ell+m} \frac{q^{\operatorname{Re} x\left(\ell+m+\frac{1}{2} s\right)+i \operatorname{Im} x(\ell-m)}}{q^{\ell+m+\frac{1}{2} s}-1} \\
=\left\{\sum_{m>0} \frac{q^{m \bar{x}}}{2 m\left(q^{m}-1\right)}+\sum_{\ell>0} \frac{q^{\ell x}}{2 \ell\left(q^{\ell}-1\right)}\right\} s+O\left(s^{2}\right) .
\end{gather*}
$$

Combining these calculation we have

$$
\begin{align*}
& \sum_{n>0}\left|[n-x]_{q}\right|^{-s}=\frac{2}{\log q} \frac{1}{s}+\left(\frac{2 \operatorname{Re} x-1}{2}+\frac{2}{\log q} \log \left(q^{1 / 2}-q^{-1 / 2}\right)\right) \\
& +\left\{\frac{\left\{\log \left(q^{1 / 2}-q^{-1 / 2}\right)\right\}^{2}}{\log q}+\frac{(2 \operatorname{Re} x-1) \log \left(q^{1 / 2}-q^{-1 / 2}\right)}{2}\right. \tag{4.18}\\
& \left.+\frac{\left(6(\operatorname{Re} x)^{2}-6 \operatorname{Re} x+1\right) \log q}{24}+\sum_{m>0} \frac{q^{m \bar{x}}}{2 m\left(q^{m}-1\right)}+\sum_{\ell>0} \frac{q^{\ell x}}{2 \ell\left(q^{\ell}-1\right)}\right\} s+O\left(s^{2}\right) .
\end{align*}
$$

Hence we have

$$
\begin{align*}
& \operatorname{Res}_{s=0} \frac{\sum_{n>0}\left|[n-x]_{q}\right|^{-s}}{s^{2}} \\
= & \frac{\left\{\log \left(q^{1 / 2}-q^{-1 / 2}\right)\right\}^{2}}{\log q}+\frac{(2 \operatorname{Re} x-1) \log \left(q^{1 / 2}-q^{-1 / 2}\right)}{2} \tag{4.19}\\
+ & \frac{\left(6(\operatorname{Re} x)^{2}-6 \operatorname{Re} x+1\right) \log q}{24}+\sum_{m>0} \frac{q^{m \bar{x}}}{2 m\left(q^{m}-1\right)}+\sum_{\ell>0} \frac{q^{\ell x}}{2 \ell\left(q^{\ell}-1\right)} .
\end{align*}
$$

By the discussion similar to the above, we also have

$$
\begin{aligned}
& \operatorname{Res}_{s=0} \frac{\sum_{n \leq 0}\left|[n-x]_{q}\right|^{-s}}{s^{2}} \\
= & \frac{\left\{\log \left(q^{1 / 2}-q^{-1 / 2}\right)\right\}^{2}}{\log q}-\frac{(2 \operatorname{Re} x-1) \log \left(q^{1 / 2}-q^{-1 / 2}\right)}{2} \\
+ & \frac{\left(6(\operatorname{Re} x)^{2}-6 \operatorname{Re} x+1\right) \log q}{24}+\sum_{m>0} \frac{q^{m \bar{x}}}{2 m\left(q^{m}-1\right)}+\sum_{\ell>0} \frac{q^{\ell x}}{2 \ell\left(q^{\ell}-1\right)} .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
\operatorname{Res}_{s=0} \frac{\tilde{\zeta}_{q}(s, x)}{s^{2}}=\log \left|\Gamma_{q}(1-x) \Gamma_{q}(x)\right|-\log ([\infty]!)^{2}+\frac{1}{2}(\operatorname{Im} x)^{2} \log q, \tag{4.21}
\end{equation*}
$$

which is the desired conclusion.
Remark 4.4. If we put $\tau=-\log q / 2 \pi i$, then we see that

$$
\begin{equation*}
S_{\mathbb{Z}}^{q}(x / \tau)=\left(\frac{q^{-1 / 2 \tau^{2}-1 / 4 \tau}\left(q^{1 / 2}-q^{-1 / 2}\right)^{1+1 / \tau}\left([\infty]_{q}!\right)^{2}}{\prod_{n=1}^{\infty}\left(1-q^{-n}\right)^{2}}\right) \times q^{\frac{x(x-\tau-1)}{2 \tau^{2}}} S_{\mathbb{Z}[\tau]}(x) \tag{4.22}
\end{equation*}
$$

Namely, our q-deformation $S_{\mathbb{Z}}^{q}(x)$ of $S_{\mathbb{Z}}(x)$ essentially gives the ring sine function $S_{\mathbb{Z}[\tau]}(x)$ for the ring $\mathbb{Z}[\tau]$.

Remark 4.5. Since the function $S_{\mathbb{Z}}^{q}(x)$ has an imaginary period $2 \pi i / \log q$, classical limit " $q \rightarrow 1$ " is corresponding to the limit "(imaginary period) $\rightarrow \infty$ ". On the other hand, we can interpret that $S_{\mathbb{Z}[\tau]}(x)$ tends to $S_{\mathbb{Z}}(x)$ by taking a formal limit $\tau \rightarrow \infty$, where τ is an imaginary period of $S_{\mathbb{Z}[\tau]}(x)$.

References

[B] E. W. Barnes: On the theory of the multiple gamma function. Trans. Cambridge Philos. Soc. 19, 374-425 (1904).
[D] C. Deninger: Local L-factors of motives and regularized determinants. Invent. math. 107, 135-150 (1992).
[I] G. Illies: Regularized products and determinants. Commun. Math. Phys. 220, 69-94 (2001).
[KKSW] K. Kimoto, N. Kurokawa, C. Sonoki and M. Wakayama: Some examples of generalized zeta regularized products. Preprint (2002).
[KKW] K. Kimoto, N. Kurokawa and M. Wakayama: Zeta regularizations of the determinant products and the Eisenstein series of Siegel domains. In preparation.
[KV] M. Kontsevich and S. Vishik: Geometry of determinants of elliptic operators. Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), Progr. Math. 131, Birkhäuser Boston, Boston, MA, 1995, 173-197.
[Kr] L. Kronecker: Über die algebraisch auflösbaren Gleichungen (I). Monatsberichte der Königlich Preussischen Akademie der Wissenshaften zu Berlin, 365-374 (1853). Werke IV, 1-11.
[KMOW] N. Kurokawa, E.M. Müller-Stüler, H. Ochiai and M. Wakayama: Kronecker's Jugendtraum and ring sine functions. J. Ramanujan Math. Soc. 17, 211-220 (2002).
[KW1] N. Kurokawa and M. Wakayama: A generalization of Lerch's formula. To appear in Czech. Math. J.
[KW2] N. Kurokawa and M. Wakayama: Generalized zeta regularizations, quantum class number formulas, and Appell's O-functions. To appear in The Ramanujan J.
[KW3] N. Kurokawa and M. Wakayama: On q-analogue of the Euler constant and Lerch's limit formula. To appear in Proc. AMS.
[KW4] N. Kurokawa and M. Wakayama: Certain families of elliptic functions defined by q-series. Preprint (2002).
[L] M. Lerch: Dalši studie v oboru Malmsténovských řad. Rozpravy České Akad. 3 No.28, 1-61 (1894).
[T] T. Takagi: Über eine Theorie des relativ Abel'schen Zahlköpers. J. of the College of Science, Imperial University of Tokyo 41 No. 9, 1-133 (1920).
[Vo] A. Voros: Spectral functions, special functions and the Selberg zeta functions. Commun. Math. Phys. 110, 439-465 (1987).

Kazufumi KIMOTO

Graduate School of Mathematics, Kyushu University.
Hakozaki, Fukuoka, 812-8581 JAPAN.
kimoto@math.kyushu-u.ac.jp

Nobushige KUROKAWA

Department of Mathematics, Tokyo Institute of Technology.
Meguro, Tokyo, 152-0033 JAPAN.
kurokawa@math.titech.ac.jp

Chie SONOKI
Graduate School of Mathematics, Kyushu University.
Hakozaki, Fukuoka, 812-8581 JAPAN.
ma201014@math.kyushu-u.ac.jp

Masato WAKAYAMA
Faculty of Mathematics, Kyushu University.
Hakozaki, Fukuoka, 812-8581 JAPAN.
wakayama@math.kyushu-u.ac.jp

[^0]: *Research Fellow of the Japan Society for the Promotion of Science, partially supported by Grant-in-Aid for Scientific Research (C) No. 12000766.
 ${ }^{\dagger}$ Partially supported by Grant-in-Aid for Scientific Research (B) No.11440010, and by Grant-in-Aid for Exploratory Research No. 13874004.

