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1 Introduction

So called the zeta regularization is one of the most effective methods to carry out necessary
renormalization calculations in a variety of situations such as the determinant expressions of
elliptic operators [KV, Vo] and certain arithmetic applications [D] (see also [KKSW]). In the
present paper we focus our interest on a particular class of functions which are defined in forms
of the zeta regularized products. Let us recall first the formula essentially due to Lerch [L] as

a typical example we deal with:

(1.1) %:mﬂn—i—x

Here the symbol H denotes so called the zeta reqularized product, as we explain in §2. It
is well known that 1/T'(x) is an entire function which has simple zeros at x = 0, —1,—2,....
The noteworthy point here is that the zeta regularized product in the left hand side of (1.1)
may indicate the location x = 0,—1,—2,... of zeros of 1/T'(x) in a quite apparent way. In
other words, this is interpreted as a kind of factorization formula, which is comparable with

the Weierstrass canonical product expression:

(1.2) —6“1}H<1+ ) e n.

With this example, we are naturally lead to study the general situation as follows. Suppose
that a family of functions {F),(z)},es satisfying appropriate conditions is given. We hope to

define a function F(z) as

(1.3) F(z) =[] Fu(z)

nel
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The following two questions are basic here:
(i) When does the regularized product in (1.3) exist?

(ii) Suppose that the regularized product (1.3) exists. Can we conclude that F'(x) is a function

whose zeros are exactly given by

Z:H{aG(C{Fn(a):O}

nel

within multiplicity?
The following (ii)’ is equivalent to (ii) substantially, but slightly stronger.

(ii)" Assume that F(z) = HFn(:zr) and G(z) = HGn(z) exist. Can we conclude the
nel nel
multiplicativity F(z)G(x) = H F.(x)G(x) 7
nel

The first question (i) seems quite delicate. Actually, when we take the geometric progression
F.(x) = ¢"™ (¢ > 1), then (1.3) does not exist. (See Example 2.2) Compared with the linear
function n + z, it increases pretty too fast. We have hence in [KW2] introduced an extended
notion called a generalized zeta regularized product (see Definition 2.3) in order to deal with

n+x

a wider class of regularized products including the example H q above, where we express

n>0
the generalized zeta regularized product by H in stead of H But there are, of course, a lot
of curious and important examples of the sequences {F;, () }ne; which do not have regularized

products even in the sense of a generalized regularization. For instance,

w ©©

I(n+4+x)”

(1.4) T

n=1
seems to give the double gamma function I'y(x) (see [B]) but the product does not exist. The
sequence n! seems to increase too fast. However, even if @ = {a, }cs is of moderate growth, we

can not assure the existence of the regularized product H a, of a. For instance, let p, be the

nel
n-th prime number and consider the sequence p = {p,},>1. Though p, = o(n) as n tends to

oo

infinity, the regularized product H P, does not exist. In fact, (p(s) = .-, p,,® has a natural
n=1

boundary Re(s) = 0. Thus an extension of the notion of these zeta regularized products is also

an interesting problem.
For the question (ii), Illies [I] deals with the case of linear factors F,(x) = a, — = for a
given sequence a = {a, }ner, and gives an affirmative answer to (ii) whenever the generalized

zeta regularized product of a exits. This is a generalization of Voros’s result [Vo] for usual
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zeta regularizations. Related to (ii)’, a multiplicative anomaly of zeta regularized products is
studied in [KV].

In this paper we deal with the case of ¢-linear factors f,(z) = [a, — x], (¢ > 1) for a given
sequence @ = {an}ner and establish a relation between the function defined by a generalized
zeta regularized product and the one defined by a Weierstrass canonical form (Theorem 3.1).
Here we employ the following convention for g-numbers:

e

(1.5) la], == P =Y (aeC).

Moreover, using the idea similar to the proof of this relation, we also prove the same kind of the
factorization for the case F,(z)’s are polynomials whose degree equal d except a finite number
of n € I (see Remark 3.2).

As an important example, we calculate a g-analogue of a ring sine function. A general
notion of a ring sine function Sa(x) of a commutative ring A has been introduced in [KMOW]
as
(1.6) Sa(z) = H(a—x).

acA
Here the product should be suitably interpreted. In the cases of the ring of rational integers
Z and its imaginary quadratic extension Z[7| (7 is an imaginary quadratic integer), the cor-
responding ring sine functions Sz(x) and Sz () are realized respectively by zeta regularized
products as

(1.7) Sy(x) =[] (m - =),

mez
(1.8) Szi(x) = H (m+nt — ),

mnez
and these are calculated explicitly; the former is the sine function and the latter is the elliptic
theta function essentially.

In Section 4 we introduce and study the g-ring sine function
(1.9) Si(x) =[] In — =],
nez

which is a g-analogue of Sz(x) above. We calculate S7(z) explicitly by using a g-analogue of
the Hurwitz zeta function (see [KW3]), and show that it essentially gives Szj(x) (see Remark
4.4).

2 Zeta regularizations

In this section we recall the usual notion of the zeta regularization and the genelarized regular-

ization in order to deal with wider class of sequences.
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Definition 2.1. Let a = {a,}nes be a divergent sequence of nonzero complex numbers. We
define the zeta function attached to a by the Dirichlet series
(2.1) Cals) := Za;s.
nel
Throughout this paper we fix a log-branch by —7 < argloga < m for a € C*.
Assume that the series (2.1) converges absolutely if Re(s) > u for a sufficiently large real
number p. We take such a number g to be the minimal one, and call it the exponent of

convergence of a.

If (4(s) has a meromorphic continuation to some region containing the origin s = 0, then
we say a is (meromorphically zeta-)reqularizable. We first recall the standard definition of zeta

regularized products.

Definition 2.2 (Holomorphic regularization). Let a be a regularizable sequence. If (4(s) is
holomorphic at s = 0, then the zeta reqularized product of a is defined by
(2.2) [T an == exp (=¢,(0)).

nel

This is a usual zeta regularization (see e.g. [D, Vo).

Example 2.1 (Lerch’s formula [L]). Let > 0 and take a,, = n + x for n > 0. The attached

zeta function
o0

((s,x) = Z(n +x)7°

n=0
is called the Hurwitz zeta function. This has a meromorphic continuation to the whole plane

and holomorphic at s = 0. In fact, the regularized product of (n + x)’s is given by (1.1). O

Since the attached zeta function (4(s) of a simple geometric series @ = {¢"},>0 (¢ > 1) is

given by

(23) Gals) =Yg = -

and has a simple pole at s = 0, the zeta regularized product of @ in the sense of (2.2) does not

_ q_s

exist. Thus we needed an extended notion of the regularized product in [KW2] as follows.

Definition 2.3 (Meromorphic regularization [KW2]). If (,(s) has a pole at s = 0, then the

(generalized) zeta regularized product of a is defined by

I .—eXp< Res Cals )).

nel

We use this dotted product symbol if (,(s) has a pole st s = 0 in order to distinguish this

notion from the holomorphic regularization if necessary.
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Remark 2.1. Since ¢, (0) = Ress—o (a(8)/s% if (4(s) is holomorphic at s = 0, it is obvious to see
H = H in the holomorphic case.

Example 2.2 ([KKSW]). For any ¢ > 1, we have
24 FLo = o,
n=0

where Bs(x) is the Bernoulli polynomial of degree 2. This follows from the Laurent expansion

of the zeta function for @ = {¢"**},>0,

0 —sx 1 S
(2.5) Ca(s, ) = Z g st = 1 + Bi(z) + 532(1’) log g + O(s?).
n=0

1—qs - slogq
O

Example 2.3 (¢-Lerch’s formula [KW2]). A g-analogue of Lerch’s formula (1.1) is calculated

(2.6) [Iin+2l, = [Fj];;

Here we denote by I';(z) the (modified) Jackson ¢-gamma function

Lo (A—a™) 1 i ~1)/4
2.7 I,(z) === q /2 _ q / wqm(w )/ ,
(27) (o) Hn:O(l - q_(n+$))( )
which satisfies the functional equation I'y(x + 1) = [z],[';(x) in our convention. The constant

[0o],! is explicitly given by

(28) [oo]q' — H[n]q _ q71/24(q1/2 _ q71/2)*10g(1*q—1)/10gq H (1 _ qfn) )
n=1 n=1

This follows from the calculation of the Laurent expansion of the ¢-Hurwitz zeta function

s, ) =) [n+a],”  (Re(s) > 0).
n=0
See Lemma 4.2 for the analytic continuation of (,(s, z). ]

3 Zeta regularizations and canonical forms

As we see typically in the case of Lerch’s result, one of the important aspect of a regularized
product is that the regularized product representation of a given function is useful to indicate
the location of zeros. (For the other important aspect such as “transformation” properties
of the regularized product representation, see [KKSW].) In this section we present a relation
between a zeta regularization and a Weierstrass canonical form when a function is defined by

a regularized product over g-linear factors.
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3.1 A factorization theorem

Let a be a sequence of nonzero complex numbers. We denote by p the exponent of convergence
of the sequence a, that is, the associated zeta function (q(s) = >, .; a,,® converges absolutely in
the region Re(s) > u, and hence defines a function which is holomorphic in the same region. We

1

also denote by p the integer part of j, or the minimum integer such that the series ), e

converges absolutely.

We are interested in the function defined by the zeta regularized product of [@ — z], :=

{lan — x]q}nela say,

(3.1) Di(x):= H[an — 7],

nel

Since there is a trivial periodicity ¢"*" = ¢”

(1 :=2mi/log q), we may expect that (3.1) defines
a function whose zeros are given by a(7) := {a,, + k7 }nerrez. In fact, our goal in this section

is to show the following result.

Theorem 3.1. Let a = {a,}ner be a regularizable sequence of real numbers (except a finite
number of a,,’s). Denote by p the exponent of convergence of a, and let p be the integer part of .
Assume that there exists a certain connected domain D such that a(7)—x = {a,+kT—2 }nerkez

and [a—x], are both regularizable for any x € D. Then there exists a polynomial function fq(x)
defined on D such that

(3.2) [lan — a1, = exp fu@) I (1 - - m) exp (%1 (an : kT)J‘) .

nel nel =1
kez

Remark 3.1. Theorem 3.1 is a preferable statement as a special case of the general expectation

= = (2o (31 2)).

nel a€

where Z = [[,{a € C | F,(a) = 0} is the set of all zeros of {F},(z)}ne;.

3.2 Proof of Theorem 3.1

We denote the attached zeta functions for a(7) — = and [a — 2], by

(3.4) Ca(r) (5, ) = Z(an +kr —1x)7°,

nel
kEZ

(3.5) (s, x) = Z[an — ],

nel
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By the assumption of the theorem, (q(-)(s, x) converges absolutely in the region Re(s) > pu+ 1.
First we remark that (Z(s,x) converges absolutely and defines a holomorphic function in the
right half plane Re(s) > 0 since the behavior of (4(s, x) is comparable with that of

(I)a,(s) = Z q—ans’

nel
and we have assumed the positivity of a.
We suppose that (s, z) has a pole of order N at s = 0. Note that (I(s,x) satisfies the
difference-differential equation

2
0x?

By using (3.6) successively it follows that o= C4(s,x) is holomorphic at s = 0 if n > N/2. It

Ox2n

(3.6) 1(s,2) = —(log )2 (s(s + 1)CA(s +2,7) + $CA(s, 7)) .

is convenient to introduce the function

(37) 770.(7')(37 x) = F(s)ga('r)<s7 ZL‘),
which is holomorphic if Re(s) > p + 2. We immediately check the functional equation

0
(3.8) %%(T)(S, T) = Nar (s +1,2).

An entire function whose zeros are exactly given by a(7) is constructed by the Weierstrass

canonical product as follows:

(3.9) AL(z) =] (1 - i kT) exp Ci% (an —f k;T)j) .

nel
keZ

Our destination is to describe a relation between DZ(z) and AZ(z), which assures that the
generalized regularized product expression of a function indicates the location of its zeros.
We consider the log-derivatives of A%(z)
akz
(3.10) Ri(z) == Es log AZ(z) (k=0,1,2,...).
They satisfies the initial condition Ry(0) = 0 for £ = 0,1,...,p + 1, and conversely, A%(x) is

a unique entire function of order p determined by these conditions. The following equality is

crucial:
o (n—1)!
. pu— 1 q pu— =
(3 11) Rn<x) oxm 0g Aa(‘r) nzel (an + kT — l’)n 77&(7)(”; LE)
kEZ

for any n > p + 2.
To calculate the log-derivatives of DZ(z) in a desirable fashion, we need the following simple

lemma.
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Lemma 3.2. For a # 0, we have

. - —ﬁcoth(w) _ L .CL’
(3.12) la — z]g = [a]yq 2 =01 (1 e kT) exp (a+ kT) '

keZ

Proof. The set of zeros of the function

2 . (a —x)logq

is given by a = {a + k7 | k € Z}. Therefore it must have a canonical product expression of

_ — p9(wa) 1 — z z
a—aly=e lg( a+k7’) P (a+k7)

for a suitable entire function g(x; a). Taking the log-derivative of [a — z], in two ways according

the form

to the two kinds of expressions above, we have

log ¢ (a —z)logq , 1 1
— th({ ——— | = ca) — - .
o < 2 g(z:a) Z a+kr—x a+kr

kEZ

The fractional expansion of the hyperbolic cotangent function

1 1 1
the = — —
corne x+§(x—i7rk+z’7rk:)

yields then ¢'(z;a) = —'%% coth (“%8%). Thus we have g(z;a) = —£'%% coth (%1%4) + log[a],

since ¢(0;a) = log[al,. O
By using the lemma above, we have

[a —2],° =1— slogla — 2], + O(s?)

11— (g(();a) +y (log (1 - af/w) + aiﬂ)) s+ 0(s2).

keZ

Thus the zeta function attached to [a], is

(3.13) Cis,z) =) (1 - <g(o; an) + Y (log (1 - _T_ kT) o f m)) s+ 0(52)> .

nel keZ

The implied constant in O(s?) is depending on x. Differentiating repeatedly, it follows

(3.14) 88; s, ) =) <— > @ (fk; i);)ms + 0(52)>

nel keZ
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if m > p+2. Since 2 Cq(s x) is holomorphic at s = 0 for m > N, the expression (3.14) gives
the Taylor expansion of mC 4(s,x) around the origin s = 0 when m > max{p + 2, N}. Hence
we have
om o Gis )
(3.15) B 5 =5 = ~a(r) (M, ).
From (3.11) and (3.15), we have
am
a m

Cals, )

52

(1ogAq( z) + Res )—0 (m > max{p+2,N}),

which implies that there exists a certain polynomial fg(z) of degree at most max{p + 2, N}
such that

log AZ(x) —log Dg(x) = fa(%).
This completes the proof of Theorem 3.1. m

By a similar discussion we have the following result for polynomial case.

Theorem 3.3. For j = 1,2,....d, let a¥) = {@jn}ner be regularizable sequences of positive
numbers, and suppose that the ), aEépH)

polynomial function F(x) defined on a certain domain D such that

H(al,n —z)(agn — ) (Ggpn — )

converges absolutely for every j. There exists a

nel
(3.16) ;p 21/ 2 \"
nel ’ k=1 ’
1<5<d

for any x € D. In particular, the following two reqularized products
d d

H (T ) 11 ()

nel \j=1 j=1 \nel
are equal up to a nonzero elementary factor.
Proof. Denote by A(z) the canonical product appearing in the right hand side of (3.16). The
(p + 1)-th log-derivative if A(z) is given by
517 N Dy e

7j=1 nel R

The attached zeta function (s, z) for {(a1, — z)(asn — ) -+ (@gn — T) }ner is

p(s,2) = ((a1n—2)... (a4n — 7))
— Z (1—slog(ain —)...(ag, —z)+ O(s?)).
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Differentiation with respect to x successively yields

ap+1 d p! )
W@(SJ):ZI —SZIWJFO(S) ;
ne 7= ’
which implies
ptl d T(p+1) opt1
(3.18) 5t Re Z ZI (@ — 2y = gt log A(z)

in view of (3.17). Thus we have (3.16) by a similar argument of the proof of Theorem 3.1. The

latter statement follows immediately. O

Remark 3.2. Theorem 3.3 insists that the basic questions proposed in §1 is affirmative in the
case of polynomial functions satisfying certain conditions: Assume that all but finite exception
of the functions F,(x) are polynomial functions of degree d such that the sequence consisting

of their roots is regularizable. Then the reguralized product HFn(x) exists, and it gives a

nel
function which exhibits the information of the location of zeros.

Example 3.1 (Generalized Lerch’s formula [L]: see also [KW1]).

[e.9]

(3.19) [T ((n+2)?+y?) =

n=0

o0 [e.9]

:H(n+x+iy)H(n+x—iy).

2m
['(z +iy)l(x — 1y)

O
The following is a example which does not satisfy the required condition of Theorem 3.3.

Example 3.2 ([KKW]). For n > 3, we have
a€Sym,, (Z)

for x € Sym,,(C)\ Sym,,(Z). Here we denote by Sym, (R) (R = Z, C) the set of n x n symmetric

matrices whose entries belong to R. O]

4 Example: g-sine and theta functions

The ring sine function for a commutative ring A is defined by
Sa(z) = [ (a—a),
acA

where the product “[], . ,” over A should be, of course, suitably interpreted like zeta regularized

product (see [KMOW]). For example, in the cases of the ring of rational integers Z and its
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imaginary quadratic extension Z[r| (7 is an imaginary quadratic integer), the corresponding
ring sine functions Sz(x) and Szp(x) are realized by zeta regularized products and calculated

as follows.

Theorem 4.1 ([KMOW]). We have

(4.1) Sz(x) == H(m —r)=1-€"" (0<xz<l1),
Sz (x) = H (m +nr — )
(4.2) e
= (=g [ =g )1 = g D) (0 < Ima < ).

I
—

n

which are essentially the sine function and the elliptic theta function respectively.

Note that for (A4, K) = (Z,Q), (Z[7],Q(7)), Sa(z) generates the maximal abelian extension
K® of K, that is, K* = K(SA(K)) ((Z,Q) case is due to Kronecker [Kr], and (Z[7], Q(1))
case is due to Takagi [T]).

In this section we introduce a g-analogue S7(z) of the ring sine function Sz(z) of Z by
(4.3) St (x) == [ In - =,
nez
and calculate this explicitly.

Remark 4.1. Tt is essential to our argument to use the normalization (1.5) of g-numbers. In

fact, if we take another convention {a}, = (¢* —1)/(q¢ — 1), the attached zeta function
(4.4) &(s,x) = Z{n -z}’
nez

for SZ(x) does diverge since the summation is taken over the lattice Z (not the semi-lattice Zx
like Example 2.3).

In order to carry out the calculation of SZ(z), it is necessary to have an explicit form of the

previously defined g-Hurwitz zeta function.

Lemma 4.2. Assume that 0 < Rex < 1 and —% <Imz < %. The Laurent expansion of

the q-Hurwitz zeta function Cy(s,x) = > 0 [n + x];° around the origin s = 0 is given by

2 1 n 2log (q1/2 — q*1/2)

(45) Cq(87x) - 1qug logq

Iy(z) 2
- 5(23: —-1)+ slogm + O(s%).

Proof. First we remark that

(q(n+x)/2(1 . q—n—x))—s _ q—s(n+x)/2(1 . q—n—x)—s
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for any n > 0 under the hypothesis of the lemma. It follows hence that

Gls,x) =Y Intal,* = (" =¢ )Y ("1 —g )
n=0 n=0

G —S
( 1/2 —1/2 s Zq s(n+x)/2 Z ( ) k —(n+x)k
n=0
= (V2 — g2 i s+ k — 1\ gkte/20-2)
B k=0 k qk+s/2 -1

+O(s*) if k > 1, we get

io: s+k—1 q(k+s/2)(1—z) _ qs(l—x)/Q N Sio: lqk(l—x) N 0(32)
k qhtsiz —1 g2 —1 — kgt —1

k=0
2 1 1 | 1k(1x>
== ~ _—(2r—-1 S 1
oggs 2% )+{<4 4+24) qu+zk Fo1 (5O

Hence we obtain the desired expansion of (,(s,x) around s = 0 as follows:

21 1

___2 _1 _1 1/2_ —1/2
Galssa) = s = 520 = 1)+ o log(a =g 7)
22 1 2. 1¢"0-2)
(4.6) +{(z—z+ﬂ)10gq+zk:ﬁqk_1

_1 _ /2 _ _-1/2 1 172 —1/2\)\2 2
2(2x 1)log(q q )+ oz ¢ (log(q g %) ps+O(s%).

It is straightforward to check the coefficient of s is equal to log [ (} %) This shows the proof. [

Using the lemma above, we can calculate the g-analogue of the ring sine function S7(z).

Theorem 4.3. Let ¢ > 1 be a fixed parameter and suppose that x lies in the region 0 < Rex < 1,

lfg”q <Imzx < logq. The g-analogue of the ring sine function Sj(x) of Z is given as follows:

(i) If — fogg = Imax <0, then

R B 2mi OO] !)2
47 Sq — 7T’LQ?+10 q 1/2 _ 1/2 log q ([ q )
(4.7) 2(x) = ie s (q q ) T,(2)T,(1 — )
(i6) If0 < Tmz < 2=, then

. it T 3 _ 2mi ([o0] !)2
(4.8) S9(x) = —ie™ T (g2 — g1/2) s q

) ( U P
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Proof. Let &,(s,x) be the zeta function attached to the sequence {[n —z|,}. We divide the sum

in &,(s, ) into two parts:

§q(3»$)22[”—$];822[ (1—x)] —I—Z —n — x| ",

neL n>0 n>0

We observe that
(4.9) arg|—n — x|, = arg[n + z], £ ,

where the upper (resp. lower) sign is taken in the case — 2;1 <Imz <0 (resp. 0 <Imz <

1qu) In fact, Im[—n — ], = 1/2+q,1/2 cosh(”JrRe(x) log q) sin(=5* @) 150 q), and it is clear that
cosh("+Re 2 Jog q) > 0 for any n.
[n—.f—:(:]q [—n—x]q./
(= — > n ¥ al,
—ﬂglo%lmx<0 Oglogqhnx<7r

It follows that

_ log
—n—x] =1 _
| b en+z], 0<Imz<

i {e‘”is[n + ], 2 < Irn:v <0,

logq
Thus we have

Culs, 1 —x) 4+ ™5, (s, ) 1 < Imx <0,
gq(s’x) - mis g
Cls, 1 —z)+e™((s,2)  0<Imz< logq

By Lemma 4.2 we have

1/2 _ q*1/2) 2

Fis r 1 1
Res (s T) log Ly(z) + —ir(2x — 1) F 271 og(4

2 [00],! T 2 log q  logq’
and hence we obtain
§q( x) Ly(@)Ly(1—2), 19 oy E2mi 1 2
R, = l / — /2 log q :l: - 2 J— 1 —_
Res =3 %8~ loo], )2 (g q %) 5im(2r — 1) oz g’

where the upper (resp. lower) sign is taken in the case (i) (resp. (ii)). This completes the proof
of the theorem. 0
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Corollary 4.4. The function &,(s, ) satisfies the difference-differential equation

0? slogq? log g ?
1100 et = (T gl st ) (p Bl ) s+,

In particular, we have

0? &ls,x log q 2 log g 2
(4.11) Res (2 >:( 9 > E{fosﬁq(S,x)—i- (W) &q(2, )

0x? s S

and &,(2,x) essentially gives the Weierstrass p-function (see [KW4]). O

Remark 4.2. Tt follows also from (4.11) that our ¢-ring sine function S%(z) is determined up to

“linear factor”, that is,
Sy(x) = ey (2) 71Ty (1 — 2) 7!

for some «, 3 € C in view of Theorem 3.1.

We give a g-analogue of Kronecker’s limit formula. (See Remark 5 in [KMOW])

Theorem 4.5. We have

7)2/8 OOq!2
(4.12) it — 2] = g . (l ](>

neL

for 0 < Re(z) < 1.

Remark 4.3. The two theorems above show that

7\'2 —
(4.13) [ lin — 2]| = e weagle=?/%

nel

H[n_x]q

neZ

Proof of Theorem 4.5. We should study the attached zeta function

Z|n—x Z|n—x +Z|n—x | 7.

neZ n>0 n<0

First we look at

Sl =l = Y (@ =) g g

n>0 n>0

Notice that |¢7"**| < 1 since n > 0 and 0 < Re(z) < 1. By the binomial expansion we have
T ] —n4z\—5/2 —n+z\—s/2
L= (1) ()

— o —s/2 —s/2 m _ (—n+Rex m) ilmx({—m
Z( /)( 7n/>( 1)€+ q( +Rex)(0+ )qI (e— )

=0 m=0
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It follows that

Z| n—x ’— ( 1/2 —1/2)5

n>0

(414) 1sRex N Z —8/2 —8/2 ( 1)€+mqRex(f+m+%s)+iImx(€7m)
-1 m €+m+%s -1 ’

£4+m>0 q
In order to observe the behavior of the zeta function around s = 0, we calculate the Laurent

expansions of the casts in (4.14):

(4.15) (q1/2 — q*1/2)s =1+ {log (ql/2 — q*1/2)} s+ % {log (q1/2 — qil/z)}2 s+ 0(s%),

sRex 2 1 1

N

q 1 2 2
4.16 2Rex —1 — (6(R —6R 1) (1 O
(4.16) qés—l logqs 2( ex )—|—24(( ex) ex+ 1) (logq) s + O(s?),
Z —8/2 —8/2 ( 1)Z+m qRox(f-l-m—l-%s)-l—i Imz(¢—m)
t+m>0 ¢ m q€+m+%s -1
(4.17) ) Z
AT s S o
{m>0 2m(qm —1) - o 2" — 1)
Combining these calculation we have
_ 2 1 2Rexr —1 2
Z In— 2], ( ex n log (q1/2 . q1/2)>
et logq S 2 log q
log (¢'/? — q=1/2 2Rex — 1)log (¢"/? — ¢~ 1/?
N A (S
0gq 2
(6(Rex)* —6Rex + 1)loggq qm* q* 5
—_— —_— O(s?).
- 24 +sz(qm—1)+2%(q€—1) s+0()
m>0 >0
Hence we have
g S 2 =2l
5=0 S
log (¢4 — ¢ ¥2)}"  (2Rex — 1)log (¢"/2 — ¢ /2
(4.19) _log (@ =)} ( )log (¢ — ¢7'?)
log q 2
(6(Rez)? —6Rex + 1)loggq qme q
i 24 - mzw am(gm — 1) bzo 20(¢ — 1)

By the discussion similar to the above, we also have

ano [ — 2]y~

Res 5
s=0 S
{log (¢"/* — ¢~*/?) }2 (2Rez — 1)log (¢"/? — ¢~ '/?)
(4.20) = -
log q 2

(6(Rex)? — 6Rex + 1)logq qmT g

+ +y LNy _9

24 mz>0 2m(gm — 1) bzo 20(¢* — 1)
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Therefore, we obtain

, 1
(4.21) Res Cq(; ) _ og [Ty(1 = 2)0y()] ~ log ([o0]!)* + 5 (Im )’ log g,
which is the desired conclusion. O

Remark 4.4. 1f we put 7 = —log ¢/2mi, then we see that

—1/272—1/4r (q1/2 _ q—1/2)1+1/T ([oo]q!)2

R (q 0 ) <q T S (o).

n=1

Namely, our g-deformation S7(x) of Sz(z) essentially gives the ring sine function Sz(z) for
the ring Z|[7].

Remark 4.5. Since the function S7(z) has an imaginary period 27i/ log g, classical limit “q — 1”
is corresponding to the limit “(imaginary period) — oo”. On the other hand, we can interpret

that Sz, (x) tends to Sz(x) by taking a formal limit 7 — oo, where 7 is an imaginary period
of SZ[T] (l‘)
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