
REPRESENTATION THEORY OF THE α-DETERMINANT
AND ZONAL SPHERICAL FUNCTIONS

KAZUFUMI KIMOTO

Abstract. We investigate the structure of the cyclic module Vn,l(α) = U(gln) · det(α)(X)l by embedding it

to the tensor product space (Cn)⊗nl and utilizing the Schur-Weyl duality. We show that the entries of the
transition matrices F λ

n,l(α) are given by a variation of the spherical Fourier transformation of a certain class

function on Snl with respect to the subgroup Sn
l (Theorem 1.4). This result also provides another proof of

Theorem ??. Further, we calculate the polynomial F
(2l−s,s)
2,l (α) by using an explicit formula of the values of

zonal spherical functions for the Gelfand pair (S2l, Sl × Sl) due to Bannai and Ito (Theorem 2.1).

1. Irreducible decomposition of Vn,l(α) and transition matrices

Let us fix n, l ∈ N. Consider the standard tableau T with shape (ln) such that the (i, j)-entry of T is
(i − 1)l + j. For instance, if n = 3 and l = 2, then

T =
1 2
3 4
5 6

.

We denote by K = R(T) and H = C(T) the row group and column group of the standard tableau T respectively.
Namely,

K =
{
g ∈ Snl

∣∣ dg(x)/le = dx/le , x ∈ [nl]
}

,(1.1)

H =
{
g ∈ Snl

∣∣ g(x) ≡ x (mod l), x ∈ [nl]
}

.(1.2)

We put

(1.3) e =
1
|K|

∑
k∈K

k ∈ C[Snl].

This is clearly an idempotent element in C[Snl]. Let ϕ be a class function on H. We put

Φ =
∑
h∈H

ϕ(h)h ∈ C[Snl].

Consider the tensor product space V = (Cn)⊗nl. We introduce a (U(gln), C[Snl])-module structure of V by

Eij · ei1 ⊗ · · · ⊗ einl
=

nl∑
s=1

δis,j ei1 ⊗ · · · ⊗ s-th
ei ⊗ · · · ⊗ einl

,

ei1 ⊗ · · · ⊗ einl
· σ = eiσ(1) ⊗ · · · ⊗ eiσ(nl) (σ ∈ Snl),

where {ei}n
i=1 denotes the standard basis of Cn. The main concern of this subsection is to describe the irreducible

decomposition of the left U(gln)-module V · eΦe.
We first show that Vn,l(α) is isomorphic to V ·eΦe for a special choice of ϕ. Consider the group isomorphism

θ : H → Sl
n defined by

θ(h) = (θ(h)1, . . . , θ(h)l); θ(h)i(x) = y ⇐⇒ h((x − 1)l + i) = (y − 1)l + i.
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We also define an element D(X;ϕ) ∈ A(Matn) by

D(X;ϕ) =
∑
h∈H

ϕ(h)
n∏

q=1

l∏
p=1

xθ(h)p(q),q =
∑
h∈H

ϕ(h)
n∏

q=1

l∏
p=1

xq,θ(h)−1
p (q)

=
∑

σ1,...,σl∈Sn

ϕ(θ−1(σ1, . . . , σl))
n∏

q=1

l∏
p=1

xσp(q),q.

We note that D(X;αν(·)) = det(α)(X)l since νθ−1(σ1, . . . , σl) = νσ1 + · · · + νσl for (σ1, . . . , σl) ∈ Sn
l .

Take a class function δH on H defined by

δH(h) =

{
1 h = 1
0 h 6= 1.

We see that D(X; δH) = (x11x22 . . . xnn)l. We need the following lemma (The assertion (1) is just a rewrite of
Lemma ??, and (2) is immediate to verify).

Lemma 1.1. (1) It holds that

U(gln) · e⊗l
1 ⊗ · · · ⊗ e⊗l

n = V · e = Sl(Cn)⊗n,

U(gln) · D(X; δH) =
⊕

ipq∈{1,2,...,n}
(1≤p≤l, 1≤q≤n)

C ·
n∏

q=1

l∏
p=1

xipqq
∼= Sl(Cn)⊗n.

(2) The map

T : U(gln) · D(X; δH) 3
n∏

q=1

l∏
p=1

xipqq

7−→ (ei11 ⊗ · · · ⊗ eil1) ⊗ · · · ⊗ (ei1n
⊗ · · · ⊗ eiln

) · e ∈ V · e
is a bijective U(gln)-intertwiner. ¤

We see that

T (D(X;ϕ))

=
∑
h∈H

ϕ(h)T

(
n∏

q=1

l∏
p=1

xθ(h)p(q),q

)
=

∑
h∈H

ϕ(h)(eθ(h)1(1) ⊗ · · · ⊗ eθ(h)l(1)) ⊗ · · · ⊗ (eθ(h)1(n) ⊗ · · · ⊗ eθ(h)l(n)) · e

= e⊗l
1 ⊗ · · · ⊗ e⊗l

n ·
∑
h∈H

ϕ(h)h · e = e⊗l
1 ⊗ · · · ⊗ e⊗l

n · eΦe

by (2) in Lemma 1.1. Using (1) in Lemma 1.1, we have the

Lemma 1.2. It holds that

U(gln) · D(X;ϕ) ∼= V · eΦe

as a left U(gln)-module. In particular, V · eΦe ∼= Vn,l(α) if ϕ(h) = αν(h). ¤
By the Schur-Weyl duality, we have

V ∼=
⊕
λ`nl

Mλ
n £ Sλ.

Here Sλ denotes the irreducible unitary right Snl-module corresponding to λ. We see that

dim
(
Sλ · e

)
=

〈
indG

K 1K , Sλ
〉

Snl

= Kλ(ln),
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where 1K is the trivial representation of K and 〈π, ρ〉Snl
is the intertwining number of given representations π

and ρ of Snl. Since Kλ(ln) = 0 unless `(λ) ≤ n, it follows the

Theorem 1.3. It holds that

V · eΦe ∼=
⊕
λ`nl

`(λ)≤n

Mλ
n £

(
Sλ · eΦe

)
.

In particular, as a left U(gln)-module, the multiplicity of Mλ
n in V · eΦe is given by

dim
(
Sλ · eΦe

)
= rkEnd(Sλ·e)(eΦe).

¤

Let λ ` nl be a partition such that `(λ) ≤ n and put d = Kλ(ln). We fix an orthonormal basis {eλ
1 , . . . , eλ

fλ}
of Sλ such that the first d vectors eλ

1 , . . . , eλ
d form a subspace (Sλ)K consisting of K-invariant vectors and left

fλ−d vectors form the orthocomplement of (Sλ)K with respect to the Snl-invariant inner product. The matrix
coefficient of Sλ relative to this basis is

(1.4) ψλ
ij(g) =

〈
eλ

i · g, eλ
j

〉
Sλ (g ∈ Snl, 1 ≤ i, j ≤ fλ).

We notice that this function is K-biinvariant. We see that the multiplicity of Mλ
n in V · eΦe is given by the

rank of the matrix (∑
h∈H

ϕ(h)ψλ
ij(h)

)
1≤i,j≤d

.

As a particular case, we obtain the

Theorem 1.4. The multiplicity of the irreducible representation Mλ
n in the cyclic module U(gln) · det(α)(X)l

is equal to the rank of

(1.5) Fλ
n,l(α) =

(∑
h∈H

αν(h)ψλ
ij(h)

)
1≤i,j≤d

,

where {ψλ
ij}i,j denotes a basis of the λ-component of the space C(K\Snl/K) of K-biinvariant functions on Snl

given by (1.4). ¤

Remark 1.5. (1) We have Fλ
n,l(0) = I by the definition of the basis {ψλ

ij}i,j in (1.4).

(2) Since αν(g−1) = αν(g) and ψλ
ij(g

−1) = ψλ
ji(g) for any g ∈ Snl, the transition matrices satisfy Fλ

n,l(α)∗ =
Fλ

n,l(α).
(3) In Examples 1.6 and 1.8 below, the transition matrices are given by diagonal matrices. We expect that

any transition matrix Fλ
n,l(α) is diagonalizable in MatKλ(ln)(C[α]).

Example 1.6. If l = 1, then H = G = Sn and K = {1}. Therefore, for any λ ` n, we have

(1.6) Fλ
n,1(ϕ) =

n!
fλ

〈
ϕ, χλ

〉
Sn

I

by the orthogonality of the matrix coefficients. Here χλ denotes the irreducible character of Sn corresponding
to λ. In particular, if ϕ = αν(·), then

(1.7) Fλ
n,1(α) = fλ(α)I

since the Fourier expansion of αν(·) (as a class function on Sn) is

(1.8) αν(·) =
∑
λ`n

fλ

n!
fλ(α)χλ,

which is obtained by specializing the Frobenius character formula for Sn (see, e.g. [10]).
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Example 1.7. Let us calculate F
(nl)
n,l (α) by using Theorem 1.4. Since S(nl) is the trivial representation, it

follows that (S(nl))K = S(nl) and

F
(nl)
n,l (α) =

∑
h∈H

αν(h) 〈e · h, e〉=
∑

σ1,...,σl∈Sn

αν(σ1) . . . αν(σl)

= ((1 + α)(1 + 2α) . . . (1 + (n − 1)α))l
,

where e denotes a unit vector in S(nl).

Example 1.8. Let us calculate F
(nl−1,1)
n,l (α) by using Theorem 1.4. As is well known, the irreducible (right)

Snl-module S(nl−1,1) can be realized in Cnl as follows:

S(nl−1,1) =

{
(xj)nl

j=1 ∈ Cnl

∣∣∣∣∣
nl∑

j=1

xj = 0

}
.

This is a unitary representation with respect to the ordinary hermitian inner product 〈·, ·〉on Cnl. It is immediate
to see that(

S(nl−1,1)
)K

=
{

(xj)nl
j=1 ∈ S(nl−1,1)

∣∣∣ xpl+1 = xpl+2 = · · · = x(p+1)l (0 ≤ p < n)
}

.

Take an orthonormal basis e1, . . . , en−1 of
(
S(nl−1,1)

)K
by

ej =
1√
nl

( l︷ ︸︸ ︷
ωj , . . . , ωj ,

l︷ ︸︸ ︷
ω2j , . . . , ω2j , . . . ,

l︷ ︸︸ ︷
ωnj , . . . , ωnj

)
(1 ≤ j ≤ n − 1),

where ω is a primitive n-th root of unity. Then, the (i, j)-entry of the transition matrix F
(nl−1,1)
n,l (α) is

∑
h∈H

αν(h) 〈ei · h, ej〉=
1
nl

∑
σ1,...,σl∈Sn

n∑
p=1

l∑
q=1

αν(σ1) . . . αν(σl)ωσq(p)i−pj

=

( ∑
τ∈Sn

αν(τ)

)l−1 (
1
n

∑
σ∈Sn

n∑
p=1

αν(σ)ωσ(p)i−pj

)
.

The first factor is ((1 + α)(1 + 2α) . . . (1 + (n − 1)α))l−1. We show that

1
n

∑
σ∈Sn

n∑
p=1

αν(σ)ωσ(p)i−pj = (1 − α)(1 + α)(1 + 2α) . . . (1 + (n − 2)α)δij

(i, j = 1, 2, . . . , n − 1).

For this purpose, by comparing the coefficients of αn−m in both sides, it is enough to prove

1
n

∑
σ∈Sn

ν(σ)=n−m

n∑
p=1

ωσ(p)i−pj =
{[

n − 1
m − 1

]
−

[
n − 1

m

]}
δij

(i, j,m = 1, 2, . . . , n − 1),

where
[

n
m

]
denotes the Stirling number of the first kind (see, e.g. [5] for the definition). Since

|{σ ∈ Sn ; ν(σ) = n − m, σ(p) = x}| =

{[
n−1
m−1

]
x = p,[

n−1
m

]
x 6= p
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for each p, x ∈ [n], it follows that

1
n

∑
σ∈Sn

n∑
p=1

αν(σ)ωσ(p)i−pj =
1
n

n∑
p=1

ω−pj


[

n − 1
m − 1

]
ωpi +

∑
x 6=p

[
n − 1

m

]
ωxi


=

{[
n − 1
m − 1

]
−

[
n − 1

m

]}
1
n

n∑
p=1

ωp(i−j) =
{[

n − 1
m − 1

]
−

[
n − 1

m

]}
δij ,

which is the required conclusion. Here we notice that
∑

x 6=p ωxi = −ωpi since 1 ≤ i < n. Consequently, we
obtain

F
(nl−1,1)
n,l (α)

=
(
(1 − α) ((1 + α)(1 + 2α) . . . (1 + (n − 2)α))l (1 + (n − 1)α)l−1δij

)
1≤i,j≤n−1

,

so that the multiplicity of M(nl−1,1)
n in Vn,l(α) is zero if α = −1/k (k = 1, 2, . . . , n − 1) and n − 1 otherwise.

The trace of the transition matrix Fλ
n,l(α) is

(1.9) fλ
n,l(α) = trFλ

n,l(α) =
∑
h∈H

αν(h)ωλ(h),

where ωλ is the zonal spherical function for λ with respect to K defined by

ωλ(g) =
1
|K|

∑
k∈K

χλ(kg) (g ∈ Snl).

This polynomial is regarded as a generalization of the modified content polynomial since fλ
n,1(α) = fλfλ(α) as

we see above. It is much easier to handle these polynomials than the transition matrices. If we could prove that
a transition matrix Fλ

n,l(α) is a scalar matrix, then we would have Fλ
n,l(α) = d−1fλ

n,l(α)I (d = dim(Sλ)K) and
hence we see that the multiplicity of Mλ

n in Vn,l(α) is completely controlled by the single polynomial fλ
n,l(α).

In this sense, it is desirable to obtain a characterization of the irreducible representations whose corresponding
transition matrices are scalar as well as to get an explicit expression for the polynomials fλ

n,l(α). Here we give
a sufficient condition for λ ` nl such that Fλ

n,l(α) is a scalar matrix.

Proposition 1.9. (1) Denote by NH(K) the normalizer of K in H. The transition matrix Fλ
n,l(α) is scalar

if (Sλ)K is irreducible as a NH(K)-module.
(2) If λ is of hook-type (i.e. λ = (nl − r, 1r) for some r < n), then Fλ

n,l(α) is scalar.

Proof. Notice that NH(K) ∼= Sn. Consider a linear map T ∈ End((Sλ)K) given by

T (x) =
d∑

j=1

(∑
h∈H

αν(h)
〈
x · h, eλ

j

〉
Sλ

)
eλ

j (x ∈ (Sλ)K),

where d = dim(Sλ)K . It is direct to check that T gives an intertwiner of (Sλ)K as a NH(K)-module. Hence,
by Schur’s lemma, T is a scalar map (and Fλ

n,l(α) is a scalar matrix) if (Sλ)K is an irreducible NH(K)-module.
When λ = (nl − r, 1r) for some r < n, it is proved in [2, Proposition 5.3] that (S(nl−r,1r))K ∼= S(n−r,1r) as
NH(K)-modules. Thus we have the proposition. ¤

Example 1.10. Let us calculate f
(nl−1,1)
n,l (α). Notice that χ(nl−1,1)(g) = fixnl(g) − 1 where fixnl denotes the

number of fixed points in the natural action Snl y [nl]. Hence we see that

f
(nl−1,1)
n,l (α) =

∑
h∈H

αν(h) 1
|K|

∑
k∈K

(fixnl(kh) − 1)

=
∑
h∈H

αν(h) 1
|K|

∑
k∈K

∑
x∈[nl]

δkhx,x −
∑
h∈H

αν(h).
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It is easily seen that khx 6= x for any k ∈ K if hx 6= x (x ∈ [nl]). Thus it follows that

1
|K|

∑
k∈K

∑
x∈[nl]

δkhx,x =
∑

x∈[nl]

δhx,x
1
|K|

∑
k∈K

δkx,x =
1
l

fixnl(h) (h ∈ H).

Therefore we have

f
(nl−1,1)
n,l (α) =

1
l

∑
h∈H

αν(h) fixnl(h) −
∑
h∈H

αν(h) = f
(n)
n,1 (α)l−1f

(n−1,1)
n,1 (α)

= (n − 1)(1 − α)(1 − (n − 1)α)l−1
n−2∏
i=1

(1 + iα)l.

Since the transition matrix F
(nl−1,1)
n,l is a scalar one and its size is dimS(n−1,1) = n − 1, we get F

(nl−1,1)
n,l (α) =

(1 − α)(1 − (n − 1)α)l−1
∏n−2

i=1 (1 + iα)lIn−1 again.

We will investigate these polynomials fλ
n,l(α) and their generalizations in [?].

2. Irreducible decomposition of V2,l(α) and Jacobi polynomials

In this subsection, as a particular example, we consider the case where n = 2 and calculate the transition
matrix Fλ

2,l(α) explicitly. Since the pair (S2l,K) is a Gelfand pair (see, e.g. [10]), it follows that

Kλ(l2) =
〈
indS2l

K 1K , Sλ
〉

S2l

= 1

for each λ ` 2n with `(λ) ≤ 2. Thus, in this case, the transition matrix is just a polynomial and is given by

(2.1) Fλ
2,l(α) = tr Fλ

2,l(α) =
∑
h∈H

αν(h)ωλ(h) =
l∑

s=0

(
l

s

)
ωλ(gs)αs.

Here we put gs = (1, l + 1)(2, l + 2) . . . (s, l + s) ∈ S2n. Now we write λ = (2l − p, p) for some p (0 ≤ p ≤ l).
The value ω(2l−p,p)(gs) of the zonal spherical function is calculated by Bannai and Ito [3, p.218] as

ω(2l−p,p)(gs) = Qp(s;−l − 1,−l − 1, l) =
p∑

j=0

(−1)j

(
p

j

)(
2l − p + 1

j

)(
l

j

)−2(
s

j

)
,

where

Qn(x;α, β,N) = 3F̃2

(
−n, n + α + β + 1,−x

α + 1,−N
; 1

)
=

N∑
j=0

(−1)j

(
n

j

)(
−n − α − β − 1

j

)(
−α − 1

j

)−1(
N

j

)−1(
x

j

)

is the Hahn polynomial (see also [10, p.399]), and n+1F̃n

(
a1,...,ap

b1,...,bq−1,−N
;x

)
is the hypergeometric polynomial

pF̃q

(
a1, . . . , ap

b1, . . . , bq−1,−N
;x

)
=

N∑
j=0

(a1)j . . . (ap)j

(b1)j . . . (bq−1)j(−N)j

xj

j!

for p, q,N ∈ N in general (see [1]). We now re-prove Theorem ?? as follows:

Theorem 2.1. Let l be a positive integer. It holds that

F
(2l−p,p)
2,l (α) =

l∑
s=0

(
l

s

)
Qp(s; l − 1, l − 1, l)αs = (1 + α)l−pGl

p(α)

for p = 0, 1, . . . , l.
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Proof. Let us put x = −1/α. Then we have
l∑

s=0

(
l

s

)
Qp(s; l − 1, l − 1, l)αs

=
p∑

j=0

(−1)j

(
p

j

)(
2l − p + 1

j

)(
l

j

)−1

αj(1 + α)l−j

= x−l(x − 1)l−p

p∑
j=0

(
p

j

)(
2l − p + 1

j

)(
l

j

)−1

(x − 1)p−j

and

(1 + α)l−pGl
p(α) = x−l(x − 1)l−p

p∑
j=0

(−1)j

(
p

j

)(
l − p + j

j

)(
l

j

)−1

(−x)p−j .

Here we use the elementary identity
l∑

s=0

(
l

s

)(
s

j

)
αs =

(
l

j

)
αj(1 + α)l−j .

Hence, to prove the theorem, it is enough to verify

(2.2)
p∑

i=0

(
p

i

)(
l − p + i

i

)(
l

i

)−1

xp−i =
p∑

j=0

(
p

j

)(
2l − p + 1

j

)(
l

j

)−1

(x − 1)p−j .

Comparing the coefficients of Taylor expansion of these polynomials at x = 1, we notice that the proof is reduced
to the equality

(2.3)
r∑

i=0

(
l − i

l − r

)(
l − p + i

l − p

)
=

(
2l − p + 1

r

)
for 0 ≤ r ≤ p, which is well known (see, e.g. (5.26) in [5]). Hence we have the conclusion. ¤

Thus we obtain the irreducible decomposition

V2,l(−1) ∼= M(l,l)
2 , V2,l(α) ∼=

⊕
0≤p≤l

Gl
p(α)6=0

M(2l−p,p)
2 (α 6= −1)(2.4)

of V2,l(α) again.

Remark 2.2. (1) The calculation above uses the advantage for the fact that the pair (Snl,S
n
l ) is the Gelfand

pair only when n = 2.
(2) We have used the result in [3, p.218] for the theorem. It is worth mentioning that one may prove

conversely the result in [3, p.218] from Theorem ??.
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