REPRESENTATION THEORY OF THE α-DETERMINANT AND ZONAL SPHERICAL FUNCTIONS

KAZUFUMI KIMOTO

Abstract

We investigate the structure of the cyclic module $\boldsymbol{V}_{n, l}(\alpha)=\mathcal{U}\left(\mathfrak{g}_{n}\right) \cdot \operatorname{det}^{(\alpha)}(X)^{l}$ by embedding it to the tensor product space $\left(\mathbb{C}^{n}\right)^{\otimes n l}$ and utilizing the Schur-Weyl duality. We show that the entries of the transition matrices $F_{n, l}^{\lambda}(\alpha)$ are given by a variation of the spherical Fourier transformation of a certain class function on $\mathfrak{S}_{n l}$ with respect to the subgroup \mathfrak{S}_{l}^{n} (Theorem 1.4). This result also provides another proof of Theorem ??. Further, we calculate the polynomial $F_{2, l}^{(2 l-s, s)}(\alpha)$ by using an explicit formula of the values of zonal spherical functions for the Gelfand pair $\left(\mathfrak{S}_{2 l}, \mathfrak{S}_{l} \times \mathfrak{S}_{l}\right)$ due to Bannai and Ito (Theorem 2.1).

1. Irreducible decomposition of $\boldsymbol{V}_{n, l}(\alpha)$ and transition matrices

Let us fix $n, l \in \mathbb{N}$. Consider the standard tableau \mathbb{T} with shape $\left(l^{n}\right)$ such that the (i, j)-entry of \mathbb{T} is $(i-1) l+j$. For instance, if $n=3$ and $l=2$, then

$$
\mathbb{T}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline 5 & 6 \\
\hline
\end{array} .
$$

We denote by $K=R(\mathbb{T})$ and $H=C(\mathbb{T})$ the row group and column group of the standard tableau \mathbb{T} respectively. Namely,

$$
\begin{align*}
& K=\left\{g \in \mathfrak{S}_{n l} \mid\lceil g(x) / l\rceil=\lceil x / l\rceil, x \in[n l]\right\} \tag{1.1}\\
& H=\left\{g \in \mathfrak{S}_{n l} \mid g(x) \equiv x \quad(\bmod l), x \in[n l]\right\} . \tag{1.2}
\end{align*}
$$

We put

$$
\begin{equation*}
e=\frac{1}{|K|} \sum_{k \in K} k \in \mathbb{C}\left[\mathfrak{S}_{n l}\right] \tag{1.3}
\end{equation*}
$$

This is clearly an idempotent element in $\mathbb{C}\left[\mathfrak{S}_{n l}\right]$. Let φ be a class function on H. We put

$$
\Phi=\sum_{h \in H} \varphi(h) h \in \mathbb{C}\left[\mathfrak{S}_{n l}\right]
$$

Consider the tensor product space $V=\left(\mathbb{C}^{n}\right)^{\otimes n l}$. We introduce a $\left(\mathcal{U}\left(\mathfrak{g l}_{n}\right), \mathbb{C}\left[\mathfrak{S}_{n l}\right]\right)$-module structure of V by

$$
\begin{aligned}
E_{i j} \cdot \boldsymbol{e}_{i_{1}} \otimes \cdots \otimes \boldsymbol{e}_{i_{n l}} & =\sum_{s=1}^{n l} \delta_{i_{s}, j} \boldsymbol{e}_{i_{1}} \otimes \cdots \otimes \stackrel{s-\text { eth }}{i}^{\cdots} \otimes \otimes \boldsymbol{e}_{i_{n l}} \\
\boldsymbol{e}_{i_{1}} \otimes \cdots \otimes \boldsymbol{e}_{i_{n l}} \cdot \sigma & =\boldsymbol{e}_{i_{\sigma(1)}} \otimes \cdots \otimes \boldsymbol{e}_{i_{\sigma(n l)}} \quad\left(\sigma \in \mathfrak{S}_{n l}\right)
\end{aligned}
$$

where $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$ denotes the standard basis of \mathbb{C}^{n}. The main concern of this subsection is to describe the irreducible decomposition of the left $\mathcal{U}\left(\mathfrak{g l}_{n}\right)$-module $V \cdot e \Phi e$.

We first show that $\boldsymbol{V}_{n, l}(\alpha)$ is isomorphic to $V \cdot e \Phi e$ for a special choice of φ. Consider the group isomorphism $\theta: H \rightarrow \mathfrak{S}_{n}^{l}$ defined by

$$
\theta(h)=\left(\theta(h)_{1}, \ldots, \theta(h)_{l}\right) ; \quad \theta(h)_{i}(x)=y \Longleftrightarrow h((x-1) l+i)=(y-1) l+i .
$$

[^0]We also define an element $D(X ; \varphi) \in \mathcal{A}\left(\right.$ Mat $\left._{n}\right)$ by

$$
\begin{aligned}
D(X ; \varphi) & =\sum_{h \in H} \varphi(h) \prod_{q=1}^{n} \prod_{p=1}^{l} x_{\theta(h)_{p}(q), q}=\sum_{h \in H} \varphi(h) \prod_{q=1}^{n} \prod_{p=1}^{l} x_{q, \theta(h)_{p}^{-1}(q)} \\
& =\sum_{\sigma_{1}, \ldots, \sigma_{l} \in \mathfrak{S}_{n}} \varphi\left(\theta^{-1}\left(\sigma_{1}, \ldots, \sigma_{l}\right)\right) \prod_{q=1}^{n} \prod_{p=1}^{l} x_{\sigma_{p}(q), q}
\end{aligned}
$$

We note that $D\left(X ; \alpha^{\nu(\cdot)}\right)=\operatorname{det}^{(\alpha)}(X)^{l}$ since $\nu \theta^{-1}\left(\sigma_{1}, \ldots, \sigma_{l}\right)=\nu \sigma_{1}+\cdots+\nu \sigma_{l}$ for $\left(\sigma_{1}, \ldots, \sigma_{l}\right) \in \mathfrak{S}_{l}^{n}$.
Take a class function δ_{H} on H defined by

$$
\delta_{H}(h)= \begin{cases}1 & h=1 \\ 0 & h \neq 1\end{cases}
$$

We see that $D\left(X ; \delta_{H}\right)=\left(x_{11} x_{22} \ldots x_{n n}\right)^{l}$. We need the following lemma (The assertion (1) is just a rewrite of Lemma ??, and (2) is immediate to verify).
Lemma 1.1. (1) It holds that

$$
\begin{aligned}
& \mathcal{U}\left(\mathfrak{g l}_{n}\right) \cdot \boldsymbol{e}_{1}^{\otimes l} \otimes \cdots \otimes \boldsymbol{e}_{n}^{\otimes l}=V \cdot e=\mathcal{S}^{l}\left(\mathbb{C}^{n}\right)^{\otimes n} \\
& \mathcal{U}\left(\mathfrak{g l}_{n}\right) \cdot D\left(X ; \delta_{H}\right)=\bigoplus_{\substack{i_{p q} \in\{1,2, \ldots, n\} \\
(1 \leq p \leq l, 1 \leq q \leq n)}} \mathbb{C} \cdot \prod_{q=1}^{n} \prod_{p=1}^{l} x_{i_{p q} q} \cong \mathcal{S}^{l}\left(\mathbb{C}^{n}\right)^{\otimes n}
\end{aligned}
$$

(2) The map
$\mathcal{T}: \mathcal{U}\left(\mathfrak{g l}_{n}\right) \cdot D\left(X ; \delta_{H}\right) \ni \prod_{q=1}^{n} \prod_{p=1}^{l} x_{i_{p q} q}$

$$
\longmapsto\left(\boldsymbol{e}_{i_{11}} \otimes \cdots \otimes \boldsymbol{e}_{i_{11}}\right) \otimes \cdots \otimes\left(\boldsymbol{e}_{i_{1 n}} \otimes \cdots \otimes \boldsymbol{e}_{i_{l_{n}}}\right) \cdot e \in V \cdot e
$$

is a bijective $\mathcal{U}\left(\mathfrak{g l}_{n}\right)$-intertwiner.
We see that

$$
\begin{aligned}
& \mathcal{T}(D(X ; \varphi)) \\
= & \sum_{h \in H} \varphi(h) \mathcal{T}\left(\prod_{q=1}^{n} \prod_{p=1}^{l} x_{\theta(h)_{p}(q), q}\right) \\
= & \sum_{h \in H} \varphi(h)\left(\boldsymbol{e}_{\theta(h)_{1}(1)} \otimes \cdots \otimes \boldsymbol{e}_{\theta(h)_{l}(1)}\right) \otimes \cdots \otimes\left(\boldsymbol{e}_{\theta(h)_{1}(n)} \otimes \cdots \otimes \boldsymbol{e}_{\theta(h)_{l}(n)}\right) \cdot e \\
= & \boldsymbol{e}_{1}^{\otimes l} \otimes \cdots \otimes \boldsymbol{e}_{n}^{\otimes l} \cdot \sum_{h \in H} \varphi(h) h \cdot e=\boldsymbol{e}_{1}^{\otimes l} \otimes \cdots \otimes \boldsymbol{e}_{n}^{\otimes l} \cdot e \Phi e
\end{aligned}
$$

by (2) in Lemma 1.1. Using (1) in Lemma 1.1, we have the
Lemma 1.2. It holds that

$$
\mathcal{U}\left(\mathfrak{g l}_{n}\right) \cdot D(X ; \varphi) \cong V \cdot e \Phi e
$$

as a left $\mathcal{U}\left(\mathfrak{g l}_{n}\right)$-module. In particular, $V \cdot e \Phi e \cong \boldsymbol{V}_{n, l}(\alpha)$ if $\varphi(h)=\alpha^{\nu(h)}$.
By the Schur-Weyl duality, we have

$$
V \cong \bigoplus_{\lambda \vdash n l} \mathcal{M}_{n}^{\lambda} \boxtimes \mathcal{S}^{\lambda}
$$

Here \mathcal{S}^{λ} denotes the irreducible unitary right $\mathfrak{S}_{n l}$-module corresponding to λ. We see that

$$
\operatorname{dim}\left(\mathcal{S}^{\lambda} \cdot e\right)=\left\langle\operatorname{ind}_{K}^{G} \mathbf{1}_{K}, \mathcal{S}^{\lambda}\right\rangle_{\mathfrak{S}_{n l}}=K_{\lambda\left(l^{n}\right)}
$$

where $\mathbf{1}_{K}$ is the trivial representation of K and $\langle\pi, \rho\rangle_{\mathfrak{S}_{n l}}$ is the intertwining number of given representations π and ρ of $\mathfrak{S}_{n l}$. Since $K_{\lambda\left(l^{n}\right)}=0$ unless $\ell(\lambda) \leq n$, it follows the
Theorem 1.3. It holds that

$$
V \cdot e \Phi e \cong \bigoplus_{\substack{\lambda \vdash n l \\ \ell(\lambda) \leq n}} \mathcal{M}_{n}^{\lambda} \boxtimes\left(\mathcal{S}^{\lambda} \cdot e \Phi e\right)
$$

In particular, as a left $\mathcal{U}\left(\mathfrak{g l}_{n}\right)$-module, the multiplicity of $\mathcal{M}_{n}^{\lambda}$ in $V \cdot e \Phi e$ is given by

$$
\operatorname{dim}\left(\mathcal{S}^{\lambda} \cdot e \Phi e\right)=\operatorname{rk}_{\operatorname{End}\left(\mathcal{S}^{\lambda} \cdot e\right)}(e \Phi e)
$$

Let $\lambda \vdash n l$ be a partition such that $\ell(\lambda) \leq n$ and put $d=K_{\lambda\left(l^{n}\right)}$. We fix an orthonormal basis $\left\{\boldsymbol{e}_{1}^{\lambda}, \ldots, \boldsymbol{e}_{f^{\lambda}}^{\lambda}\right\}$ of \mathcal{S}^{λ} such that the first d vectors $\boldsymbol{e}_{1}^{\lambda}, \ldots, \boldsymbol{e}_{d}^{\lambda}$ form a subspace $\left(\mathcal{S}^{\lambda}\right)^{K}$ consisting of K-invariant vectors and left $f^{\lambda}-d$ vectors form the orthocomplement of $\left(\mathcal{S}^{\lambda}\right)^{K}$ with respect to the $\mathfrak{S}_{n l}$-invariant inner product. The matrix coefficient of \mathcal{S}^{λ} relative to this basis is

$$
\begin{equation*}
\psi_{i j}^{\lambda}(g)=\left\langle\boldsymbol{e}_{i}^{\lambda} \cdot g, \boldsymbol{e}_{j}^{\lambda}\right\rangle_{\mathcal{S}^{\lambda}} \quad\left(g \in \mathfrak{S}_{n l}, 1 \leq i, j \leq f^{\lambda}\right) \tag{1.4}
\end{equation*}
$$

We notice that this function is K-biinvariant. We see that the multiplicity of $\mathcal{M}_{n}^{\lambda}$ in $V \cdot e \Phi e$ is given by the rank of the matrix

$$
\left(\sum_{h \in H} \varphi(h) \psi_{i j}^{\lambda}(h)\right)_{1 \leq i, j \leq d}
$$

As a particular case, we obtain the
Theorem 1.4. The multiplicity of the irreducible representation $\mathcal{M}_{n}^{\lambda}$ in the cyclic module $\mathcal{U}\left(\mathfrak{g l}_{n}\right) \cdot \operatorname{det}^{(\alpha)}(X)^{l}$ is equal to the rank of

$$
\begin{equation*}
F_{n, l}^{\lambda}(\alpha)=\left(\sum_{h \in H} \alpha^{\nu(h)} \psi_{i j}^{\lambda}(h)\right)_{1 \leq i, j \leq d} \tag{1.5}
\end{equation*}
$$

where $\left\{\psi_{i j}^{\lambda}\right\}_{i, j}$ denotes a basis of the λ-component of the space $C\left(K \backslash \mathfrak{S}_{n l} / K\right)$ of K-biinvariant functions on $\mathfrak{S}_{n l}$ given by (1.4).
Remark 1.5. (1) We have $F_{n, l}^{\lambda}(0)=I$ by the definition of the basis $\left\{\psi_{i j}^{\lambda}\right\}_{i, j}$ in (1.4).
(2) Since $\alpha^{\nu\left(g^{-1}\right)}=\alpha^{\nu(g)}$ and $\psi_{i j}^{\lambda}\left(g^{-1}\right)=\overline{\psi_{j i}^{\lambda}(g)}$ for any $g \in \mathfrak{S}_{n l}$, the transition matrices satisfy $F_{n, l}^{\lambda}(\alpha)^{*}=$ $F_{n, l}^{\lambda}(\bar{\alpha})$.
(3) In Examples 1.6 and 1.8 below, the transition matrices are given by diagonal matrices. We expect that any transition matrix $F_{n, l}^{\lambda}(\alpha)$ is diagonalizable in $\operatorname{Mat}_{K_{\lambda\left(l^{n}\right)}}(\mathbb{C}[\alpha])$.

Example 1.6. If $l=1$, then $H=G=\mathfrak{S}_{n}$ and $K=\{1\}$. Therefore, for any $\lambda \vdash n$, we have

$$
\begin{equation*}
F_{n, 1}^{\lambda}(\varphi)=\frac{n!}{f^{\lambda}}\left\langle\varphi, \chi^{\lambda}\right\rangle_{\mathfrak{S}_{n}} I \tag{1.6}
\end{equation*}
$$

by the orthogonality of the matrix coefficients. Here χ^{λ} denotes the irreducible character of \mathfrak{S}_{n} corresponding to λ. In particular, if $\varphi=\alpha^{\nu(\cdot)}$, then

$$
\begin{equation*}
F_{n, 1}^{\lambda}(\alpha)=f_{\lambda}(\alpha) I \tag{1.7}
\end{equation*}
$$

since the Fourier expansion of $\alpha^{\nu(\cdot)}$ (as a class function on \mathfrak{S}_{n}) is

$$
\begin{equation*}
\alpha^{\nu(\cdot)}=\sum_{\lambda \vdash n} \frac{f^{\lambda}}{n!} f_{\lambda}(\alpha) \chi^{\lambda} \tag{1.8}
\end{equation*}
$$

which is obtained by specializing the Frobenius character formula for \mathfrak{S}_{n} (see, e.g. [10]).

Example 1.7. Let us calculate $F_{n, l}^{(n l)}(\alpha)$ by using Theorem 1.4. Since $\mathcal{S}^{(n l)}$ is the trivial representation, it follows that $\left(\mathcal{S}^{(n l)}\right)^{K}=\mathcal{S}^{(n l)}$ and

$$
F_{n, l}^{(n l)}(\alpha)=\sum_{h \in H} \alpha^{\nu(h)}\langle\boldsymbol{e} \cdot h, \boldsymbol{e}\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{l} \in \mathfrak{S}_{n}} \alpha^{\nu\left(\sigma_{1}\right)} \ldots \alpha^{\nu\left(\sigma_{l}\right)}
$$

$$
=((1+\alpha)(1+2 \alpha) \ldots(1+(n-1) \alpha))^{l}
$$

where \boldsymbol{e} denotes a unit vector in $\mathcal{S}^{(n l)}$.
Example 1.8. Let us calculate $F_{n, l}^{(n l-1,1)}(\alpha)$ by using Theorem 1.4. As is well known, the irreducible (right) $\mathfrak{S}_{n l}$-module $\mathcal{S}^{(n l-1,1)}$ can be realized in $\mathbb{C}^{n l}$ as follows:

$$
\mathcal{S}^{(n l-1,1)}=\left\{\left(x_{j}\right)_{j=1}^{n l} \in \mathbb{C}^{n l} \mid \sum_{j=1}^{n l} x_{j}=0\right\}
$$

This is a unitary representation with respect to the ordinary hermitian inner product $\langle\cdot, \cdot\rangle$ on $\mathbb{C}^{n l}$. It is immediate to see that

$$
\left(\mathcal{S}^{(n l-1,1)}\right)^{K}
$$

Take an orthonormal basis $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n-1}$ of $\left(\mathcal{S}^{(n l-1,1)}\right)^{K}$ by

$$
\boldsymbol{e}_{j}=\frac{1}{\sqrt{n l}}(\overbrace{\omega^{j}, \ldots, \omega^{j}}^{l}, \overbrace{\omega^{2 j}, \ldots, \omega^{2 j}}^{l}, \ldots, \overbrace{\omega^{n j}, \ldots, \omega^{n j}}^{l}) \quad(1 \leq j \leq n-1)
$$

where ω is a primitive n-th root of unity. Then, the (i, j)-entry of the transition matrix $F_{n, l}^{(n l-1,1)}(\alpha)$ is

$$
\begin{aligned}
\sum_{h \in H} \alpha^{\nu(h)}\left\langle\boldsymbol{e}_{i} \cdot h, \boldsymbol{e}_{j}\right\rangle & =\frac{1}{n l} \sum_{\sigma_{1}, \ldots, \sigma_{l} \in \mathfrak{S}_{n}} \sum_{p=1}^{n} \sum_{q=1}^{l} \alpha^{\nu\left(\sigma_{1}\right)} \ldots \alpha^{\nu\left(\sigma_{l}\right)} \omega^{\sigma_{q}(p) i-p j} \\
& =\left(\sum_{\tau \in \mathfrak{S}_{n}} \alpha^{\nu(\tau)}\right)^{l-1}\left(\frac{1}{n} \sum_{\sigma \in \mathfrak{S}_{n}} \sum_{p=1}^{n} \alpha^{\nu(\sigma)} \omega^{\sigma(p) i-p j}\right)
\end{aligned}
$$

The first factor is $((1+\alpha)(1+2 \alpha) \ldots(1+(n-1) \alpha))^{l-1}$. We show that

$$
\frac{1}{n} \sum_{\sigma \in \mathfrak{S}_{n}} \sum_{p=1}^{n} \alpha^{\nu(\sigma)} \omega^{\sigma(p) i-p j}=(1-\alpha)(1+\alpha)(1+2 \alpha) \ldots(1+(n-2) \alpha) \delta_{i j} \quad(i, j=1,2, \ldots, n-1)
$$

For this purpose, by comparing the coefficients of α^{n-m} in both sides, it is enough to prove

$$
\frac{1}{n} \sum_{\substack{\sigma \in \mathfrak{S}_{n} \\
\nu(\sigma)=n-m}} \sum_{p=1}^{n} \omega^{\sigma(p) i-p j}=\left\{\left[\begin{array}{c}
n-1 \\
m-1
\end{array}\right]-\left[\begin{array}{c}
n-1 \\
m
\end{array}\right]\right\} \delta_{i j}
$$

$$
(i, j, m=1,2, \ldots, n-1)
$$

where $\left[\begin{array}{c}n \\ m\end{array}\right]$ denotes the Stirling number of the first kind (see, e.g. [5] for the definition). Since

$$
\left|\left\{\sigma \in \mathfrak{S}_{n} ; \nu(\sigma)=n-m, \sigma(p)=x\right\}\right|=\left\{\begin{array}{cc}
{\left[\begin{array}{c}
n-1 \\
m-1
\end{array}\right]} & x=p \\
{\left[\begin{array}{c}
m-1 \\
m
\end{array}\right]} & x \neq p
\end{array}\right.
$$

for each $p, x \in[n]$, it follows that

$$
\begin{aligned}
& \frac{1}{n} \sum_{\sigma \in \mathfrak{S}_{n}} \sum_{p=1}^{n} \alpha^{\nu(\sigma)} \omega^{\sigma(p) i-p j}=\frac{1}{n} \sum_{p=1}^{n} \omega^{-p j}\left\{\left[\begin{array}{c}
n-1 \\
m-1
\end{array}\right] \omega^{p i}+\sum_{x \neq p}\left[\begin{array}{c}
n-1 \\
m
\end{array}\right] \omega^{x i}\right\} \\
&=\left\{\left[\begin{array}{c}
n-1 \\
m-1
\end{array}\right]-\left[\begin{array}{c}
n-1 \\
m
\end{array}\right]\right\} \frac{1}{n} \sum_{p=1}^{n} \omega^{p(i-j)}=\left\{\left[\begin{array}{c}
n-1 \\
m-1
\end{array}\right]-\left[\begin{array}{c}
n-1 \\
m
\end{array}\right]\right\} \delta_{i j}
\end{aligned}
$$

which is the required conclusion. Here we notice that $\sum_{x \neq p} \omega^{x i}=-\omega^{p i}$ since $1 \leq i<n$. Consequently, we obtain

$$
F_{n, l}^{(n l-1,1)}(\alpha)
$$

$$
=\left((1-\alpha)((1+\alpha)(1+2 \alpha) \ldots(1+(n-2) \alpha))^{l}(1+(n-1) \alpha)^{l-1} \delta_{i j}\right)_{1 \leq i, j \leq n-1}
$$

so that the multiplicity of $\mathcal{M}_{n}^{(n l-1,1)}$ in $\boldsymbol{V}_{n, l}(\alpha)$ is zero if $\alpha=-1 / k(k=1,2, \ldots, n-1)$ and $n-1$ otherwise.
The trace of the transition matrix $F_{n, l}^{\lambda}(\alpha)$ is

$$
\begin{equation*}
f_{n, l}^{\lambda}(\alpha)=\operatorname{tr} F_{n, l}^{\lambda}(\alpha)=\sum_{h \in H} \alpha^{\nu(h)} \omega^{\lambda}(h) \tag{1.9}
\end{equation*}
$$

where ω^{λ} is the zonal spherical function for λ with respect to K defined by

$$
\omega^{\lambda}(g)=\frac{1}{|K|} \sum_{k \in K} \chi^{\lambda}(k g) \quad\left(g \in \mathfrak{S}_{n l}\right)
$$

This polynomial is regarded as a generalization of the modified content polynomial since $f_{n, 1}^{\lambda}(\alpha)=f^{\lambda} f_{\lambda}(\alpha)$ as we see above. It is much easier to handle these polynomials than the transition matrices. If we could prove that a transition matrix $F_{n, l}^{\lambda}(\alpha)$ is a scalar matrix, then we would have $F_{n, l}^{\lambda}(\alpha)=d^{-1} f_{n, l}^{\lambda}(\alpha) I\left(d=\operatorname{dim}\left(\mathcal{S}^{\lambda}\right)^{K}\right)$ and hence we see that the multiplicity of $\mathcal{M}_{n}^{\lambda}$ in $\boldsymbol{V}_{n, l}(\alpha)$ is completely controlled by the single polynomial $f_{n, l}^{\lambda}(\alpha)$. In this sense, it is desirable to obtain a characterization of the irreducible representations whose corresponding transition matrices are scalar as well as to get an explicit expression for the polynomials $f_{n, l}^{\lambda}(\alpha)$. Here we give a sufficient condition for $\lambda \vdash n l$ such that $F_{n, l}^{\lambda}(\alpha)$ is a scalar matrix.
Proposition 1.9. (1) Denote by $N_{H}(K)$ the normalizer of K in H. The transition matrix $F_{n, l}^{\lambda}(\alpha)$ is scalar if $\left(\mathcal{S}^{\lambda}\right)^{K}$ is irreducible as a $N_{H}(K)$-module.
(2) If λ is of hook-type (i.e. $\lambda=\left(n l-r, 1^{r}\right)$ for some $\left.r<n\right)$, then $F_{n, l}^{\lambda}(\alpha)$ is scalar.

Proof. Notice that $N_{H}(K) \cong \mathfrak{S}_{n}$. Consider a linear map $T \in \operatorname{End}\left(\left(\mathcal{S}^{\lambda}\right)^{K}\right)$ given by

$$
T(\boldsymbol{x})=\sum_{j=1}^{d}\left(\sum_{h \in H} \alpha^{\nu(h)}\left\langle\boldsymbol{x} \cdot h, \boldsymbol{e}_{j}^{\lambda}\right\rangle_{\mathcal{S}^{\lambda}}\right) \boldsymbol{e}_{j}^{\lambda} \quad\left(\boldsymbol{x} \in\left(\mathcal{S}^{\lambda}\right)^{K}\right),
$$

where $d=\operatorname{dim}\left(\mathcal{S}^{\lambda}\right)^{K}$. It is direct to check that T gives an intertwiner of $\left(\mathcal{S}^{\lambda}\right)^{K}$ as a $N_{H}(K)$-module. Hence, by Schur's lemma, T is a scalar map (and $F_{n, l}^{\lambda}(\alpha)$ is a scalar matrix) if $\left(\mathcal{S}^{\lambda}\right)^{K}$ is an irreducible $N_{H}(K)$-module. When $\lambda=\left(n l-r, 1^{r}\right)$ for some $r<n$, it is proved in [2, Proposition 5.3] that $\left(\mathcal{S}^{\left(n l-r, 1^{r}\right)}\right)^{K} \cong \mathcal{S}^{\left(n-r, 1^{r}\right)}$ as $N_{H}(K)$-modules. Thus we have the proposition.
Example 1.10. Let us calculate $f_{n, l}^{(n l-1,1)}(\alpha)$. Notice that $\chi^{(n l-1,1)}(g)=\operatorname{fix}_{n l}(g)-1$ where fix $n l$ denotes the number of fixed points in the natural action $\mathfrak{S}_{n l} \curvearrowright[n l]$. Hence we see that

$$
f_{n, l}^{(n l-1,1)}(\alpha)=\sum_{h \in H} \alpha^{\nu(h)} \frac{1}{|K|} \sum_{k \in K}\left(\operatorname{fix}_{n l}(k h)-1\right)
$$

$$
=\sum_{h \in H} \alpha^{\nu(h)} \frac{1}{|K|} \sum_{k \in K} \sum_{x \in[n l]} \delta_{k h x, x}-\sum_{h \in H} \alpha^{\nu(h)} .
$$

It is easily seen that $k h x \neq x$ for any $k \in K$ if $h x \neq x(x \in[n l])$. Thus it follows that

$$
\frac{1}{|K|} \sum_{k \in K} \sum_{x \in[n l]} \delta_{k h x, x}=\sum_{x \in[n l]} \delta_{h x, x} \frac{1}{|K|} \sum_{k \in K} \delta_{k x, x}=\frac{1}{l} \mathrm{fix}_{n l}(h) \quad(h \in H) .
$$

Therefore we have

$$
\begin{aligned}
f_{n, l}^{(n l-1,1)}(\alpha) & =\frac{1}{l} \sum_{h \in H} \alpha^{\nu(h)} \operatorname{fix}_{n l}(h)-\sum_{h \in H} \alpha^{\nu(h)}=f_{n, 1}^{(n)}(\alpha)^{l-1} f_{n, 1}^{(n-1,1)}(\alpha) \\
& =(n-1)(1-\alpha)(1-(n-1) \alpha)^{l-1} \prod_{i=1}^{n-2}(1+i \alpha)^{l}
\end{aligned}
$$

Since the transition matrix $F_{n, l}^{(n l-1,1)}$ is a scalar one and its size is $\operatorname{dim} \mathcal{S}^{(n-1,1)}=n-1$, we get $F_{n, l}^{(n l-1,1)}(\alpha)=$ $(1-\alpha)(1-(n-1) \alpha)^{l-1} \prod_{i=1}^{n-2}(1+i \alpha)^{l} I_{n-1}$ again.

We will investigate these polynomials $f_{n, l}^{\lambda}(\alpha)$ and their generalizations in [?].

2. Irreducible decomposition of $\boldsymbol{V}_{2, l}(\alpha)$ and Jacobi polynomials

In this subsection, as a particular example, we consider the case where $n=2$ and calculate the transition matrix $F_{2, l}^{\lambda}(\alpha)$ explicitly. Since the pair $\left(\mathfrak{S}_{2 l}, K\right)$ is a Gelfand pair (see, e.g. [10]), it follows that

$$
K_{\lambda\left(l^{2}\right)}=\left\langle\operatorname{ind}_{K}^{\mathfrak{S}_{2 l}} \mathbf{1}_{K}, \mathcal{S}^{\lambda}\right\rangle_{\mathfrak{S}_{2 l}}=1
$$

for each $\lambda \vdash 2 n$ with $\ell(\lambda) \leq 2$. Thus, in this case, the transition matrix is just a polynomial and is given by

$$
\begin{equation*}
F_{2, l}^{\lambda}(\alpha)=\operatorname{tr} F_{2, l}^{\lambda}(\alpha)=\sum_{h \in H} \alpha^{\nu(h)} \omega^{\lambda}(h)=\sum_{s=0}^{l}\binom{l}{s} \omega^{\lambda}\left(g_{s}\right) \alpha^{s} . \tag{2.1}
\end{equation*}
$$

Here we put $g_{s}=(1, l+1)(2, l+2) \ldots(s, l+s) \in \mathfrak{S}_{2 n}$. Now we write $\lambda=(2 l-p, p)$ for some $p(0 \leq p \leq l)$. The value $\omega^{(2 l-p, p)}\left(g_{s}\right)$ of the zonal spherical function is calculated by Bannai and Ito [3, p.218] as

$$
\omega^{(2 l-p, p)}\left(g_{s}\right)=Q_{p}(s ;-l-1,-l-1, l)=\sum_{j=0}^{p}(-1)^{j}\binom{p}{j}\binom{2 l-p+1}{j}\binom{l}{j}^{-2}\binom{s}{j}
$$

where

$$
\begin{aligned}
Q_{n}(x ; \alpha, \beta, N) & ={ }_{3} \tilde{F}_{2}\left(\begin{array}{c}
-n, n+\alpha+\beta+1,-x \\
\alpha+1,-N
\end{array}\right] \\
& =\sum_{j=0}^{N}(-1)^{j}\binom{n}{j}\binom{-n-\alpha-\beta-1}{j}\binom{-\alpha-1}{j}^{-1}\binom{N}{j}^{-1}\binom{x}{j}
\end{aligned}
$$

is the Hahn polynomial (see also [10, p.399]), and ${ }_{n+1} \tilde{F}_{n}\left(\begin{array}{c}a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{q-1},-N\end{array} ; x\right)$ is the hypergeometric polynomial

$$
{ }_{p} \tilde{F}_{q}\left(\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q-1},-N
\end{array} ; x\right)=\sum_{j=0}^{N} \frac{\left(a_{1}\right)_{j} \ldots\left(a_{p}\right)_{j}}{\left(b_{1}\right)_{j} \ldots\left(b_{q-1}\right)_{j}(-N)_{j}} \frac{x^{j}}{j!}
$$

for $p, q, N \in \mathbb{N}$ in general (see [1]). We now re-prove Theorem ?? as follows:
Theorem 2.1. Let l be a positive integer. It holds that

$$
F_{2, l}^{(2 l-p, p)}(\alpha)=\sum_{s=0}^{l}\binom{l}{s} Q_{p}(s ; l-1, l-1, l) \alpha^{s}=(1+\alpha)^{l-p} G_{p}^{l}(\alpha)
$$

for $p=0,1, \ldots, l$.

Proof. Let us put $x=-1 / \alpha$. Then we have

$$
\begin{aligned}
& \sum_{s=0}^{l}\binom{l}{s} Q_{p}(s ; l-1, l-1, l) \alpha^{s} \\
= & \sum_{j=0}^{p}(-1)^{j}\binom{p}{j}\binom{2 l-p+1}{j}\binom{l}{j}^{-1} \alpha^{j}(1+\alpha)^{l-j} \\
= & x^{-l}(x-1)^{l-p} \sum_{j=0}^{p}\binom{p}{j}\binom{2 l-p+1}{j}\binom{l}{j}^{-1}(x-1)^{p-j}
\end{aligned}
$$

and

$$
(1+\alpha)^{l-p} G_{p}^{l}(\alpha)=x^{-l}(x-1)^{l-p} \sum_{j=0}^{p}(-1)^{j}\binom{p}{j}\binom{l-p+j}{j}\binom{l}{j}^{-1}(-x)^{p-j}
$$

Here we use the elementary identity

$$
\sum_{s=0}^{l}\binom{l}{s}\binom{s}{j} \alpha^{s}=\binom{l}{j} \alpha^{j}(1+\alpha)^{l-j}
$$

Hence, to prove the theorem, it is enough to verify

$$
\begin{equation*}
\sum_{i=0}^{p}\binom{p}{i}\binom{l-p+i}{i}\binom{l}{i}^{-1} x^{p-i}=\sum_{j=0}^{p}\binom{p}{j}\binom{2 l-p+1}{j}\binom{l}{j}^{-1}(x-1)^{p-j} \tag{2.2}
\end{equation*}
$$

Comparing the coefficients of Taylor expansion of these polynomials at $x=1$, we notice that the proof is reduced to the equality

$$
\begin{equation*}
\sum_{i=0}^{r}\binom{l-i}{l-r}\binom{l-p+i}{l-p}=\binom{2 l-p+1}{r} \tag{2.3}
\end{equation*}
$$

for $0 \leq r \leq p$, which is well known (see, e.g. (5.26) in [5]). Hence we have the conclusion.
Thus we obtain the irreducible decomposition

$$
\begin{equation*}
\boldsymbol{V}_{2, l}(-1) \cong \mathcal{M}_{2}^{(l, l)}, \quad \boldsymbol{V}_{2, l}(\alpha) \cong \bigoplus_{\substack{0 \leq p \leq l \\ G_{p}^{l}(\alpha) \neq 0}} \mathcal{M}_{2}^{(2 l-p, p)} \quad(\alpha \neq-1) \tag{2.4}
\end{equation*}
$$

of $\boldsymbol{V}_{2, l}(\alpha)$ again.
Remark 2.2. (1) The calculation above uses the advantage for the fact that the pair $\left(\mathfrak{S}_{n l}, \mathfrak{S}_{l}^{n}\right)$ is the Gelfand pair only when $n=2$.
(2) We have used the result in [3, p.218] for the theorem. It is worth mentioning that one may prove conversely the result in [3, p.218] from Theorem ??.

Acknowledgement

The author would thank Professor Itaru Terada for noticing that his work [2] is useful for the discussion in Section 6.2.

References

1. G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999. MR1688958 (2000g:33001)
2. S. Ariki, J. Matsuzawa and I. Terada, Representation of Weyl groups on zero weight spaces of \mathfrak{g}-modules, Algebraic and topological theories (Kinosaki, 1984), 546-568, Kinokuniya, Tokyo, 1986. MR1102274
3. E. Bannai and T. Ito, Algebraic Combinatorics I, Association Schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. MR0882540 (87m:05001)
4. W. Fulton and J. Harris, Representation theory. A first course, Graduate Texts in Mathematics 129, Readings in Mathematics. Springer-Verlag, New York, 1991. MR1153249 (93a:20069)
5. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A foundation for computer science, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1994. MR1397498 (97d:68003)
6. I. M. Gel'fand and M. A. Naı̆mark, Unitary representations of the Lorentz group, Acad. Sci. USSR. J. Phys. 10 (1946), 93-94; Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947), 411-504. MR0017282 (8,132b)
7. K. Kimoto, S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules and Jacobi polynomials, to appear in Trans. Amer. Math. Soc.
8. K. Kimoto and M. Wakayama, Invariant theory for singular α-determinants, J. Combin. Theory Ser. A 115 (2008), no. 1, $1-31$. MR2378855
\qquad , Quantum α-determinant cyclic modules of $\mathcal{U}_{q}\left(\mathfrak{g} L_{n}\right)$, J. Algebra 313 (2007), 922-956. MR2329577 (2008d:17021)
9. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, 1995. MR1354144 (96h:05207)
10. S. Matsumoto, Alpha-pfaffian, pfaffian point process and shifted Schur measure, Linear Algebra Appl. 403 (2005), 369-398. MR2140292 (2006d:15014)
11. S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules of $\mathfrak{g l} \mathrm{K}_{n}(\mathbb{C})$, J. Lie Theory 16 (2006), 393-405. MR2197599 (2007a:17011)
12. G. Szegö, Orthogonal Polynomials, 4th edn., American Mathematical Society, 1975. MR0372517 (51 \#8724)
13. S. Yu Slavyanov and W. Lay, Special Functions - A Unified Theory Based on Singularities, Oxford: Oxford Univ. Press, 2000. MR1858237 (2004e:33003)
14. T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), 414-463. MR2018415 (2004m:60104)
15. D. Vere-Jones, A generalization of permanents and determinants, Linear Algebra Appl. 111 (1988), 119-124. MR0974048 (89j:15014)
16. H. Weyl, The Classical Groups. Their invariants and representations, Fifteenth printing, Princeton Landmarks in Mathematics, Princeton University Press, 1997. MR1488158 (98k:01049)

Department of Mathematical Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
E-mail address: kimoto@math.u-ryukyu.ac.jp

[^0]: Date: October 30, 2008.
 2000 Mathematics Subject Classification. Primary 22E47, 33C45; Secondary 43A90, 13A50.
 Key words and phrases. Alpha-determinant, cyclic modules, Jacobi polynomials, singly confluent Heun ODE, permanent, Kostka numbers, irreducible decomposition, spherical Fourier transformation, zonal spherical functions, Gelfand pair.

