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Abstract. Consider the cyclic span of a power of a certain polynomial called α-determinant, which is a common
generalization of the determinant and permanent, under the action of the universal enveloping algebra of the

general linear algebra. We show that the multiplicity of each irreducible component in this cyclic module is
given by the rank of a certain associated matrix called transition matrices, whose entries are polynomials in the
parameter α. We also give several explicit examples of such matrices. In particular, in the case where the size

of the matrix for the α-determinant is two, the polynomials in the transition matrices are essentially given by
Jacobi polynomials.

1. Introduction

Let us consider the representation of the universal enveloping algebra U(gln) of gln = gln(C) on the polynomial
algebra A(Matn) of n2 variables xij (1 ≤ i, j ≤ n) defined by

Epq · f(X) =
n∑

r=1

xpr
∂f(X)
∂xqr

for f(X) ∈ A(Matn) (X = (xij)1≤i,j≤n), where {Epq}1≤p,q≤n is the standard basis of gln. It is well known that
the cyclic modules generated by the determinant and permanent are both irreducible. Actually, if we denote
by Mλ

n the irreducible representation of U(gln) with highest weight λ (which we will represent as a partition),
then

U(gln) · det(X) = M(1n)
n , U(gln) · per(X) = M(n)

n .

Namely, det(X) generates the skew-symmetric tensor of the natural representation Cn, and per(X) the sym-
metric tensor of Cn.

As a common generalization of the determinant and permanent, the α-determinant is defined by

det(α)(X) =
∑

σ∈Sn

αν(σ)xσ(1)1xσ(2)2 . . . xσ(n)n,

where ν(σ) is given by n minus the number of cycles in the disjoint cycle decomposition of σ. In fact, det(X) =
det(−1)(X) and per(X) = det(1)(X). It was Vere-Jones [9] who introduce the α-determinant first (but his
definition is a little bit different from ours and he also called his one “α-permanent”). One of his motivation
to introduce the α-determinant is an application to the probability theory. For further information, we refer to
[9], [8] and the references within.

Regarding that the α-determinant interpolates the skew-symmetric tensor and symmetric tensor represen-
tations, Matsumoto and Wakayama studied the cyclic U(gln)-module generated by the α-determinant and
determine the irreducible decomposition of it. Precisely, they proved that

Vn,1(α) := U(gln) · det(α)(X) =
⊕
λ`n

(
Mλ

n

)⊕mλ
n(α)

,

where the multiplicity mλ
n(α) of the irreducible component Mλ

n is given by

mλ
n(α) =

{
0 fλ(α) = 0,

fλ otherwise,

1
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and

fλ(α) =
`(λ)∏
i=1

λi∏
j=1

(1 + (j − i)α)

is the (modified) content polynomial for a partition λ (`(λ) is the length of λ). The point is that the irreducible
decomposition of the module Vn,1(α) is controlled by simple polynomials {fλ(α)}λ`n, whose roots are reciprocal
of non-zero integers, and the multiplicities are “all-or-nothing” (i.e. the possible values of mλ

n(α) is either 0 or
fλ for each λ).

In this article, we consider the generalization

Vn,l(α) := U(gln) · det(α)(X)l.

We will see that the multiplicity of each irreducible representation Mλ
n in Vn,l(α) is given by the rank of a

certain matrix denoted by Fλ
n,l(α) (Theorem 2.4). In contrast to the case where l = 1, the multiplicities would

take an intermediate value between 0 and the size of the matrix Fλ
n,l(α) (see Example 2.9), and it seems quite

difficult so far to determine the exact values of the multiplicities for a given value of α in an explicit way.
However, we can give a sufficient condition for the matrix Fλ

n,l(α) to be scalar (Proposition 2.5), in which
case the multiplicity is controlled by a single polynomial fλ

n,l(α) = trFλ
n,l(α) as in the case of l = 1. One of the

most interesting cases of such a scalar situation is the case where n = 2; We will see that fλ
n,l(α) is written in

terms of the Jacobi polynomials. As an appendix, we also give several concrete examples of such polynomials.
This article is written based on the talk given at the workshop “Harmonic Analysis on Homogeneous Spaces

and Quantization” (February 18–22, 2008) in Fukuoka as well as our recent article [3], which is a joint work
with Sho Matsumoto and Masato Wakayama. We will not give proofs of the statements, which one can find in
[3].

2. Irreducible decomposition of Vn,l(α) and transition matrices

Fix positive integers n, l. Take a standard tableau T with shape (ln) such that the (i, j)-entry of T is (i−1)l+j,
and denote by K = Row(T) and H = Col(T) the row group and column group of T respectively. The following
two elements

(2.1) e :=
1
|K|

∑
k∈K

k, Φ :=
∑
h∈H

ϕ(h)h

in the group algebra C[Snl], where ϕ is a class function on H, play a key role. We will work on the tensor
product space V = (Cn)⊗nl, which is a (U(gln), C[Snl])-module by setting

Eij · ei1 ⊗ · · · ⊗ einl
=

nl∑
s=1

δis,j ei1 ⊗ · · · ⊗ s-th
ei ⊗ · · · ⊗ einl

,

ei1 ⊗ · · · ⊗ einl
· σ = eiσ(1) ⊗ · · · ⊗ eiσ(nl) (σ ∈ Snl),

(2.2)

where {ei}n
i=1 denotes the standard basis of Cn. Using the group isomorphism

θ : H 3 h 7→ θ(h) = (θ(h)1, . . . , θ(h)l) ∈ Sl
n,

θ(h)i(x) = y ⇐⇒ h((x − 1)l + i) = (y − 1)l + i (1 ≤ x, y ≤ n, 1 ≤ i ≤ l),
(2.3)

define also an element D(X;ϕ) ∈ A(Matn) by

D(X;ϕ) =
∑
h∈H

ϕ(h)
n∏

q=1

l∏
p=1

xθ(h)p(q),q =
∑

σ1,...,σl∈Sn

ϕ(θ−1(σ1, . . . , σl))
n∏

q=1

l∏
p=1

xσp(q),q.(2.4)

Notice that D(X;αν(·)) = det(α)(X)l since ν(θ−1(σ1, . . . , σl)) = ν(σ1) + · · ·+ ν(σl) for (σ1, . . . , σl) ∈ Sn
l . If δH

is a function on H which is one at the identity element and zero otherwise, then D(X; δH) = (x11x22 . . . xnn)l.
The following lemma is fundamental.

Lemma 2.1. (1) U(gln) · e⊗l
1 ⊗ · · · ⊗ e⊗l

n = V · e = Sl(Cn)⊗n.
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(2) The map

T : U(gln) · D(X; δH) 3
n∏

q=1

l∏
p=1

xipqq 7−→ (ei11 ⊗ · · · ⊗ eil1) ⊗ · · · ⊗ (ei1n ⊗ · · · ⊗ eiln
) · e ∈ V · e

is a bijective U(gln)-intertwiner.
(3) D(X;ϕ) ∈ U(gln) · D(X; δH) for any class function ϕ on H, and it is mapped to e⊗l

1 ⊗ · · · ⊗ e⊗l
n · eΦe

by T . ¤
Using the lemma, we have the

Lemma 2.2. It holds that

U(gln) · D(X;ϕ) ∼= V · eΦe(2.5)

as a left U(gln)-module. In particular, V · eΦe ∼= Vn,l(α) if ϕ(h) = αν(h). ¤
The Schur-Weyl duality reads

V ∼=
⊕
λ`nl

Mλ
n £ Sλ.(2.6)

Here Sλ denotes the irreducible unitary right Snl-module corresponding to λ. We see that

dim
(
Sλ · e

)
=

〈
indG

K 1K , Sλ
〉

Snl

= Kλ(ln),(2.7)

where 1K is the trivial representation of K and 〈π, ρ〉Snl
is the intertwining number of given representations π

and ρ of Snl, and Kλµ is the Kostka number. Since Kλ(ln) = 0 unless `(λ) ≤ n, it follows the

Theorem 2.3. The irreducible decomposition

V · eΦe ∼=
⊕
λ`nl

`(λ)≤n

Mλ
n ⊗

(
Sλ · eΦe

)
(2.8)

holds, so that the multiplicity of Mλ
n in V · eΦe is given by

dim
(
Sλ · eΦe

)
= rkEnd(Sλ·e)(eΦe).(2.9)

¤
As a special case, we now obtain the

Theorem 2.4. Let d = Kλ(ln). Fix an orthonormal basis {eλ
j }

fλ

j=1 of Sλ, and denote by {ψλ
ij} the matrix

coefficients relative to this basis. Suppose that the first d vectors eλ
1 , . . . , eλ

d spans
(
Sλ

)K . Then the multiplicity
of the irreducible representation Mλ

n in the cyclic module U(gln) · det(α)(X)l is equal to the rank of the matrix

(2.10) Fλ
n,l(α) :=

(∑
h∈H

αν(h)ψλ
ij(h)

)
1≤i,j≤d

.

¤
We refer to the matrix Fλ

n,l(α) as a transition matrix for λ. The transition matrix itself does depend on the

choice of the basis {eλ
j }

fλ

j=1 of Sλ in the theorem, while its rank does not. The trace of the transition matrix
Fλ

n,l(α) is

(2.11) fλ
n,l(α) = trFλ

n,l(α) =
∑
h∈H

αν(h)ωλ(h),

where ωλ is the zonal spherical function for λ with respect to K defined by

ωλ(g) =
1
|K|

∑
k∈K

χλ(kg) (g ∈ Snl).(2.12)
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If the matrix Fλ
n,l(α) is scalar, then Fλ

n,l(α) = d−1fλ
n,l(α)Id (d = dim(Sλ)K) and hence the multiplicity of Mλ

n in
Vn,l(α) is completely controlled by the single polynomial fλ

n,l(α) as in the case where l = 1. Thus it is desirable
to obtain a characterization of the triplets (n, l, λ) such that Fλ

n,l(α) are scalar. The following is a sufficient
condition for λ when n and l are given.

Proposition 2.5. Denote by NH(K) the normalizer of K in H (Notice that NH(K) ∼= Sn). The transition
matrix Fλ

n,l(α) is scalar if (Sλ)K is irreducible as a NH(K)-module.

Example 2.6 (Matsumoto-Wakayama case). If l = 1, then K = 1 and NH(K) = H so that (Sλ)K = Sλ

is an irreducible NH(K)-module, and hence all the transition matrices Fλ
n,1(α) are scalar. In fact, we have

Fλ
n,1(α) = fλ(α)I and fλ

n,1(α) = fλfλ(α).

Example 2.7 (hook-type case). If λ = (nl−r, 1r) is of hook type (0 ≤ r ≤ n−1), then (S(nl−r,1r))K ∼= S(n−r,1r)

as NH(K)-modules by [1, Proposition 5.3]. Thus the transition matrix F
(n−r,1r)
n,l (α) is scalar. See Appendix for

the concrete examples in this case.

Example 2.8 (Gelfand pair case). Suppose that (Snl,K) is a Gelfand pair, that is, the induced representation
indSnl

K 1K of the trivial representation 1K of K to Snl is multiplicity-free (see, e.g. [6]). Then (Sλ)K is
obviously irreducible as an NH(K)-module since it is one-dimensional. In this case, each transition matrix is
just a polynomial (one by one matrix). We give an explicit formula of the transition matrices for the case where
n = 2 in the next section.

We also give a non-scalar example of a transition matrix.

Example 2.9. Taking a suitable orthonormal basis of
(
S(4,2)

)K
, we have the transition matrix F

(4,2)
3,2 (α) for

M(4,2)
3,2 (α) in V3,2(α) as

F
(4,2)
3,2 (α) =

1
2
(1 + α)2 diag(2 − 2α + 3α2, 1 − α, 1 − α).

Hence, the multiplicity m
(4,2)
3,2 (α) of M(4,2)

3,2 (α) in V3,2(α) is

m
(6,2)
4,2 (α) =


0 α = −1,

1 α = 1,

2 α = 1±
√
−5

3 ,

3 otherwise.

3. Irreducible decomposition of V2,l(α) and Jacobi polynomials

When n = 2, as is well known, the pair (S2l,K) is a Gelfand pair, so that the transition matrices Fλ
2,l(α)

(λ ` 2l, `(λ) ≤ 2) are scalar (of size one). If we set gs = (1, l + 1)(2, l + 2) . . . (s, l + s) ∈ S2n, then we have

(3.1) Fλ
2,l(α) = tr Fλ

2,l(α) =
∑
h∈H

αν(h)ωλ(h) =
l∑

s=0

(
l

s

)
ωλ(gs)αs.

Now we write λ = (2l − r, r) for some r (0 ≤ r ≤ l). The value ω(2l−r,r)(gs) of the zonal spherical function is
calculated by Bannai and Ito [2, p.218] as

ω(2l−r,r)(gs) = Qr(s;−l − 1,−l − 1, l) =
r∑

j=0

(−1)j

(
r

j

)(
2l − r + 1

j

)(
l

j

)−2(
s

j

)
,(3.2)

where

Qn(x;α, β,N) =
N∑

j=0

(−1)j

(
n

j

)(
−n − α − β − 1

j

)(
−α − 1

j

)−1(
N

j

)−1(
x

j

)
(3.3)

is the Hahn polynomial (see also [6, p.399]).
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Theorem 3.1. Let l be a positive integer. It holds that

F
(2l−r,r)
2,l (α) =

l∑
s=0

(
l

s

)
Qr(s; l − 1, l − 1, l)αs =

(
n − l − 1

n

)−1

(1 + α)l−rP (−l−1,2l−2r+1)
r (1 + 2α)(3.4)

for r = 0, 1, . . . , l. Here P
(a,b)
n (x) denotes the Jacobi polynomial

P (a,b)
n (x) =

(
n + a

n

)
2F1

(
−n, a + b + n + 1, a + 1;

1 − x

2

)
.(3.5)

Further, all roots of F
(2l−r,r)
2,l (α) are lying on the unit circle |z| = 1. ¤

Thus we obtain the irreducible decomposition

V2,l(−1) ∼= M(l,l)
2 , V2,l(α) ∼=

⊕
0≤r≤l

P (−l−1,2l−2r+1)
r (1+2α)6=0

M(2l−r,r)
2 (α 6= −1)(3.6)

of V2,l(α).

4. Remarks on related works

For all but finite values of α, Vn,l(α) is equivalent to Sl(Cn)⊗n as we see above. It is interesting not only to
describe the exceptional singular values nicely (as zeros of certain special polynomials, for instance), but also to
investigate what happens at the singular values.

We study the quantum analogue of our problem in [5] from the first point of view. We introduce the α-
deformation of the quantum determinant in the quantum matrix algebra, and consider the cyclic span generated
by it under the action of the quantum enveloping algebra. What we expect in this direction is to obtain certain
special polynomials in α with parameter q as (entries of) transition matrices defined analogously.

From the second point of view, in [4], we study the case where α is a reciprocal of a negative integer.
In this case, the −1/k-determinants satisfies a “−1/k-analogue” of the multiplicativity of the determinant
(k = 1, 2, . . . , n − 1, n being the size of the matrix). This enables us to construct a certain relative invariant of
GLn, which we call the wreath determinants, using the −1/k-determinant. It would be interesting to explore
wreath analogues of various known determinant formulas. As an example of such ones, we give an analogue of
the Cauchy determinant formula (see §6 of [4]).

Appendix A. Examples of traces of the transition matrices for hook-types

Here we give several examples of the trace fλ
n,l(α) = trFλ

n,l(α) of the transition matrices for the case where λ

is of hook-type calculated by MAPLE. Remark that we can calculate fλ
n,l(α) explicitly for λ = (nl), (nl − 1, 1)

as follows:

f
(nl)
n,l (α) = f

(n)
n,1 (α)l =

n−1∏
j=1

(1 + jα)l,(A.1)

f
(nl−1,1)
n,l n, l = f

(n)
n,1 (α)l−1f

(n−1,1)
n,1 (α) = (n − 1)(1 − α)(1 − (n − 1)α)l−1

n−2∏
j=1

(1 + jα)l.(A.2)

• (n, l) = (5, 2): f
(8,12)
5,2 (α) = 6(1 + α)2(1 + 2α)2(1 + 3α)(1 − α)(1 + 2α − 11

2
α2)

f
(7,13)
5,2 (α) = 4(1 + α)2(1 + 2α)(1 + 3α)(1 − α)(1 − 2α)(1 + α − 9

2
α2)

f
(6,14)
5,2 (α) = (1 + α)(1 + 2α)2(1 − α)(1 − 2α)2(1 − 6α2)

• (n, l) = (4, 2): f
(6,12)
4,2 (α) = 3(1 + α)2(1 + 2α)(1 − α)(1 + α − 4α2)

f
(5,13)
4,2 (α) = (1 + α)(1 + 2α)(1 − α)(1 − 2α)(1 − 3α2)



6 KAZUFUMI KIMOTO

• (n, l) = (3, 2): f
(4,12)
3,2 (α) = (1 + α)(1 − α)(1 − 5

2
α2)

• (n, l) = (4, 3): f
(10,12)
4,3 (α) = 3(1 + α)3(1 + 2α)2(1 + 3α)(1 − α)(1 + α − 10

3
α2)

f
(9,13)
4,3 (α) = (1 + α)2(1 + 2α)2(1 − α)(1 + α − 7α2 − 17

9
α3 +

94
9

α4)

• (n, l) = (3, 3): f
(7,12)
3,3 (α) = (1 + α)2(1 + 2α)(1 − α)(1 − 2α2)

• (n, l) = (3, 4): f
(10,12)
3,4 (α) = (1 + α)3(1 + 2α)2(1 − α)(1 − 7

4
α2)
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