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Abstract

The Apéry-like numbers J2(n) associated to the special value ζQ(2) of the spectral zeta function ζQ(s)
for the non-commutative harmonic oscillator Q have remarkable modular form interpretation. In fact, we
show that the differential equation satisfied by the generating function w2(t) of J2(n) is the Picard-Fuchs
equation for the universal family of elliptic curves equipped with rational 4-torsion. The parameter t of this
family can be regarded as a modular function for the congruent subgroup Γ0(4). Further, we see that the
function w2(t) is regarded as a Γ0(4)-modular form of weight 1 in the variable τ by taking t as the classical
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1 Introduction

Let us consider the numbers an and bn defined by the recurrence relation

(1.1) n2un − (11n2 − 11n + 3)un−1 − (n − 1)2un−2 = 0

together with the initial conditions a0 = 1, a1 = 3 and b0 = 0, b1 = 5. These numbers were introduced in
1978 by Apéry, who utilized them to prove the irrationality of the special value ζ(2) = π2

6 of the Riemann zeta
function ζ(s). The important point is that a parallel method allows us to prove the irrationality of ζ(3) too (we
refer to [11] for further information on his irrationality proofs).

Since then, several people have tried to understand the nature of the Apéry numbers and to generalize the
theory to ζ(n) (n > 3). For instance, there are many works on congruence and/or supercongruence properties,
algebro-geometric interpretations, modular properties, etc. For detailed information, we refer to [1], [2], [3]
and their references. Among them, in this note, we focus particularly the study of the relation between Apéry
numbers and elliptic curves developed by Beukers [1].

Let us hence recall the result in [1] briefly. Consider the generating functions A(t) =
∑∞

n=0 antn and
B(t) =

∑∞
n=0 bntn of the Apéry numbers an and bn. Then A(t) and B(t) satisfy the differential equation

L2(A) = 0 and L2(B) = −5 respectively, where L2 denotes the Fuchsian differential operator

L2 = t(t2 + 11t − 1)
d2

dt2
+ (3t2 + 22t − 1)

d

dt
+ (t + 3).

The main result of [1] shows that the equation L2(Y ) = 0 is the Picard-Fuchs equation associated with the
family of curves

(1.2) y2 = x3 +
1
4
(t2 + 6t + 1)x2 +

1
2
t(t + 1)x +

1
4
t2.
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2 Elliptic curves arising from the NCHO and Γ0(4)-modular forms

We notice that any elliptic curve equipped with rational 5-torsion is birationally equivalent to (1.2) for a certain
value of t [7]. By this fact, the function A(t) is interpreted as the period of the holomorphic 1-form πidx

y .
Moreover, A(t) is a Γ1(5)-modular form of weight 1 in the variable τ (=τ > 0), the ratio of the fundamental
periods.

In the present note, we deal with analogous objects of the Apéry numbers, say, the “Apéry-like numbers”
J2(n) attached to the special value ζQ(2) introduced in [5], [6]. Here ζQ(s) is the spectral zeta function of a
certain differential operator called the non-commutative harmonic oscillator Q. We recall shortly basic properties
of the spectral zeta function ζQ(s) and how the numbers J2(n) arise in connection with the value ζQ(2). Let
Q = Qα,β be the ordinary differential operator on L2(R) ⊗ C2 defined by

(1.3) Q :=
(

α 0
0 β

)(
−1

2
d2

dx2
+

1
2
x2

)
+

(
0 −1
1 0

)(
x

d

dx
+

1
2

)
,

where the parameters α, β ∈ R>0 satisfy αβ > 1. The system defined by the operator Q is called the non-
commutative harmonic oscillator [10]. The operator Q is positive and self-adjoint, and has only a discrete
spectrum 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → +∞. Then, the spectral zeta function ζQ(s) of Q is introduced as
the Dirichlet series

(1.4) ζQ(s) :=
∞∑

n=1

λ−s
n

in order to study the structure of the spectrum of Q. This series converges absolutely if <s > 1 [6]. In [5], it
is shown that ζQ(s) is continued to the whole plane C as a meromorphic function which has a unique simple
pole at s = 1, and trivial zeros at s = 0,−2,−4,−6, . . . like the Riemann zeta function ζ(s). We note that the
operator Q is unitarily equivalent to a pair of usual quantum harmonic oscillators when α = β. In particular,
we see that ζQ(s) = 2(2s − 1)ζ(s) when α = β =

√
2.

The numbers J2(n) in question are defined by

J2(n) :=
∫ ∞

0

∫ ∞

0

e−(t+s)/2

1 − e−(t+s)

(
(1 − e−2t)(1 − e−2s)

(1 − e−(t+s))2

)n

dtds,(1.5)

which arise in the expression of the special value of ζQ(s) at s = 2. Actually, we have

(1.6) ζQ(2) =
(α + β)2

2αβ(αβ − 1)

(
3ζ(2) +

(
α − β

α + β

)2 ∞∑
n=0

(
− 1

2

n

)
J2(n)

(
1

αβ − 1

)n
)

.

In [6], a recurrence formula for J2(n) is obtained as

(1.7) 4n2J2(n) − (8n2 − 8n + 3)J2(n − 1) + 4(n − 1)2J2(n − 2) = 0.

Introducing the generating function w2(t) of J2(n) by

(1.8) w2(t) =
∞∑

n=0

J2(n)tn,

one finds that the recurrence formula (1.7) is equivalent to the singly confluent Heun differential equation

(1.9) t(1 − t)2w′′
2 (t) − (1 − 3t)(1 − t)w′

2(t) + (t − 3
4
)w2(t) = 0.

We show in [8] that the rational numbers J̃2(n) := J2(n)/J2(0) satisfy the congruence relation J̃2(mpn) ≡
J̃2(mpn−1) (mod pn) which is quite similar to the one for Apéry numbers; ampn−1 ≡ ampn−1−1 (mod pn). Here
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we note that the Apéry-like numbers J3(n) are introduced similarly to describe the value ζQ(3), and satisfy the
recurrence formula

(1.10) 4n2J3(n) − (8n2 − 8n + 3)J3(n − 1) + 4(n − 1)2J3(n − 2) =
2n(n − 1)!
(2n − 1)!!

.

Remarkably, the only difference between the two recurrence equations (1.7) and (1.10) is the existence of the
inhomogeneous term in (1.10). Therefore the normalized sequence J̃3(n) := J3(n)−J3(0)J̃2(n) ∈ Q also satisfies
(1.10). As a result, the generating function w3(t) for J̃3(n) satisfies almost the same differential equation as
(1.9) but with inhomogeneous term (see (6.7)). Furthermore, one can obtain a congruence formula for J̃3(n)
too. See [8] for detail.

Based on these similarities between the Apéry numbers and our Apéry-like numbers J̃2(n), J̃3(n), in the
talk at the Conference on L-functions, the second author gave a rather vague conjecture; like the results in [1]
for the Apéry numbers, the differential equation for w2(t) (resp. w3(t)) would be understood as a Picard-Fuchs
differential equation attached to a certain family of elliptic curves (resp. a certain family of K3 surfaces; see
[2]). At that time, he presented some numerical data for J̃2(n), from which Zagier immediately showed his
interest and indicated that the numbers J̃2(n) would be coming from a certain modular form. In fact, the next
day he kindly suggested the precise formula from his study in [14].

The aim of this note is to establish an analogue of the results in [1] for the Apéry-like numbers J2(n).
Precisely, we show that the differential equation satisfied by the generating function w2(t) of J2(n) is the Picard-
Fuchs equation for the universal family of elliptic curves equipped with rational 4-torsion. The parameter t for
the family of such elliptic curves can be considered as a modular function for the congruent subgroup Γ0(4).
Moreover, we show that the function w2(t) is regarded as a Γ0(4)-modular form of weight 1 in the variable τ

by taking t as the classical Legendre modular function λ(τ). Our strategy is almost parallel to the discussion
in [1].

2 Setting the stage

Changing the variables of integral, we have

J2(n) =
∫ ∞

0

∫ ∞

0

e−(t+s)/2

1 − e−(t+s)

(
(1 − e−2t)(1 − e−2s)

(1 − e−(t+s))2

)n

dtds

= 4
∫ 1

0

∫ 1

0

(
(1 − X4)(1 − Y 4)

(1 − X2Y 2)2

)n
dXdY

1 − X2Y 2
.

(2.1)

Thus we obtain the expression

(2.2) w2(t) =
∞∑

n=0

J2(n)tn = 4
∫ 1

0

∫ 1

0

1 − X2Y 2

(1 − X2Y 2)2 − t(1 − X4)(1 − Y 4)
dXdY

of w2(t) as an integration of a rational function. This integral expression is calculated as

1
4
w2(t) =

∫ 1

0

∫ 1

0

1 − X2Y 2

(1 − t)(1 − X2Y 2)2 + t(X2 − Y 2)2
dXdY

=
1

2(1 − t)

(∫ 1

0

∫ 1

0

dXdY

(1 − X2Y 2) + T (X2 − Y 2)
+

∫ 1

0

∫ 1

0

dXdY

(1 − X2Y 2) − T (X2 − Y 2)

)
=

1
1 − t

∫ 1

0

∫ 1

0

dXdY

(1 − X2Y 2) + T (X2 − Y 2)
,

(2.3)

where we put T =
√

t
t−1 or t = T 2

T 2−1 . Set QT (X,Y ) = (1 − X2Y 2) + T (X2 − Y 2). Then we define W2(T ) by

(2.4) W2(T ) =
1 − t

4
w2(t) =

∫
¤

dXdY

QT (X,Y )
,
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where ¤ denotes the domain [0, 1] × [0, 1]. The denominator QT (X,Y ) of the integrand in W2(T ) defines an
algebraic curve QT : QT (X,Y ) = 0 in C2. From (1.9), it is easy to see that the function W2(T ) satisfies the
differential equation L(W2) = 0. Here the differential operator L is given by

(2.5) L = (T 3 − T )
d2

dT 2
+ (3T 2 − 1)

d

dT
+ T.

In the sequel, we explain that the differential equation L(W2) = 0 has a geometric origin, that is,

(1) the algebraic curve QT is birationally equivalent to a certain elliptic curve CT for all but finite values of
T , and {CT }T∈

√
−1Q× gives the family of elliptic curves having rational 4-torsion.

(2) the differential equation L(W2) = 0 is the Picard-Fuchs equation corresponding to the family {CT }T .

Remark 2.1. In [9], the differential equation (1.9) is solved so that we have

(2.6) w2(t) =
J2(0)
1 − t

2F1

(
1
2
,
1
2
; 1;

t

t − 1

)
,

where 2F1 (a, b; c; z) denotes the Gaussian hypergeometric function. As a corollary, we obtain the hypergeometric
expression

(2.7) W2(T ) = 2F1

(
1
2
,
1
2
; 1;T 2

)
for W2(T ). This yields the binomial expression for J2(n)

(2.8) J2(n) =
π2

2

n∑
k=0

(−1)k

(
− 1

2

k

)2(
n

k

)
.

3 Elliptic curves associated to J2(n)

Let us consider the series of birational transformations

X =
1

1 + x1
, Y =

x1 + y1 + 1√
T (x1 + y1) + 1

(3.1a)

x1 =
(1 +

√
T )y2

(1 + T )x2 − (1 +
√

T )y2 − 1
, y1 =

(1 +
√

T )(1 +
√

T (1 −
√

T )y2)
(1 + T )((1 + T )x2 − (1 +

√
T )y2 − 1)

(3.1b)

x2 = x3, y2 =
y3

x3
(3.1c)

x3 =
−1 + 6

√
T − 6T + 6

√
TT − T 2 + 12x

12
√

T (1 + T )2
, y3 =

1 − 5T − 5T 2 + T 3 − 12(1 + T )x + 24y

24T (1 +
√

T )(1 + T )2
.(3.1d)

The first transformation (3.1a) reduces the curve QT to the cubic curve

2(1 + T )(1 −
√

T )y1 + (1 + T )(1 − T )y2
1 − 2

√
T (1 −

√
T )2x1 + 2(1 −

√
T )(1 −

√
T + T + T

√
T )x1y1

+
√

T (
√

T − 1)(T +
√

T − 4)x2
1 − 2

√
T (1 −

√
T )x2

1y1 − 2
√

T (1 −
√

T )x3
1 = 0,

(3.2)

and the remaining three steps (3.1b), (3.1c), (3.1d) are the regular procedure to obtaining the standard form
of an elliptic curve (see, e.g. [12]).

By a tedious step-by-step calculation, we obtain the following key lemma.
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Lemma 3.1. By the transformation X = X(x, y) and Y = Y (x, y) given in (3.1), the curve QT is birationally
equivalent to the elliptic curve CT : CT (x, y) = 0 defined by

(3.3) CT (x, y) =
(

x3 − T 4 + 14T 2 + 1
48

x +
T 6 − 33T 4 − 33T 2 + 1

864

)
− y2.

Furthermore, the equality

(3.4)
dXdY

QT (X,Y )
=

dxdy

2CT (x, y)

holds.

Let us look at the resulting elliptic curve

CT : y2 = x3 − T 4 + 14T 2 + 1
48

x +
T 6 − 33T 4 − 33T 2 + 1

864

=
1

864
(1 − 6T + T 2 − 12x)(1 + 6T + T 2 − 12x)(1 + T 2 + 6x).

(3.5)

The points of order 2 on CT are

(3.6)
(

1 − 6T + T 2

12
, 0

)
,

(
1 + 6T + T 2

12
, 0

)
,

(
−1 + T 2

6
, 0

)
.

For any T ∈ C, these three points together with the point of infinity (the identity element of the group CT (C))
form a finite subgroup of CT (C) isomorphic to Z/2Z×Z/2Z. We also conclude that the curve CT is singular if
and only if T = 0,±1,∞ since the discriminant of CT is equal to 1

256T 2(1 − T 2)4.
When T =

√
−1u ∈

√
−1Q, CT has only one rational 2-torsion (u2−1

6 , 0). In this case, the points

(3.7)
(

1 + 5u2

12
,±u(1 + u2)

4

)
are the all of the rational points on CT of order 4, and hence the torsion part of CT (Q) is isomorphic to Z/4Z
by Mazur’s theorem on the structure of torsion subgroups.

In [7], it is shown that the universal family of elliptic curves with rational 4-torsion is given by

(3.8) Eb : y2 + xy − by = x3 − bx2, ∆ = b4(1 + 16b) 6= 0.

In this form, the origin (0, 0) is a generator of the 4-torsion. If we set

(3.9) b =
√

T (T + 1)
2(
√

T − 1)4
,

then we see that Eb and CT are birationally equivalent, and the family {CT } is the universal family of the
elliptic curves equipped with rational 4-torsion described by another form.

4 Geometric interpretation of the differential equation for W2(T )

We follow the discussion expanded in [1] to see that the differential equation (1.9) is the Picard-Fuchs equation
associated with the family of elliptic curves {CT }.

We recall that the function W2(T ) is the unique (up to constant) holomorphic solution of the differential
equation L(W2) = 0 (L is given in (2.5)) around T = 0.
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Fix a point T0 ∈ C near the origin and take a closed curve γ through T0 such that γ does not contain any
singularity of the form dXdY

QT (X,Y ) . Then, following the idea in [1], we consider the analytic continuation of W2(T )
along γ, which is given by

(4.1) W̃2(T ) :=
∫

D

dXdY

QT (X,Y )

where D ⊂ C2 is a suitable domain such that ∂D = ∂¤. Notice that W̃2(T ) also satisfies the differential
equation L(W̃2) = 0, and the integral

(4.2) W̃2(T ) −W2(T ) =
∫

D−¤

dXdY

QT (X,Y )

is over the closed and oriented surface (2-cycle) D − ¤. Namely, this integral can be written as the form

(4.3) IΓ(T ) :=
∫

Γ

dXdY

QT (X,Y )

for a certain 2-cycle Γ in C2 \ QT . By Lemma 3.1, the integral IΓ(T ) becomes

(4.4) IS(T ) :=
1
2

∫
S

dxdy

CT (x, y)

for some S ∈ H2(C2 \ CT , Z). By the same ‘topological reduction’ discussion as in [1], it follows that

(4.5) IS(T ) =
πi

2

∫
γ

dx

y

for a certain 1-cycle γ ∈ H1(C2 \CT , Z). Thus the difference W̃2(T )−W2(T ) is a constant multiple of a period
of the holomorphic 1-form πidx

2y . Hence W2(T ) (and W̃2(T )) and the period IS(T ) of πidx
2y satisfy the same

differential equation (see also Remark 4.2).
Let us determine the differential equation for the integral

(4.6) Iγ(T ) := πi

∫
γ

dx

y
.

It is well known that this kind of integral Iγ(T ) satisfies a second order Fuchs-type differential equation. The
local exponents of Iγ(T ) at the singularities 0, 1,−1,∞ are respectively given by 0, 0, 0, 1. Therefore, the
differential equation for Iγ(T ) is of the form

(4.7) (T 3 − T )F ′′(T ) + (3T 2 − 1)F ′(T ) + (T + A)F (T ) = 0

for a certain constant A. Now we take γ as a closed path in the x-plane surrounding just two of the singularities
1±6T+T 2

12 of the 1-form dx
2y , which go to 1

12 as T → 0, so that this integral Iγ(T ) gives the holomorphic solution
of this differential equation (4.7) around the origin T = 0. Calculating the integral Iγ(T ) directly using the
residue theorem, we notice that the Taylor expansion of Iγ(T ) for sufficient small T is given by

(4.8) Iγ(T ) = 1 +
1
4
T 2 +

9
64

T 4 + · · · .

From this expansion (4.8), it follows that A = 0.
Hence, put the discussions above together, we now conclude the

Theorem 4.1. The differential equation L(W2) = 0 is the Picard-Fuchs equation associated with the family

(4.9) CT : y2 = x3 − T 4 + 14T 2 + 1
48

x +
T 6 − 33T 4 − 33T 2 + 1

864
of elliptic curves equipped with rational 4-torsion.



K. Kimoto and M. Wakayama. 7

Remark 4.2. Let L̃(Iγ) = 0 be the second order linear differential equation for the period Iγ(T ) of the holomor-
phic 1-form dx

2y associated to the elliptic curves {CT }. From the equation W̃2(T ) −W2(T ) = πiIγ(T ), we have

L̃(W̃2) = L̃(W2). Hence we see that the monodromy group of L̃(W2) is trivial so that it is a rational function.
In our case, we know a priori that the function W2(T ) itself satisfy the second order linear differential equation
of the form L(W2) = 0, and it follows that the operators L and L′ are identical, up to a constant multiple.

5 Modular properties

Let λ(τ) be the classical Legendre modular function

(5.1) λ(τ) = 16q
∞∏

n=1

(
1 + q2n

1 + q2n−1

)8

= 16
η(τ)8η(4τ)16

η(2τ)24
= 16q − 128q2 + · · · ,

where q = eτπi and η(τ) = q
1
24

∏∞
n=1(1 − qn). This is a modular function for the congruent subgroup

(5.2) Γ0(4) =
{(

a b
c d

)
∈ SL2(Z) ; c ≡ 0 (mod 4)

}
.

Further, it is known that the modular function field for Γ0(4) is equal to C(λ(τ)). Based on the study [14] (see
also Remark 5.3), Zagier pointed out the following theorem from the list therein.

Theorem 5.1. The equality

(5.3) w2(λ(τ)) =
ϑ0(τ)2

1 − λ(τ)
=

η(2τ)22

η(τ)12η(4τ)8

holds. Here ϑ0(τ) is the elliptic theta function (which is a Γ0(4)-modular form of weight 1
2 )

(5.4) ϑ0(τ) =
η(τ)2

η(2τ)
=

∑
n∈Z

(−1)nqn2
= 1 − 2q + 2q4 + · · · .

Notice that w2(λ) is not holomorphic. We show that the theorem is deduced by the same mechanism as the
discussion in [1].

Proof. Let ω(τ) be a Γ0(4)-modular form of weight 1 and put ω̃(τ) = τω(τ). Then

(5.5) ω

(
aτ + b

cτ + d

)
= c ω̃(τ) + dω(τ), ω̃

(
aτ + b

cτ + d

)
= a ω̃(τ) + b ω(τ)

for
(

a b
c d

)
∈ Γ0(4). Hence, both ω(τ) and ω̃(τ), considered as functions in λ = λ(τ), satisfy the differential

equation

(5.6)
∣∣∣∣ω ω′

ω̃ ω̃′

∣∣∣∣ F ′′ −
∣∣∣∣ω ω′′

ω̃ ω̃′′

∣∣∣∣ F ′ +
∣∣∣∣ω′ ω′′

ω̃′ ω̃′′

∣∣∣∣ F = 0

where the prime denotes the differential with respect to λ. The coefficients in the differential equation are
calculated as

(5.7)
∣∣∣∣ω ω′

ω̃ ω̃′

∣∣∣∣ =
ω2

dλ
dτ

,

∣∣∣∣ω ω′′

ω̃ ω̃′′

∣∣∣∣ =

(
ω2

dλ
dτ

)′

,

∣∣∣∣ω′ ω′′

ω̃′ ω̃′′

∣∣∣∣ =
2(dω

dτ )2 − ω d2ω
dτ2

(dλ
dτ )3

.

Notice that these determinants are Γ0(4)-modular functions so that they are rational functions in λ.
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Now we take ω(τ) = ϑ0(τ)2

1−λ(τ) . Using well-known formulas among the values of elliptic functions and theta
functions, we see that the equations

(5.8)
∣∣∣∣ω ω′

ω̃ ω̃′

∣∣∣∣ =
1
πi

1
λ(1 − λ)2

,

∣∣∣∣ω ω′′

ω̃ ω̃′′

∣∣∣∣ = − 1
πi

(1 − 3λ)(1 − λ)
λ2(1 − λ)4

,

∣∣∣∣ω′ ω′′

ω̃′ ω̃′′

∣∣∣∣ =
1
πi

λ − 3
4

λ2(1 − λ)4

holds (we postpone the calculation; see Lemma 5.2 below). Thus we find that ω satisfies

(5.9) λ(1 − λ)2ω′′(λ) − (1 − 3λ)(1 − λ)ω′(λ) + (λ − 3
4
)ω(λ) = 0.

Comparing this differential equation with (1.9), we have proved the lemma.

Lemma 5.2. The equations of determinants in (5.8) hold.

Proof. We use the convention for elliptic and/or theta functions in [4]. Denote by ω1, ω2 the fundamental
periods so that τ = ω2

ω1
, and by ϑj(v, τ) (j = 0, 1, 2, 3) the elliptic theta functions. We put ϑj = ϑj(0, τ)

(j = 0, 2, 3) and ϑ′
1 = ∂ϑ1

∂v (0, τ). We also put e1 = ℘
(

ω1
2

)
and e2 = ℘

(
ω1+ω2

2

)
, where ℘(z) = ℘(z;ω1, ω2) is the

Weierstrass ℘-function. Then we have

(5.10) e1 =
4πi

ω2
1

(
1
3

d log ϑ′
1

dτ
− d log ϑ2

dτ

)
, e2 =

4πi

ω2
1

(
1
3

d log ϑ′
1

dτ
− d log ϑ3

dτ

)
,

and it follows that

(5.11) ϑ4
0 =

ω2
1

π2
(e1 − e2) =

4
πi

(
d log ϑ2

dτ
− d log ϑ3

dτ

)
.

On the other hand, since λ(τ) =
(

ϑ2
ϑ3

)4

, we have

(5.12)
d log λ

dτ
= 4

(
d log ϑ2

dτ
− d log ϑ3

dτ

)
= πiϑ4

0.

Thus we obtain ∣∣∣∣ω ω′

ω̃ ω̃′

∣∣∣∣ =
ω2

dλ
dτ

=
ϑ4

0

λ(1 − λ)2 d log λ
dτ

=
1
πi

1
λ(1 − λ)2

.(5.13)

The third determinant
∣∣∣∣ω ω′′

ω̃ ω̃′′

∣∣∣∣ is also calculated in the same way, but the calculation is rather complicated.

The second determinant
∣∣∣∣ω ω′′

ω̃ ω̃′′

∣∣∣∣ = − 1
πi

(1−3λ)(1−λ)
λ2(1−λ)4 is readily obtained by differentiate 1

πi
1

λ(1−λ)2 by λ.

Remark 5.3. Consider the differential equation

(5.14)
(
(t3 + at2 + bt)F ′(t)

)′
+ (t − λ)F (t) = 0

with rational parameters a, b, λ, which is due to Beukers. When a = 11, b = −1 and λ = −3, this equation (5.14)
is exactly the one for the generating function A(t) of the Apéry numbers an. In [14], Zagier searches the triplets
(a, b, λ) of integers within a certain domain such that (5.14) has an integral solution (i.e. solutions in Z[[t]]),
and presents a list of 36 such solutions. It is shown that the twelve solutions of them have parametrizations in
terms of modular functions. Zagier noticed and pointed out that our generating function w2(t) of J2(n) is #19
in his list.
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6 Closing remarks

In the final position of the note, we give several remarks for the future study.

6.1

In the discussions above, we see that the numbers J2(n) arising from the value ζQ(2) acquire the Γ0(4)-modularity
associated with the family of elliptic curves equipped with rational 4-torsion. However, at this moment, we have
no intrinsic explanation from the level of non-commutative harmonic oscillators why such things hold.

6.2

The Apéry-like numbers J2(n) are arising in the expression (1.6) for ζQ(2) via the generating function

(6.1) g2(z) =
∞∑

n=0

(
− 1

2

n

)
J2(n)zn.

This function satisfies the differential equation D(g2) = 0 (see [8]). Here D is given by

(6.2) D = 8z2(1 + z)2
d3

dz3
+ 24z(1 + z)(1 + 2z)

d2

dz2
+ 2(4 + 27z + 27z2)

d

dz
+ 3(1 + 2z).

Does the function g2(z) have a modular form interpretation like w2(t)? If this is true, then g2(z) should be a
modular form of weight 2 from the result in [13]. We also note that g2(z) has the following explicit expressions
by hypergeometric functions [9]:

g2(z) =
1√

1 + z2
3F2

(
1
2
,
1
2
,
1
2
; 1, 1;

z2

1 + z2

)
= 2F1

(
1
4
,
3
4
; 1;−z2

)2

.(6.3)

6.3

The Apéry numbers an and bn are corresponding to ζ(2), satisfying the same recurrence formula. Their gener-
ating functions satisfy the differential equations L2(A) = 0 and L2(B) = −5 for the same operator L2 but one
is homogeneous and the other is inhomogeneous.

Denote by αn and βn the Apéry numbers corresponding to ζ(3). They satisfy the same recurrence formula

(6.4) n3un − (34n3 − 51n2 + 27n − 5)un−1 + (n − 1)3un−2 = 0

with initial conditions α0 = 0, α1 = 6, β0 = 1 and β1 = 5. Their generating functions A(t) =
∑∞

n=0 αntn and
B(t) =

∑∞
n=0 βntn satisfy the differential equations L3(A) = 0 and L3(B) = 5 for the same operator

(6.5) L3 = t2(t2 − 34t + 1)
d3

dt3
+ 3t(2t2 − 51t + 1)

d2

dt2
+ (7t2 − 112t + 1)

d

dt
+ (t − 5),

but one is homogeneous and the other is inhomogeneous. Thus the situation is exactly the same for the Apéry
numbers corresponding to ζ(2). It was proved in [2] that the differential equation L3(A) = 0 is the Picard-Fuchs
equation associated to a certain family of K3 surfaces.

In our spectral case, the situation seems similar at a glance, but it is different. The Apéry-like numbers
J2(n) are corresponding to the special value ζQ(2), while

(6.6) J3(n) := 8
∫ 1

0

∫ 1

0

∫ 1

0

(
(1 − X4)(1 − Y 4Z4)

(1 − X2Y 2Z2)2

)n
dZdY dZ

1 − X2Y 2Z2
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are corresponding to the special value ζQ(3) (see [8]). Let w3(t) be the generating function for J3(n) defined by
w3(t) =

∑∞
n=0 J3(n)tn. The generating functions w2(t) and w3(t) satisfy the differential equations

(6.7) D(w2) = 0 and D(w3) =
1
22F1

(
1, 1;

3
2
; t

)
respectively for the same operator

(6.8) D = t(1 − t2)
d2

dt2
− (1 − 3t)(1 − t)

d

dt
+ (t − 3

4
).

Notice that the former equation is homogeneous, but the latter is inhomogeneous. This fact shows that the
structure of ‘pairing’ in our theory is different from the case of the Apéry numbers.

6.4

From the expressions (1.5) and (6.6) of the Apéry-like numbers associated to ζQ(2) and ζQ(3), it is quite natural
to consider the numbers Jk(n) defined as

Jk(n) :=
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

e−(t1+···+tk)/2

1 − e−(t1+···+tk)

(
(1 − e−2t1)(1 − e−2(t2+···+tk))

(1 − e−(t1+···+tk))2

)n

dt1dt2 · · · dtk

= 2k

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

1
1 − x2

1 · · ·x2
k

(
(1 − x4

1)(1 − x4
2 · · ·x4

k)
(1 − x2

1 · · ·x2
k)2

)n

dx1dx2 · · · dxk.

(6.9)

Note that the numbers Jk(n) are all positive. Their generating functions are

wk(z) :=
∞∑

n=0

Jk(n)zn = 2k

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

1 − x2
1 · · ·x2

k

(1 − x2
1 · · ·x2

k)2 − (1 − x4
1)(1 − x4

2 · · ·x4
k)z

dx1dx2 · · · dxk

= 2k

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

1 − x2
1 · · ·x2

k

(1 − x2
1 · · ·x2

k)2 − (1 − x4
1)(1 − x4

2 · · ·x4
k)z

dx1dx2 · · · dxk

=
2k−1

1 − z

(∫ 1

0

∫ 1

0

· · ·
∫ 1

0

dx1dx2 · · · dxk

(1 − x2
1x

2
2 · · ·x2

k) + Z(x2
1 − x2

2 · · ·x2
k)

+
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

dx1dx2 · · · dxk

(1 − x2
1x

2
2 · · ·x2

k) − Z(x2
1 − x2

2 · · ·x2
k)

)
(6.10)

where Z =
√

z
z−1 . It is not hard to see the formula wk(0) = (2k − 1)ζ(k). Then, we can ask the question; is

it true that the function wk(z) (k ≥ 3) satisfies a Picard-Fuchs type differential equation coming from certain
family of algebraic varieties?

We remark that the number Jk(n) has the double integral expression

Jk(n) =
2k

Γ(k − 1)

∫ 1

0

∫ 1

0

(− log X)k−2

1 − X2Y 2

(
(1 − X4)(1 − Y 4)

(1 − X2Y 2)2

)n

dXdY.(6.11)
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