REPRESENTATION THEORY OF THE α -DETERMINANT AND ZONAL SPHERICAL FUNCTIONS

KAZUFUMI KIMOTO

ABSTRACT. We investigate the structure of the cyclic module $\mathbf{V}_{n,l}(\alpha) = \mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^l$ by embedding it to the tensor product space $(\mathbb{C}^n)^{\otimes nl}$ and utilizing the Schur-Weyl duality. We show that the entries of the transition matrices $F_{n,l}^{\lambda}(\alpha)$ are given by a variation of the spherical Fourier transformation of a certain class function on \mathfrak{S}_{nl} with respect to the subgroup \mathfrak{S}_l^n (Theorem 1.4). This result also provides another proof of Theorem ??. Further, we calculate the polynomial $F_{2,l}^{(2l-s,s)}(\alpha)$ by using an explicit formula of the values of zonal spherical functions for the Gelfand pair $(\mathfrak{S}_{2l}, \mathfrak{S}_l \times \mathfrak{S}_l)$ due to Bannai and Ito (Theorem 2.1).

1. Irreducible decomposition of $V_{n,l}(\alpha)$ and transition matrices

Let us fix $n, l \in \mathbb{N}$. Consider the standard tableau \mathbb{T} with shape (l^n) such that the (i, j)-entry of \mathbb{T} is (i-1)l+j. For instance, if n=3 and l=2, then

$$\mathbb{T} = \begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \\ \hline 5 & 6 \end{array}$$

We denote by $K = R(\mathbb{T})$ and $H = C(\mathbb{T})$ the row group and column group of the standard tableau \mathbb{T} respectively. Namely,

(1.1)
$$K = \left\{ g \in \mathfrak{S}_{nl} \mid \lceil g(x)/l \rceil = \lceil x/l \rceil, \ x \in [nl] \right\},$$

(1.2)
$$H = \left\{ g \in \mathfrak{S}_{nl} \mid g(x) \equiv x \pmod{l}, \ x \in [nl] \right\}.$$

We put

(1.3)
$$e = \frac{1}{|K|} \sum_{k \in K} k \in \mathbb{C}[\mathfrak{S}_{nl}]$$

This is clearly an idempotent element in $\mathbb{C}[\mathfrak{S}_{nl}]$. Let φ be a class function on H. We put

$$\Phi = \sum_{h \in H} \varphi(h)h \in \mathbb{C}[\mathfrak{S}_{nl}]$$

Consider the tensor product space $V = (\mathbb{C}^n)^{\otimes nl}$. We introduce a $(\mathcal{U}(\mathfrak{gl}_n), \mathbb{C}[\mathfrak{S}_{nl}])$ -module structure of V by

$$E_{ij} \cdot \boldsymbol{e}_{i_1} \otimes \cdots \otimes \boldsymbol{e}_{i_{nl}} = \sum_{s=1}^{nl} \delta_{i_s,j} \, \boldsymbol{e}_{i_1} \otimes \cdots \otimes \overset{s\text{-th}}{\boldsymbol{e}_i} \otimes \cdots \otimes \boldsymbol{e}_{i_{nl}},$$
$$\boldsymbol{e}_{i_1} \otimes \cdots \otimes \boldsymbol{e}_{i_{nl}} \cdot \boldsymbol{\sigma} = \boldsymbol{e}_{i_{\sigma(1)}} \otimes \cdots \otimes \boldsymbol{e}_{i_{\sigma(nl)}} \quad (\boldsymbol{\sigma} \in \mathfrak{S}_{nl}),$$

where $\{e_i\}_{i=1}^n$ denotes the standard basis of \mathbb{C}^n . The main concern of this subsection is to describe the irreducible decomposition of the left $\mathcal{U}(\mathfrak{gl}_n)$ -module $V \cdot e\Phi e$.

We first show that $V_{n,l}(\alpha)$ is isomorphic to $V \cdot e\Phi e$ for a special choice of φ . Consider the group isomorphism $\theta : H \to \mathfrak{S}_n^l$ defined by

$$\theta(h) = (\theta(h)_1, \dots, \theta(h)_l); \quad \theta(h)_i(x) = y \iff h((x-1)l+i) = (y-1)l+i.$$

Date: October 30, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 22E47, 33C45; Secondary 43A90, 13A50.

Key words and phrases. Alpha-determinant, cyclic modules, Jacobi polynomials, singly confluent Heun ODE, permanent, Kostka numbers, irreducible decomposition, spherical Fourier transformation, zonal spherical functions, Gelfand pair.

We also define an element $D(X; \varphi) \in \mathcal{A}(\operatorname{Mat}_n)$ by

$$D(X;\varphi) = \sum_{h \in H} \varphi(h) \prod_{q=1}^{n} \prod_{p=1}^{l} x_{\theta(h)_{p}(q),q} = \sum_{h \in H} \varphi(h) \prod_{q=1}^{n} \prod_{p=1}^{l} x_{q,\theta(h)_{p}^{-1}(q)}$$
$$= \sum_{\sigma_{1},\dots,\sigma_{l} \in \mathfrak{S}_{n}} \varphi(\theta^{-1}(\sigma_{1},\dots,\sigma_{l})) \prod_{q=1}^{n} \prod_{p=1}^{l} x_{\sigma_{p}(q),q}.$$

We note that $D(X; \alpha^{\nu(\cdot)}) = \det^{(\alpha)}(X)^l$ since $\nu \theta^{-1}(\sigma_1, \ldots, \sigma_l) = \nu \sigma_1 + \cdots + \nu \sigma_l$ for $(\sigma_1, \ldots, \sigma_l) \in \mathfrak{S}_l^n$. Take a class function δ_H on H defined by

$$\delta_H(h) = \begin{cases} 1 & h = 1\\ 0 & h \neq 1. \end{cases}$$

We see that $D(X; \delta_H) = (x_{11}x_{22} \dots x_{nn})^l$. We need the following lemma (The assertion (1) is just a rewrite of Lemma ??, and (2) is immediate to verify).

$$\mathcal{U}(\mathfrak{gl}_n) \cdot \boldsymbol{e}_1^{\otimes l} \otimes \cdots \otimes \boldsymbol{e}_n^{\otimes l} = V \cdot \boldsymbol{e} = \mathcal{S}^l(\mathbb{C}^n)^{\otimes n},$$
$$\mathcal{U}(\mathfrak{gl}_n) \cdot D(X; \delta_H) = \bigoplus_{\substack{i_{pq} \in \{1, 2, \dots, n\} \\ (1 \le p \le l, \ 1 \le q \le n)}} \mathbb{C} \cdot \prod_{q=1}^n \prod_{p=1}^l x_{i_{pq}q} \cong \mathcal{S}^l(\mathbb{C}^n)^{\otimes n}$$

(2) The map

$$\mathcal{T}: \mathcal{U}(\mathfrak{gl}_n) \cdot D(X; \delta_H) \ni \prod_{q=1}^n \prod_{p=1}^l x_{i_{pq}q}$$
$$\longmapsto (\boldsymbol{e}_{i_{11}} \otimes \dots \otimes \boldsymbol{e}_{i_{l_1}}) \otimes \dots \otimes (\boldsymbol{e}_{i_{1n}} \otimes \dots \otimes \boldsymbol{e}_{i_{l_n}}) \cdot \boldsymbol{e} \in V \cdot \boldsymbol{e}$$

is a bijective $\mathcal{U}(\mathfrak{gl}_n)$ -intertwiner.

We see that

$$\mathcal{T}(D(X;\varphi)) = \sum_{h \in H} \varphi(h) \mathcal{T}\left(\prod_{q=1}^{n} \prod_{p=1}^{l} x_{\theta(h)_{p}(q),q}\right)$$
$$= \sum_{h \in H} \varphi(h) (\boldsymbol{e}_{\theta(h)_{1}(1)} \otimes \cdots \otimes \boldsymbol{e}_{\theta(h)_{l}(1)}) \otimes \cdots \otimes (\boldsymbol{e}_{\theta(h)_{1}(n)} \otimes \cdots \otimes \boldsymbol{e}_{\theta(h)_{l}(n)}) \cdot \boldsymbol{e}$$
$$= \boldsymbol{e}_{1}^{\otimes l} \otimes \cdots \otimes \boldsymbol{e}_{n}^{\otimes l} \cdot \sum_{h \in H} \varphi(h) h \cdot \boldsymbol{e} = \boldsymbol{e}_{1}^{\otimes l} \otimes \cdots \otimes \boldsymbol{e}_{n}^{\otimes l} \cdot \boldsymbol{e} \Phi \boldsymbol{e}$$

by (2) in Lemma 1.1. Using (1) in Lemma 1.1, we have the **Lemma 1.2.** It holds that

 $\mathcal{U}(\mathfrak{gl}_n) \cdot D(X;\varphi) \cong V \cdot e\Phi e$

as a left $\mathcal{U}(\mathfrak{gl}_n)$ -module. In particular, $V \cdot e\Phi e \cong V_{n,l}(\alpha)$ if $\varphi(h) = \alpha^{\nu(h)}$.

By the Schur-Weyl duality, we have

$$V \cong \bigoplus_{\lambda \vdash nl} \mathcal{M}_n^\lambda \boxtimes \mathcal{S}^\lambda$$

Here S^{λ} denotes the irreducible unitary right \mathfrak{S}_{nl} -module corresponding to λ . We see that

$$\dim \left(\mathcal{S}^{\lambda} \cdot e \right) = \left\langle \operatorname{ind}_{K}^{G} \mathbf{1}_{K}, \, \mathcal{S}^{\lambda} \right\rangle_{\mathfrak{S}_{nl}} = K_{\lambda(l^{n})},$$

where $\mathbf{1}_K$ is the trivial representation of K and $\langle \pi, \rho \rangle_{\mathfrak{S}_{nl}}$ is the intertwining number of given representations π and ρ of \mathfrak{S}_{nl} . Since $K_{\lambda(l^n)} = 0$ unless $\ell(\lambda) \leq n$, it follows the

Theorem 1.3. It holds that

$$V \cdot e\Phi e \cong \bigoplus_{\substack{\lambda \vdash nl \\ \ell(\lambda) \le n}} \mathcal{M}_n^{\lambda} \boxtimes \left(\mathcal{S}^{\lambda} \cdot e\Phi e \right).$$

In particular, as a left $\mathcal{U}(\mathfrak{gl}_n)$ -module, the multiplicity of \mathcal{M}_n^{λ} in $V \cdot e\Phi e$ is given by

$$\dim \left(\mathcal{S}^{\lambda} \cdot e \Phi e \right) = \operatorname{rk}_{\operatorname{End}(\mathcal{S}^{\lambda} \cdot e)}(e \Phi e).$$

Let $\lambda \vdash nl$ be a partition such that $\ell(\lambda) \leq n$ and put $d = K_{\lambda(l^n)}$. We fix an orthonormal basis $\{e_1^{\lambda}, \ldots, e_{f^{\lambda}}^{\lambda}\}$ of S^{λ} such that the first d vectors $e_1^{\lambda}, \ldots, e_d^{\lambda}$ form a subspace $(S^{\lambda})^K$ consisting of K-invariant vectors and left $f^{\lambda} - d$ vectors form the orthocomplement of $(S^{\lambda})^K$ with respect to the \mathfrak{S}_{nl} -invariant inner product. The matrix coefficient of S^{λ} relative to this basis is

(1.4)
$$\psi_{ij}^{\lambda}(g) = \left\langle \boldsymbol{e}_{i}^{\lambda} \cdot g, \, \boldsymbol{e}_{j}^{\lambda} \right\rangle_{\mathcal{S}^{\lambda}} \quad (g \in \mathfrak{S}_{nl}, \ 1 \le i, j \le f^{\lambda})$$

We notice that this function is K-biinvariant. We see that the multiplicity of \mathcal{M}_n^{λ} in $V \cdot e\Phi e$ is given by the rank of the matrix

$$\left(\sum_{h\in H}\varphi(h)\psi_{ij}^\lambda(h)\right)_{1\leq i,j\leq d}$$

As a particular case, we obtain the

Theorem 1.4. The multiplicity of the irreducible representation \mathcal{M}_n^{λ} in the cyclic module $\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^l$ is equal to the rank of

(1.5)
$$F_{n,l}^{\lambda}(\alpha) = \left(\sum_{h \in H} \alpha^{\nu(h)} \psi_{ij}^{\lambda}(h)\right)_{1 \le i,j \le d}$$

where $\{\psi_{ij}^{\lambda}\}_{i,j}$ denotes a basis of the λ -component of the space $C(K \setminus \mathfrak{S}_{nl}/K)$ of K-biinvariant functions on \mathfrak{S}_{nl} given by (1.4).

Remark 1.5. (1) We have $F_{n,l}^{\lambda}(0) = I$ by the definition of the basis $\{\psi_{ij}^{\lambda}\}_{i,j}$ in (1.4).

- (2) Since $\alpha^{\nu(g^{-1})} = \alpha^{\nu(g)}$ and $\psi_{ij}^{\lambda}(g^{-1}) = \overline{\psi_{ji}^{\lambda}(g)}$ for any $g \in \mathfrak{S}_{nl}$, the transition matrices satisfy $F_{n,l}^{\lambda}(\alpha)^* = F_{n,l}^{\lambda}(\overline{\alpha})$.
- (3) In Examples 1.6 and 1.8 below, the transition matrices are given by diagonal matrices. We expect that any transition matrix $F_{n,l}^{\lambda}(\alpha)$ is diagonalizable in $\operatorname{Mat}_{K_{\lambda(l^n)}}(\mathbb{C}[\alpha])$.

Example 1.6. If l = 1, then $H = G = \mathfrak{S}_n$ and $K = \{1\}$. Therefore, for any $\lambda \vdash n$, we have

(1.6)
$$F_{n,1}^{\lambda}(\varphi) = \frac{n!}{f^{\lambda}} \left\langle \varphi, \chi^{\lambda} \right\rangle_{\mathfrak{S}_n} \mathcal{F}_{n,1}^{\lambda}(\varphi) = \frac{1}{f^{\lambda}} \left\langle \varphi, \chi^{\lambda} \right\rangle_{\mathfrak{S}_n} \mathcal{F}_{n,1}^{\lambda}(\varphi)$$

by the orthogonality of the matrix coefficients. Here χ^{λ} denotes the irreducible character of \mathfrak{S}_n corresponding to λ . In particular, if $\varphi = \alpha^{\nu(\cdot)}$, then

(1.7)
$$F_{n,1}^{\lambda}(\alpha) = f_{\lambda}(\alpha)I$$

since the Fourier expansion of $\alpha^{\nu(\cdot)}$ (as a class function on \mathfrak{S}_n) is

(1.8)
$$\alpha^{\nu(\cdot)} = \sum_{\lambda \vdash n} \frac{f^{\lambda}}{n!} f_{\lambda}(\alpha) \chi^{\lambda}$$

which is obtained by specializing the Frobenius character formula for \mathfrak{S}_n (see, e.g. [10]).

KAZUFUMI KIMOTO

Example 1.7. Let us calculate $F_{n,l}^{(nl)}(\alpha)$ by using Theorem 1.4. Since $\mathcal{S}^{(nl)}$ is the trivial representation, it follows that $(\mathcal{S}^{(nl)})^K = \mathcal{S}^{(nl)}$ and

$$F_{n,l}^{(nl)}(\alpha) = \sum_{h \in H} \alpha^{\nu(h)} \langle \boldsymbol{e} \cdot h, \, \boldsymbol{e} \rangle = \sum_{\sigma_1, \dots, \sigma_l \in \mathfrak{S}_n} \alpha^{\nu(\sigma_1)} \dots \alpha^{\nu(\sigma_l)}$$

where e denotes a unit vector in $\mathcal{S}^{(nl)}$.

Example 1.8. Let us calculate $F_{n,l}^{(nl-1,1)}(\alpha)$ by using Theorem 1.4. As is well known, the irreducible (right) \mathfrak{S}_{nl} -module $\mathcal{S}^{(nl-1,1)}$ can be realized in \mathbb{C}^{nl} as follows:

$$\mathcal{S}^{(nl-1,1)} = \left\{ (x_j)_{j=1}^{nl} \in \mathbb{C}^{nl} \ \middle| \ \sum_{j=1}^{nl} x_j = 0 \right\}.$$

This is a unitary representation with respect to the ordinary hermitian inner product $\langle \cdot, \cdot \rangle$ on \mathbb{C}^{nl} . It is immediate to see that

$$\left(\mathcal{S}^{(nl-1,1)}\right)^{K} = \left\{ (x_{j})_{j=1}^{nl} \in \mathcal{S}^{(nl-1,1)} \mid x_{pl+1} = x_{pl+2} = \dots = x_{(p+1)l} \quad (0 \le p < n) \right\}.$$

Take an orthonormal basis $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_{n-1}$ of $\left(\boldsymbol{\mathcal{S}}^{(nl-1,1)}\right)^K$ by

$$e_j = \frac{1}{\sqrt{nl}} \left(\widetilde{\omega^j, \dots, \omega^j}, \widetilde{\omega^{2j}, \dots, \omega^{2j}}, \dots, \widetilde{\omega^{nj}, \dots, \omega^{nj}} \right) \qquad (1 \le j \le n-1),$$

where ω is a primitive *n*-th root of unity. Then, the (i, j)-entry of the transition matrix $F_{n,l}^{(nl-1,1)}(\alpha)$ is

$$\sum_{h \in H} \alpha^{\nu(h)} \langle \boldsymbol{e}_i \cdot h, \, \boldsymbol{e}_j \rangle = \frac{1}{nl} \sum_{\sigma_1, \dots, \sigma_l \in \mathfrak{S}_n} \sum_{p=1}^n \sum_{q=1}^l \alpha^{\nu(\sigma_1)} \dots \alpha^{\nu(\sigma_l)} \omega^{\sigma_q(p)i-pj}$$
$$= \left(\sum_{\tau \in \mathfrak{S}_n} \alpha^{\nu(\tau)} \right)^{l-1} \left(\frac{1}{n} \sum_{\sigma \in \mathfrak{S}_n} \sum_{p=1}^n \alpha^{\nu(\sigma)} \omega^{\sigma(p)i-pj} \right).$$

The first factor is $((1 + \alpha)(1 + 2\alpha) \dots (1 + (n - 1)\alpha))^{l-1}$. We show that

$$\frac{1}{n}\sum_{\sigma\in\mathfrak{S}_n}\sum_{p=1}^n \alpha^{\nu(\sigma)}\omega^{\sigma(p)i-pj} = (1-\alpha)(1+\alpha)(1+2\alpha)\dots(1+(n-2)\alpha)\delta_{ij}$$

 $(i, j = 1, 2, \dots, n-1).$

 $= ((1 + \alpha)(1 + 2\alpha) \dots (1 + (n - 1)\alpha))^{l},$

For this purpose, by comparing the coefficients of α^{n-m} in both sides, it is enough to prove

$$\frac{1}{n} \sum_{\substack{\sigma \in \mathfrak{S}_n \\ \nu(\sigma) = n-m}} \sum_{p=1}^n \omega^{\sigma(p)i-pj} = \left\{ \begin{bmatrix} n-1 \\ m-1 \end{bmatrix} - \begin{bmatrix} n-1 \\ m \end{bmatrix} \right\} \delta_{ij}$$
(*i*, *j*, *m* = 1, 2, ..., *n* - 1),

where $\begin{bmatrix} n \\ m \end{bmatrix}$ denotes the Stirling number of the first kind (see, e.g. [5] for the definition). Since

$$|\{\sigma \in \mathfrak{S}_n \, ; \, \nu(\sigma) = n - m, \ \sigma(p) = x\}| = \begin{cases} \begin{bmatrix} n-1\\m-1 \end{bmatrix} & x = p, \\ \begin{bmatrix} n-1\\m-1 \end{bmatrix} & x \neq p \end{cases}$$

for each $p, x \in [n]$, it follows that

$$\frac{1}{n} \sum_{\sigma \in \mathfrak{S}_n} \sum_{p=1}^n \alpha^{\nu(\sigma)} \omega^{\sigma(p)i-pj} = \frac{1}{n} \sum_{p=1}^n \omega^{-pj} \left\{ \begin{bmatrix} n-1\\m-1 \end{bmatrix} \omega^{pi} + \sum_{x \neq p} \begin{bmatrix} n-1\\m \end{bmatrix} \omega^{xi} \right\}$$
$$= \left\{ \begin{bmatrix} n-1\\m-1 \end{bmatrix} - \begin{bmatrix} n-1\\m \end{bmatrix} \right\} \frac{1}{n} \sum_{p=1}^n \omega^{p(i-j)} = \left\{ \begin{bmatrix} n-1\\m-1 \end{bmatrix} - \begin{bmatrix} n-1\\m \end{bmatrix} \right\} \delta_{ij},$$

which is the required conclusion. Here we notice that $\sum_{x \neq p} \omega^{xi} = -\omega^{pi}$ since $1 \leq i < n$. Consequently, we obtain

$$F_{n,l}^{(nl-1,1)}(\alpha) = \left((1-\alpha) \left((1+\alpha)(1+2\alpha) \dots (1+(n-2)\alpha) \right)^l (1+(n-1)\alpha)^{l-1} \delta_{ij} \right)_{1 \le i,j \le n-1},$$

so that the multiplicity of $\mathcal{M}_n^{(nl-1,1)}$ in $V_{n,l}(\alpha)$ is zero if $\alpha = -1/k$ (k = 1, 2, ..., n-1) and n-1 otherwise.

The trace of the transition matrix $F_{n,l}^{\lambda}(\alpha)$ is

(1.9)
$$f_{n,l}^{\lambda}(\alpha) = \operatorname{tr} F_{n,l}^{\lambda}(\alpha) = \sum_{h \in H} \alpha^{\nu(h)} \omega^{\lambda}(h),$$

where ω^{λ} is the zonal spherical function for λ with respect to K defined by

$$\omega^{\lambda}(g) = \frac{1}{|K|} \sum_{k \in K} \chi^{\lambda}(kg) \quad (g \in \mathfrak{S}_{nl}).$$

This polynomial is regarded as a generalization of the modified content polynomial since $f_{n,1}^{\lambda}(\alpha) = f^{\lambda}f_{\lambda}(\alpha)$ as we see above. It is much easier to handle these polynomials than the transition matrices. If we could prove that a transition matrix $F_{n,l}^{\lambda}(\alpha)$ is a scalar matrix, then we would have $F_{n,l}^{\lambda}(\alpha) = d^{-1}f_{n,l}^{\lambda}(\alpha)I$ $(d = \dim(S^{\lambda})^{K})$ and hence we see that the multiplicity of $\mathcal{M}_{n}^{\lambda}$ in $\mathbf{V}_{n,l}(\alpha)$ is completely controlled by the single polynomial $f_{n,l}^{\lambda}(\alpha)$. In this sense, it is desirable to obtain a characterization of the irreducible representations whose corresponding transition matrices are scalar as well as to get an explicit expression for the polynomials $f_{n,l}^{\lambda}(\alpha)$. Here we give a sufficient condition for $\lambda \vdash nl$ such that $F_{n,l}^{\lambda}(\alpha)$ is a scalar matrix.

Proposition 1.9. (1) Denote by $N_H(K)$ the normalizer of K in H. The transition matrix $F_{n,l}^{\lambda}(\alpha)$ is scalar if $(S^{\lambda})^K$ is irreducible as a $N_H(K)$ -module.

(2) If λ is of hook-type (i.e. $\lambda = (nl - r, 1^r)$ for some r < n), then $F_{n,l}^{\lambda}(\alpha)$ is scalar.

Proof. Notice that $N_H(K) \cong \mathfrak{S}_n$. Consider a linear map $T \in \operatorname{End}((\mathcal{S}^{\lambda})^K)$ given by

$$T(\boldsymbol{x}) = \sum_{j=1}^d \left(\sum_{h \in H} \alpha^{\nu(h)} \left\langle \boldsymbol{x} \cdot h, \, \boldsymbol{e}_j^{\lambda} \right\rangle_{\mathcal{S}^{\lambda}} \right) \boldsymbol{e}_j^{\lambda} \qquad (\boldsymbol{x} \in (\mathcal{S}^{\lambda})^K),$$

where $d = \dim(\mathcal{S}^{\lambda})^{K}$. It is direct to check that T gives an intertwiner of $(\mathcal{S}^{\lambda})^{K}$ as a $N_{H}(K)$ -module. Hence, by Schur's lemma, T is a scalar map (and $F_{n,l}^{\lambda}(\alpha)$ is a scalar matrix) if $(\mathcal{S}^{\lambda})^{K}$ is an irreducible $N_{H}(K)$ -module. When $\lambda = (nl - r, 1^{r})$ for some r < n, it is proved in [2, Proposition 5.3] that $(\mathcal{S}^{(nl-r,1^{r})})^{K} \cong \mathcal{S}^{(n-r,1^{r})}$ as $N_{H}(K)$ -modules. Thus we have the proposition.

Example 1.10. Let us calculate $f_{n,l}^{(nl-1,1)}(\alpha)$. Notice that $\chi^{(nl-1,1)}(g) = \text{fix}_{nl}(g) - 1$ where fix_{nl} denotes the number of fixed points in the natural action $\mathfrak{S}_{nl} \curvearrowright [nl]$. Hence we see that

$$f_{n,l}^{(nl-1,1)}(\alpha) = \sum_{h \in H} \alpha^{\nu(h)} \frac{1}{|K|} \sum_{k \in K} (\operatorname{fix}_{nl}(kh) - 1)$$

=
$$\sum_{h \in H} \alpha^{\nu(h)} \frac{1}{|K|} \sum_{k \in K} \sum_{x \in [nl]} \delta_{khx,x} - \sum_{h \in H} \alpha^{\nu(h)}.$$

KAZUFUMI KIMOTO

It is easily seen that $khx \neq x$ for any $k \in K$ if $hx \neq x$ $(x \in [nl])$. Thus it follows that

$$\frac{1}{K|} \sum_{k \in K} \sum_{x \in [nl]} \delta_{khx,x} = \sum_{x \in [nl]} \delta_{hx,x} \frac{1}{|K|} \sum_{k \in K} \delta_{kx,x} = \frac{1}{l} \operatorname{fix}_{nl}(h) \qquad (h \in H).$$

Therefore we have

$$f_{n,l}^{(nl-1,1)}(\alpha) = \frac{1}{l} \sum_{h \in H} \alpha^{\nu(h)} \operatorname{fix}_{nl}(h) - \sum_{h \in H} \alpha^{\nu(h)} = f_{n,1}^{(n)}(\alpha)^{l-1} f_{n,1}^{(n-1,1)}(\alpha)$$
$$= (n-1)(1-\alpha)(1-(n-1)\alpha)^{l-1} \prod_{i=1}^{n-2} (1+i\alpha)^l.$$

Since the transition matrix $F_{n,l}^{(nl-1,1)}$ is a scalar one and its size is dim $\mathcal{S}^{(n-1,1)} = n-1$, we get $F_{n,l}^{(nl-1,1)}(\alpha) = (1-\alpha)(1-(n-1)\alpha)^{l-1}\prod_{i=1}^{n-2}(1+i\alpha)^{l}I_{n-1}$ again.

We will investigate these polynomials $f_{n,l}^{\lambda}(\alpha)$ and their generalizations in [?].

2. Irreducible decomposition of $V_{2,l}(\alpha)$ and Jacobi Polynomials

In this subsection, as a particular example, we consider the case where n = 2 and calculate the transition matrix $F_{2,l}^{\lambda}(\alpha)$ explicitly. Since the pair (\mathfrak{S}_{2l}, K) is a *Gelfand pair* (see, e.g. [10]), it follows that

$$K_{\lambda(l^2)} = \left\langle \operatorname{ind}_{K}^{\mathfrak{S}_{2l}} \mathbf{1}_{K}, \mathcal{S}^{\lambda} \right\rangle_{\mathfrak{S}_{2l}} = 1$$

for each $\lambda \vdash 2n$ with $\ell(\lambda) \leq 2$. Thus, in this case, the transition matrix is just a polynomial and is given by

(2.1)
$$F_{2,l}^{\lambda}(\alpha) = \operatorname{tr} F_{2,l}^{\lambda}(\alpha) = \sum_{h \in H} \alpha^{\nu(h)} \omega^{\lambda}(h) = \sum_{s=0}^{l} {l \choose s} \omega^{\lambda}(g_s) \alpha^s$$

Here we put $g_s = (1, l+1)(2, l+2) \dots (s, l+s) \in \mathfrak{S}_{2n}$. Now we write $\lambda = (2l-p, p)$ for some p $(0 \le p \le l)$. The value $\omega^{(2l-p,p)}(g_s)$ of the zonal spherical function is calculated by Bannai and Ito [3, p.218] as

$$\omega^{(2l-p,p)}(g_s) = Q_p(s; -l-1, -l-1, l) = \sum_{j=0}^p (-1)^j \binom{p}{j} \binom{2l-p+1}{j} \binom{l}{j}^{-2} \binom{s}{j},$$

where

$$Q_{n}(x;\alpha,\beta,N) = {}_{3}\tilde{F}_{2} \begin{pmatrix} -n, n+\alpha+\beta+1, -x\\ \alpha+1, -N \end{pmatrix} \\ = \sum_{j=0}^{N} (-1)^{j} {n \choose j} {\binom{-n-\alpha-\beta-1}{j}} {\binom{-\alpha-1}{j}^{-1} {\binom{N}{j}^{-1} {\binom{x}{j}}}$$

is the Hahn polynomial (see also [10, p.399]), and $_{n+1}\tilde{F}_n\left(\begin{smallmatrix}a_1,\ldots,a_p\\b_1,\ldots,b_{q-1},-N\end{smallmatrix};x\right)$ is the hypergeometric polynomial

$${}_{p}\tilde{F}_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q-1},-N\end{array};x\right)=\sum_{j=0}^{N}\frac{(a_{1})_{j}\ldots(a_{p})_{j}}{(b_{1})_{j}\ldots(b_{q-1})_{j}(-N)_{j}}\frac{x^{j}}{j!}$$

for $p, q, N \in \mathbb{N}$ in general (see [1]). We now re-prove Theorem ?? as follows:

Theorem 2.1. Let *l* be a positive integer. It holds that

$$F_{2,l}^{(2l-p,p)}(\alpha) = \sum_{s=0}^{l} \binom{l}{s} Q_p(s;l-1,l-1,l)\alpha^s = (1+\alpha)^{l-p} G_p^l(\alpha)$$

for p = 0, 1, ..., l.

Proof. Let us put $x = -1/\alpha$. Then we have

$$\sum_{s=0}^{l} {l \choose s} Q_p(s; l-1, l-1, l) \alpha^s$$

= $\sum_{j=0}^{p} (-1)^j {p \choose j} {2l-p+1 \choose j} {l \choose j}^{-1} \alpha^j (1+\alpha)^{l-j}$
= $x^{-l} (x-1)^{l-p} \sum_{j=0}^{p} {p \choose j} {2l-p+1 \choose j} {l \choose j}^{-1} (x-1)^{p-j}$

and

$$(1+\alpha)^{l-p}G_p^l(\alpha) = x^{-l}(x-1)^{l-p}\sum_{j=0}^p (-1)^j \binom{p}{j} \binom{l-p+j}{j} \binom{l}{j}^{-1} (-x)^{p-j}.$$

Here we use the elementary identity

$$\sum_{s=0}^{l} \binom{l}{s} \binom{s}{j} \alpha^{s} = \binom{l}{j} \alpha^{j} (1+\alpha)^{l-j}.$$

Hence, to prove the theorem, it is enough to verify

(2.2)
$$\sum_{i=0}^{p} \binom{p}{i} \binom{l-p+i}{i} \binom{l}{i}^{-1} x^{p-i} = \sum_{j=0}^{p} \binom{p}{j} \binom{2l-p+1}{j} \binom{l}{j}^{-1} (x-1)^{p-j}.$$

Comparing the coefficients of Taylor expansion of these polynomials at x = 1, we notice that the proof is reduced to the equality

(2.3)
$$\sum_{i=0}^{r} {\binom{l-i}{l-r}} {\binom{l-p+i}{l-p}} = {\binom{2l-p+1}{r}}$$

for $0 \le r \le p$, which is well known (see, e.g. (5.26) in [5]). Hence we have the conclusion.

Thus we obtain the irreducible decomposition

(2.4)
$$\mathbf{V}_{2,l}(-1) \cong \mathcal{M}_2^{(l,l)}, \qquad \mathbf{V}_{2,l}(\alpha) \cong \bigoplus_{\substack{0 \le p \le l \\ G_p^l(\alpha) \neq 0}} \mathcal{M}_2^{(2l-p,p)} \quad (\alpha \neq -1)$$

of $V_{2,l}(\alpha)$ again.

Remark 2.2. (1) The calculation above uses the advantage for the fact that the pair $(\mathfrak{S}_{nl}, \mathfrak{S}_{l}^{n})$ is the Gelfand pair only when n = 2.

(2) We have used the result in [3, p.218] for the theorem. It is worth mentioning that one may prove conversely the result in [3, p.218] from Theorem ??.

Acknowledgement

The author would thank Professor Itaru Terada for noticing that his work [2] is useful for the discussion in Section 6.2.

References

- G.E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999. MR1688958 (2000g:33001)
- S. Ariki, J. Matsuzawa and I. Terada, Representation of Weyl groups on zero weight spaces of g-modules, Algebraic and topological theories (Kinosaki, 1984), 546–568, Kinokuniya, Tokyo, 1986. MR1102274
- E. Bannai and T. Ito, Algebraic Combinatorics I, Association Schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. MR0882540 (87m:05001)
- 4. W. Fulton and J. Harris, *Representation theory. A first course*, Graduate Texts in Mathematics **129**, Readings in Mathematics. Springer-Verlag, New York, 1991. MR1153249 (93a:20069)

KAZUFUMI KIMOTO

- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A foundation for computer science, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1994. MR1397498 (97d:68003)
- I.M. Gel'fand and M.A. Naĭmark, Unitary representations of the Lorentz group, Acad. Sci. USSR. J. Phys. 10 (1946), 93–94; Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947), 411–504. MR0017282 (8,132b)
- 7. K. Kimoto, S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules and Jacobi polynomials, to appear in Trans. Amer. Math. Soc.
- 8. K. Kimoto and M. Wakayama, Invariant theory for singular α -determinants, J. Combin. Theory Ser. A **115** (2008), no. 1, 1–31. MR2378855
- 9. _____, Quantum α -determinant cyclic modules of $\mathcal{U}_q(\mathfrak{gl}_n)$, J. Algebra **313** (2007), 922–956. MR2329577 (2008d:17021)
- 10. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, 1995. MR1354144 (96h:05207)
- S. Matsumoto, Alpha-pfaffian, pfaffian point process and shifted Schur measure, Linear Algebra Appl. 403 (2005), 369–398. MR2140292 (2006d:15014)
- S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules of gl_n(ℂ), J. Lie Theory 16 (2006), 393–405. MR2197599 (2007a:17011)
- 13. G. Szegö, Orthogonal Polynomials, 4th edn., American Mathematical Society, 1975. MR0372517 (51 #8724)
- 14. S. Yu Slavyanov and W. Lay, Special Functions A Unified Theory Based on Singularities, Oxford: Oxford Univ. Press, 2000. MR1858237 (2004e:33003)
- T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), 414–463. MR2018415 (2004m:60104)
- D. Vere-Jones, A generalization of permanents and determinants, Linear Algebra Appl. 111 (1988), 119–124. MR0974048 (89j:15014)
- H. Weyl, The Classical Groups. Their invariants and representations, Fifteenth printing, Princeton Landmarks in Mathematics, Princeton University Press, 1997. MR1488158 (98k:01049)

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF THE RYUKYUS, NISHIHARA, OKINAWA 903-0213, JAPAN *E-mail address*: kimoto@math.u-ryukyu.ac.jp

8