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1 Introduction

We would like to love people and mathematics for peace and stability to the
world. Yes, we can do, as possible, to some extent.

Following [30] we as beginners, outsiders, fools, or not would like to study
the free probability theory for operator algebras.

This is a sort of mathematical surfing to make it clear against a mathematical
water wall such a lecture notes book. It means a mathematical understanding for
some unkind notions such as independence, freeness, and more, together with
illustrative helpful examples at the basic level. We made some considerable
effort to do this somewhat completely (Yatta mine).

This is nothing but a review.
We use the standard notation by our taste.
The contents are as follows.
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1.1 The first outlooking at the background

The commutation relation of (linear) operators X, Y , and I the identity operator
on a Hilbert space in quantum mechanics is given as

XY − Y X = [X,Y ] = αI, α ∈ C.

In this case, the commutator [X,Y ] commutes with X and Y .
Let Fn denote the free group of n generators with respective n inverses.

Then elements of Fn are viewed as words generated by 2n characters, with
cancellation as gg−1 = 1. where such words may have multiplicity free as g2.
Even usual words such as Good or Look do have multiplicity, but they are not
so many? We may consider only multiplicity non-free words such as God or so.

Let H be a Hilbert space. We consider the infinite (or l2-)direct sum (or
product) of n-fold tensor product spaces ⊗nH = H ⊗· · ·⊗H of H. Namely, let

T (H) = F (H) = ⊕∞
n=0 ⊗n H, ⊗0H = C = C1

named as the Fock (tensor sum) space of states of (elementary) particles with
⊗0H vacuum state (cf. [3]).

For any h ∈ H, the left creation (or tensor multiplication) operator Lh on
T (H) a Hilbert space is defined as

Lhξ = h ⊗ ξ = (h ⊗ ξn)

for ξ = (ξn) ∈ T (H), ξn ∈ ⊗nH.
The operator Lh creates new states of particles by tensor with shift.
The operator Lh and its adjoint operator L∗

h generate the extended Cuntz
(?) C∗-algebra.

⋆ Note that (cf. [14])

∥h ⊗ ξn∥2 = 〈h ⊗ ξn, h ⊗ ξn〉 = 〈h, h〉〈ξn, ξn〉 = ∥h∥2∥ξn∥2.

As well, ∥ξ∥2 =
∑∞

n=0 ∥ξn∥2 < ∞ for ξ ∈ T (H). Therefore,

∥Lhξ∥2 =
∞∑

n=0

∥h ⊗ ξn∥2 = ∥h∥2∥ξ∥2.

Thus, ∥Lh∥ ≤ ∥h∥ by definition of the operator supremum norm. Namely, Lh

is a bounded operator. Conversely,

∥Lh(1, 0, 0, · · · )∥ = ∥(0, h, 0, · · · )∥ = ∥h∥.

Therefore, ∥Lh∥ = ∥h∥. In particular, Lh is an isometry for h with norm 1.
We also compute that with Th = Lh,

〈ξ, T ∗
hThη〉 = 〈Thξ, Thη〉 =

∞∑
n=0

〈h ⊗ ξn, h ⊗ ηn〉

= ∥h∥2
∞∑

n=0

〈ξn, ηn〉 = ∥h∥2〈ξ, η〉.
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Therefore, if ∥h∥ = 1, then T ∗
hTh is the identity operator 1 on T (H). As well,

T ∗
h (Thη) = T ∗

h (0, h ⊗ η0, h ⊗ η1, · · · ) = (η0, η1, · · · ) = η.

That’s it! Moreover,

〈ξ, T ∗
h (η′

0, 0, · · · )〉 = 〈Thξ, (η0, 0, · · · )〉 = 0,

so that T ∗
h (η′

0, 0, · · · ) = 0.
The operator T ∗

h is called the annihilation operator. It annihilates vacuum
state of particles.

Annihilation in physics means that when particles collide (or bump) with
anti-particles, their mass become energy to disappear.

The C∗-algebra generated by Th and T ∗
h for h ∈ H with norm 1 is certainly

called the Toeplitz algebra.
Suppose now that vectors h, k ∈ H are orthogonal. Namely, the inner prod-

uct 〈h, k〉 = 0. Then

〈Thξ, Tkη〉 =
∞∑

n=0

〈h ⊗ ξn, k ⊗ ηn〉

=
∞∑

n=0

〈h, k〉〈ξn, ηn〉 = 0.

Therefore, the operators Th and Tk have ranges orthogonal. In this case, but
the direct sum of their ranges is not F (H), so that the C∗-algebra generated
by Th and Tk with their adjoints on F (H) may be called as the Cuntz like (or
similar) algebra denoted by O∼

2 by us.
Similarly, for mutually orthogonal n vectors hj ∈ H, j = 1, · · · , n, the

operators Thj have ranges mutually orthogonal, but the direct sum of their
ranges is not F (H), so that the C∗-algebra generated by Thj , j = 1, · · · , n may
be the Cuntz like (or similar) algebra O∼

n .
However, if we can identify F (H) with the direct sum of those ranges, then

our like O∼
n can be identified with Cuntz On.

Moreover, for a sequence of mutually orthogonal vectors hn ∈ H, n ∈ N, the
operators Thn have ranges mutually orthogonal, so that the unital C∗-algebra
generated by Thn , n ∈ N is just isomorphic to the (universal) Cuntz algebra
O∞.

Random variables in probability as measurable (real or complex valued)
functions on a measurable space are replaced with (some) operators on a Hilbert
space (of square summable or integrable measurable functions) in free (or semi-
free) or noncommutative probability, as which are also observables in quantum
mechanics.

A noncommutative probability (function) space is defined to be a unital
(operator) algebra A over C endowed with a (positive) liner functional ϕ : A → C
as probability (?) integral (!) such that ϕ(1) = 1 (so that ϕ(a∗a) ≥ 0 for any
a ∈ A).
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Table 1: A comparison of Classical and Quantum mechanics bases

Classical Quantum
A function f on a space X An operator T on a Hilbert space H

Bounded or unbounded The same as the left
Real valued or Hermite Self-adjoint or real spectrum

Circle valued Unitary or circle (part) spectrum
Commutative algebra by f Operator algebra A by T

(L) Integral
∫

X
f(x)dx Functional value ϕ(T )

Elements of A are called noncommutative random variables.
The distribution of a family of elements aj of A for j ∈ J a set is provided

by the information of moments ϕ(aj1 · · · ajn) for j1, · · · , jn ∈ J .
Let P = P ({Xj}j∈J) be the algebra over C of polynomials of mutually

uncommuting inderminates Xj . There is a homomorphism χ from P to A by
sending Xj to aj . Thus, there is the linear map ϕ ◦ χ from P to C. Namely,

(ϕ ◦ χ)(Xj1 · · ·Xjn) = ϕ(aj1 · · · ajn) ∈ C.

Table 2: Moments and more for functions and operators

Type Classical (Lebesgue) Quantum
Mean or expectation µ =

∫
X

xdx = E[x] µ = ϕ(T )
n-th moments µn =

∫
X

xndx = E[xn] µn = ϕ(Tn)
Variance σ2 =

∫
X
|x − µ|2dx ϕ((T ∗ − µ1)(T − µ1))

Standard deviation σ ≥ 0 The similar

Let A be a (unital) C∗-algebra and a = a∗ ∈ A an Hermitian element and ϕ
a state on A, that is, a positive linear functional on A with supremum norm 1
on the unit ball of A. We say that (A, ϕ) as above is a C∗-probability space.

There corresponds to a compactly supported probability measure µa for the
element a on R such that

ϕ(an) =
∫

R
tndµa(t)

which extends by linearity to polynomials by the element a. In particular, in
the unit case, with the support supp(µa) ⊂ R compact (or bounded and closed),

1 = ϕ(1) =
∫

R
1dµa(t) = µa(supp(µa))
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Therefore, for Hermitian random variables, we obtain corresponding probability
(P) measures as in the classical P theory. That is determined completely by the
moments collected.

⋆ The spectrum theory (cf. [17]) implies that the C∗-algebra generated by
a normal element a (i.e. aa∗ = a∗a) and 1 is isomorphic to the C∗-algebra
C(sp(a)) of all continuous complex-valued functions on the spectrum sp(a) of a.
If a = a∗, then sp(a) is contained in R (cf. [6]). The spectrum for any element
is contained in C and always closed. For any bounded operator b, its spectrum
is bounded by the operator norm of b. Thus, if an operator is bounded, then
its spectrum is compact. For a bounded self-adjoint operator a, the measure
µa or the corresponding functional ϕ can be given by the normalized Lebesgue
measure restricted to sp(a). Namely, µa = 1

µ(sp(a))µ with µ L measure, and
ϕ(a) =

∫
sp(a)

tdµa(t).

⋆ The dual (Banach) space A∗ of bounded linear functionals on a C∗-algebra
A is certainly known to somewhat extent. The space of states on A is a closed
subspace of A∗. In particular, it is known as the Riesz theorem that the dual
(Banach) space C(I)∗ of the C∗-algebra C(I) of all continuous functions on a
closed interval I = [a, b] is identified with the space V b

0 (I) of bounded variation
functions v(t) on I such that v(a) = 0, and that the Stieltjes integral of f ∈ C(I)
by v defines the corresponding functional as

ϕ(f) =
∫ b

a

f(t)dv(t), ϕ ∈ C(I)∗

with norm of ϕ equal to the total variation of v on I as the supremum of finite
sums of variations of v with respect to finite partitions of I (cf. [10]).

The independence distinguishes free and the other quantum or noncommu-
tative, or classical probabilities.

In quantum (or operator) mechanics, the independence is said to be classical
independence, modeled on tensor products of algebras.

Two (unital) subalgebras B and C of (A, ϕ) are said to be classically inde-
pendent if they commute, namely [B,C] = 0, and if

ϕ(bc) = ϕ(b)ϕ(c) b ∈ B, c ∈ C.

Note that the last condition amounts to that independent random variables (in
classical mechanics) factorize under expectation (E).

⋆ Let (B, ϕ) and (C, ψ) be C∗-probability spaces with B, C unital. Then
they are identified with respective tensor factors of the tensor product B ⊗ C
with a C∗-norm and be classically independent in (B ⊗ C, ϕ ⊗ ψ). Indeed,
[B ⊗ 1, 1 ⊗ C] = 0 and

(ϕ ⊗ ψ)(b ⊗ c) = (ϕ ⊗ ψ)(b ⊗ 1)(ϕ ⊗ ψ)(1 ⊗ c) = ϕ(b)ψ(c) b ∈ B, c ∈ C

by the definition of ϕ ⊗ ψ.
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⋆ Let X ⊂ Rn be a (L) measurable set with (L) measure µ(X) = 1. For two
random variables f(x) and g(y) for (x, y) ∈ X × X, which are integrable on X
with respect to µ, we have

E[f(x)g(y)] =
∫

X×X

f(x)g(y)dµ(x)dµ(y)

=
∫

X

f(x)dµ(x)
∫

X

g(y)dµ(y)

=
∫

X×X

f(x)dµ(x)dµ(y)
∫

X×X

g(y)dµ(x)dµ(y)

= E[f(x)]E[g(y)]

by the Fubini theorem. Namely, f(x) and g(y) on X × X are independent in
the usual or classical sense.

We have the free independence in the free probability theory. A family of
unital subalgebras Aj , j ∈ J in a C∗-probability space (A, ϕ) is said to be freely
independent or free if

ϕ(a1a2 · · · ak) = 0, aj ∈ Aij , 1 ≤ j ≤ k

such that i1 ̸= i2 ̸= · · · ̸= ik in J and ϕ(aj) = 0, 1 ≤ j ≤ k. The sets of some
variables in (A, ϕ) are said to be free if the algebras generated by each of the
variables are free.

⋆ Let f(x) = x for x ∈ X = [−1, 1] = Y the interval. In this case, we have
∫

X2
(f(x) ⊗ 1)

1
2
dx

1
2
dy =

∫ 1

−1

x
1
2
dx

∫ 1

−1

1
2
dy = [

x2

4
]1x=−1 = 0.

But
∫

X2
(x ⊗ 1)(1 ⊗ y)(x ⊗ 1)(1 ⊗ y)

1
2
dx

1
2
dy

=
∫ 1

−1

x2 1
2
dx

∫ 1

−1

y2 1
2
dy = 2[

x3

6
]1x=−1 =

2
3
̸= 0.

Therefore, the two variables x ⊗ 1 and 1 ⊗ y are not free with respect to ϕ =∫
X2

1
2dx1

2dy, but they are classically independent. So what are free variables?

We denote by vN(Fn) the von Neumann algebra by the left regular repre-
sentation of the free group Fn of n generators.

The problem of Murray and von Neumann is whether the von Neumann
algebras vN(Fn) and vN(Fm) are non-isomorphic for n ̸= m.

This seems to be still unsolved since it is raised some long time about 90
years ago.

⋆ A C∗-algebra can be represented isometrically as an operator (sup) norm
closed, involutive (or ∗-) subalgebra of the C∗-algebra B(H) of all bounded
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operators on a Hilbert space H. A von Neuamnn algebra is defined to be an
operator strongly (or weakly) closed, ∗-subalgebra of B(H) for some Hilbert H.

Note that for an operator T ∈ B(H) and vectors ξ, η ∈ H, we have the
Cauchy-Schwarz inequality and the vector to operator norm estimate

|〈Tξ, η〉| ≤ ∥Tξ∥∥η∥ ≤ ∥T∥∥ξ∥∥η∥,

which implies that norm convergence for operators implies strong convergence
and strong convergence implies weak convergence.

Let V be a strongly closed subset of B(H). If a sequence of operators of
V converges to an operator T in B(H) in norm, then it converges strongly to
T , so that T belongs to V . Thus V is norm closed. It then follows that a von
Neumann algebra is a C∗-algebra.

⋆ We denote by l2(Fn) the Hilbert space of square summable complex-valued
functions on the free (or any discrete) group Fn as a space. The left regular
(unitary) representation λ of Fn on l2(Fn) is defined to be that

λgf(x) = f(g−1x), g, x ∈ Fn, f ∈ l2(Fn).

Note that for g1, g2 ∈ Fn, we have

λg1g2f(x) = f(g−1
2 g−1

1 x) = (λg2f)(g−1
1 x) = λg1(λg2f)(x).

Also, we compute

〈λ∗
gf, h〉 = 〈f, λgh〉 =

∑
x∈Fn

f(x)h(g−1x) (s = g−1x)

=
∑

s∈Fn

f(gs)h(s) = 〈λg−1f, h〉.

Hence, λ∗
g = λg−1 = λ−1

g , that is unitary. The free group von Neumann algebra
vN(Fn) is defined to be the von Neumann algebra generated by the unitary
operators λg, g ∈ Fn on l2(Fn). What is difficulty? It’s Fn, which is non-
amenable.

⋆ By the way, the free groups Fn and Fm are non-isomorphic for n ̸= m. This
hard question has been solved by (Pimsner-Voiculescu), Cuntz (and Blackadar)
by using the K-theory of the full (or reduced) group C∗-algebras C∗(Fn) of the
free groups Fn. Indeed, the K0-group of C∗(Fn) is Z, but the K1 is Zn, which
implies the non-isomorphism (cf. [2]).

⋆ The operator weak or strong closures for some sets of operators are larger
than the operator norm closure in general. For instance, the commutative C∗-
algebra C(I) of continuous functions on the interval I = [0, 1] ⊂ R is strictly
contained in the abelian von Neumann algebra L∞(I) of essentially bounded
measurable complex-valued functions on I.

⋆ The C∗-algebras corresponding to groups or spaces do remember topologi-
cal space invariants to somewhat extents. On the other hand, the von Neumann
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algebras to them do only Borel space invariants in some sense. Therefore, the
von Neumann problem is probably solved to be the unique isomorphism class
by this sense only.

The von Neumann tracial state of vN(Fn) is defined to be that

τ(T ) = 〈Tχe, χe〉, T ∈ vN(Fn)

where e is the identity element of Fn, and χe is the characteristic function on
Fn at {e} as support. The set {χg | g ∈ Fn} is the canonical basis of the Hilbert
space l2(Fn).

⋆ For T, S ∈ vN(Fn) and α, β ∈ C, we have

τ(αT + βS) = 〈(αT + βS)χe, χe〉 = ατ(T ) + βτ(S).

As well, τ(T ∗T ) = ∥Tχe∥2 ≥ 0. Thus, τ is a positive functional on vN(Fn).
Moreover, τ(1) = ∥χe∥2 = 1. Hence, τ is a state on vN(Fn).

⋆ We compute that for λg, λh ∈ vN(Fn) for g, h ∈ Fn with gh ̸= e,

〈λgλhχe, χe〉 =
∑

x∈Fn

λg(λhχe)(x)χe(x) =
∑

x∈Fn

χe(h−1g−1x)χe(x) = 0,

and similarly, 〈λhλgχe, χe〉 = 0, so that τ(λgλh) = τ(λhλg) = 0. Moreover,
τ(λg) = 0 if g ̸= e. On the other hand, τ(λe) = 1 with λe = 1 ∈ vN(Fn). It
then follows that τ is a tracial state on vN(Fn). Namely, τ(TS) = τ(ST ) for
any T, S ∈ vN(Fn). Indeed, suppose that nets of elements generated by λg for
g ∈ Fn with the trace τ zero converge weakly to some element T of vN(Fn).
Then it follows that τ(T ) = 0, so that τ(TS) = 0 = τ(ST ) for TS ̸= 1 ̸= ST .

⋆ It also follows in particular the following. Let a, b be the generators of
F2. Then the (unital) (involutive) subalgebra generated by λa and the subalge-
bra generated by λb in vN(F2) are freely independent with respect to the von
Neumann trace τ .

⋆ Let T1 =
∑

g∈Fn
αgλg ∈ vN(Fn) and T2 =

∑
h∈Fm

βhλh ∈ vN(Fm) with
αg, βh ∈ C and with λg and λh distinguished. We have Fn+m

∼= Fn ∗ Fm the
free product group of Fn and Fm and also C∗(Fn+m) ∼= C∗(Fn) ∗ C∗(Fm) the
(unital) free product of C∗(Fn) and C∗(Fm) (and as well the reduced version
and the von Neumann version). The (multiplication) operators T1 and T2 both
extend to those on the vN(Fn+m) with 1 on vN(Fm) and vN(Fn) respectively.
Let τ be the von Neumann trace on vN(Fn+m). Then

τ(T1 + T2) = αe + βe = τ(T1) + τ(T2).

On the other hand, we compute that

τ((T1 + T2)2) = α2
e + 2αeβe + β2

e = τ(T 2
1 ) + 2τ(T1T2) + τ(T 2

2 ).

Moreover,

τ((T1 + T2)3) = α3
e + 3α2

eβe + 3αeβ
2
e + β3

e

= τ(T 3
1 ) + 3τ(T 2

1 T2) + 3τ(T1T
2
2 ) + τ(T 3

2 ).
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It then certainly follows inductively that the n-moments of T1+T2 depend on the
n-moments of T1 and T2 as well as the n-moments of Tn−k

1 T k
2 for 1 ≤ k ≤ n−1,

but not on the (first) moments of T1 and T2. Note also that we do have

τ(Tn−k
1 T k

2 ) = τ(Tn−k
1 )τ(T k

2 ).

By the way, we have

T1T2 =
∑

g∈Fn

αgλg

∑
h∈Fm

βhλh

=
∑

g∈Fn

∑
h∈Fm

αgβhλgλh (k = gh ∈ Fn+m)

=
∑

k∈Fn+m,k=gh,g∈Fn,h∈Fm

αgβhλk.

Namely, the product of the operators T1, T2 is given by a sort of convolution.
⋆ Let Mn(C) be the C∗-algebra of all n×n matrices over complex numbers.

The trace on Mn(C) is defined to be tr((aij)) =
∑n

j=1 ajj ∈ C for A = (aij) ∈
Mn(C) as a linear functional. The tracial state on Mn(C) is then given by
ϕ = 1

n tr. Note that ϕ(1) = 1 with 1 ∈ Mn(C) the identity matrix and that

tr(A∗A) =
n∑

k=1

n∑
j=1

ajkajk =
n∑

k=1

n∑
j=1

|ajk|2 ≥ 0.

As well,

tr(AB) =
n∑

k=1

n∑
j=1

akjbjk =
n∑

j=1

n∑
k=1

bjkakj = tr(BA).

⋆ Let X be a compact Hausdorff space with µ a probability measure. Let
C(X,Mn(C)) ∼= C(X)⊗Mn(C) be the C∗-algebra of continuous Mn(C)-valued
functions on X. Define a tracial state ϕ on C(X,Mn(C)) by

ϕ(f) =
∫

X

1
n

tr(f(x))dµ(x), f = f(x) ∈ C(X,Mn(C)).

In particular, ϕ(1) =
∫

X
1dµ(x) = µ(X) = 1. If f = f∗, then ϕ(f) ∈ R. The

functions f may be viewed as random matrices.
The von Neumann algebra vN(Fn) can be viewed as being asymptotically

generated by random matrices.
There is an isomorphism between vN(F∞) and p(vN(F∞))p for a projection

p with trace rational or not.
There are the Dykema-Radulescu interpolated free group factors DR(Fr) for

real r > 1 generalizing vN(Fn). In particular, we have DR(Fr+s) ∼ DR(Fr) ∗
DR(Fs).
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2 The second outlooking at the basics

2.1 Operator probability spaces

Let ϕ : A → C be a positive unital linear functional on a unital C∗-algebra A
over C. Then ϕ(a∗) = ϕ(a) for a ∈ A.

Proof. Define a positive sesquilinear form (or an inner product) ρ on A2 by
ρ(a, b) = ϕ(b∗a) for (a, b) ∈ A2. In particular, ρ(a, a) ≥ 0. Then we have

ρ(a, b) = ρ(b, a) = ϕ(a∗b).

This is one of the properties of an inner product.
Indeed, the ρ defines a norm on A by

√
ρ(a, a). Then the ρ can be written by

the norm as a linear combination. It then follows that that property holds.

Let A be a von Neumann algebra. A normal state ϕ on A is ultra-weakly
continuous.

Proof. We may refer to [21]. Assume that A is represented on a Hilbert space H.
We denote by A∗ the Banach space of all σ-weakly continuous linear functionals
on A. Each element of A∗ is said to be normal. The space A∗ is named as the
pre-dual of A.

The σ-weak topology on A is the σ(A,A∗)-topology.
Convergence by this topology is given by |ϕ(x)| for x ∈ A and ϕ ∈ A∗.
Each ϕ is given as a limit of sums of vector states on A. Namely,

ϕ(x) =
∞∑

j=1

αj〈xξj , ηj〉, αj ∈ C, ξj , ηj ∈ H

where
∑∞

j=1 |αj | < ∞,
∑∞

j=1 ∥ξj∥2 < ∞, and
∑∞

j=1 ∥ηj∥2 < ∞.

A linear functional ϕ on a C∗-algebra A is said to be faithful if ϕ(a∗a) = 0,
then a = 0 ∈ A.

Example 2.1.1. Let (X,µ) be a probability space with µ(X) = 1. We denote
by L∞(X) the von Neumann algebra of all essentially bounded measurable
complex-valued functions on X. Define ϕ(f) =

∫
X

f(x)dµ(x) ∈ C for f ∈
L∞(X). This is a faithful normal tracial state on L∞(X). Normal?

The L∞(X) is represented on the Hilbert space L2(X) by multiplication
operators Mf . Note that

∥Mfξ∥2
2 = ∥fξ∥2

2 =
∫

X

|f(x)ξ(x)|2dµ(x) ≤ ∥f∥∞∥ξ∥2
2.

As well, convergence with respect to the inner product

〈Mfξ, η〉 =
∫

X

f(x)ξ(x)η(x)dµ(x)
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to 〈Mgξ, η〉 implies the convergence by ϕ. Why? We can choose ξ = 1 = η.
That’s it!

If ϕ(f∗f) = 0, then
∫

X
|f |2dµ(x) = 0. Hence |f | = 0 almost everywhere on

X. Thus, f = 0 up to measure zero sets. Each element of L∞(X) is a class of
functions up to measure zero sets.

Example 2.1.2. The tracial state ϕ = 1
n tr on Mn(C) is faithful and normal.

The Mn(C) is represented on Cn by matrix multiplication. Let Xk =
(xij(k)) ∈ Mn(C) such that for any ξ ∈ Cn, there exists limk Xkξ = η ∈ Cn for
some η ∈ Cn. In particular, for the canonical basis e1, · · · , en of Cn,

lim
k

Xkej = lim
k

(xij(k))n
i=1 = (lim

k
xij(k))n

i=1 ∈ Cn.

Let X = (limk xij(k))n
i,j=1 ∈ Mn(C). That is the strong limit of the sequence

(Xk). Namely, Mn(C) is a von Neumann algebra.
If ϕ(A∗A) = 0, then tr(A∗A) = 0. It then follows that A = (aij) = (0).
If the inner products 〈Xkej , ei〉 converge to 〈Xej , ei〉 for i, j = 1, · · · , n, then

in particular, xjj(k) converge to xjj for 1 ≤ j ≤ n respectively, so that ϕ(Xk)
converge to ϕ(X).

Example 2.1.3. Let H be a Hilbert space. We have the von Neumann C∗-
algebra B(H) of all bounded linear operators on H with the operator norm.

We have the C∗-norm condition ∥T ∗T∥ = ∥T∥2 for any T ∈ B(H).
The operator norm for T is defined to be

∥T∥ = sup
ξ∈H,ξ ̸=0

∥Tξ∥
∥ξ∥

= sup
∥ξ∥≤1

∥Tξ∥ = sup
∥ξ∥=1

∥Tξ∥.

Note that ∥ 1
∥ξ∥ξ∥ = 1 for ξ ̸= 0. Also, we obtain that

sup
∥ξ∥=1

∥Tξ∥ ≤ sup
∥ξ∥≤1

∥Tξ∥ = sup
0<∥ξ∥≤1

∥Tξ∥ ≤ sup
ξ∈H,ξ ̸=0

∥Tξ∥
∥ξ∥

≤ sup
∥ξ∥=1

∥Tξ∥.

As well, for ∥ξ∥ = 1,

∥Tξ∥2 = 〈Tξ, Tξ〉 = 〈T ∗Tξ, ξ〉 ≤ ∥T ∗Tξ∥ ≤ ∥T ∗T∥.

It then follows that ∥T∥2 ≤ ∥T ∗T∥.
On the other hand, we have ∥T ∗T∥ ≤ ∥T ∗∥∥T∥ with ∥T ∗∥ = ∥T∥.
Indeed, for any S, T ∈ B(H), we have that for ∥ξ∥ = 1,

∥STξ∥2 = 〈STξ, STξ〉 ≤ ∥S∗STξ∥∥Tξ∥ ≤ ∥S∗ST∥∥T∥.

It then follows that ∥ST∥2 ≤ ∥S∗ST∥∥T∥. What’s this? We next estimate that

∥STξ∥ = ∥S(
1

∥Tξ∥
Tξ)∥∥Tξ∥ (∥Tξ∥ ̸= 0, ∥ξ∥ = 1)

≤ ∥S∥∥T∥.

－ 10 － － 11 －



It then follows that ∥ST∥ ≤ ∥S∥∥T∥. As well, for ∥ξ∥ = 1,

∥T ∗ξ∥2 = 〈T ∗ξ, T ∗ξ〉 = 〈TT ∗ξ, ξ〉
≤ ∥TT ∗ξ∥ ≤ ∥TT ∗∥ ≤ ∥T∥∥T ∗∥.

It then follows that ∥T ∗∥2 ≤ ∥T∥∥T ∗∥. Hence ∥T ∗∥ ≤ ∥T∥. Since T = (T ∗)∗,
then ∥T∥ ≤ ∥T ∗∥. Thus, ∥T∥ = ∥T ∗∥.

A C∗-algebra may be defined to be an involutive Banach (or ∗-)algebra with
the C∗-norm condition.

Since H is a Banach space, then B(H) is a Banach space.
Indeed, for any Cauchy sequence (Tn) of B(H), and for any ξ ∈ H, we have

the Cauchy sequence (∥Tnξ∥) in H. Thus, the (Tnξ) converges to some Tξ ∈ H.
This is extended to the limit operator T ∈ B(H).

Let us have the ∞×∞ matrix representation such as

(Tn) =




t11(n) t12(n) · · ·
t21(n) t22(n) · · ·

...
...

. . .


 ∈ B(H)

with respect to a (countable or not) basis (ek) for H. The strong or weak limit
T of (Tn) looks like that

T =




limn t11(n) limn t12(n) · · ·
limn t21(n) limn t22(n) · · ·

...
...

. . .


 ∈ B(H).

Indeed, we have

〈Tnek, el〉 = tlk(n) → lim
n

tlk(n) = 〈Tek, el〉.

Also,

∥Tnek∥2 =
∞∑

j=1

|tjk(n)|2 → ∥Tek∥2 =
∞∑

j=1

| lim
n

tjk(n)|2 ∈ R.

The weak or strong limit of bounded operators is always bounded? We can
not prove it in general, can do we. But it is only assumed from the first.

For instance, let X = [0, 2] and let fn(x) = xn for x ∈ X, n ∈ N. Then (fn)
is a sequence of bounded functions. But the point-wise (or strong) limit is given
by

lim
n→∞

fn(x) =




0 (0 ≤ x < 1),
1 (x = 1),
∞ (1 < x ≤ 2).

This limit function is not (essetially) bounded.
By the way, the von Neumann double commutant theorem is that for a unital

∗-algebra A (of bounded operators) on a Hilbert space H, A is a von Neumann
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algebra if and only if the commutant of the commutant of A is the same as A,
i.e., (A′)′ = A.

In particular,
(B(H)′)′ = (C1)′ = B(H).

Also, the commutant A′ is a von Neumann algebra.
Indeed, suppose that a net (Tλ) of A′ converge strongly to a bounded op-

erator T on H. Then for any S ∈ A (⊂ B(H)), we have TλS = STλ. For any
ξ ∈ H, we then have

∥TλSξ∥= ∥STλξ∥ −−−−→ ∥STξ∥�
∥TSξ∥

and it then follows (by the uniqueness of the strong or weak limit) that T ∈ A′.
Let ξ ∈ H with ∥ξ∥ = 1. Define a positive linear functional ϕ on B(H) by

ϕ(T ) = 〈Tξ, ξ〉 with ϕ(1) = 1. Thus, ϕ is a (vector) state on B(H). This is
neither a trace nor faithful if dimension dimH ≥ 2.

Example 2.1.4. Let G be a (finite or not) group with 1G the unit. The
group algebra C[G] of G is defined to be the (formal) algebra over C of all
finite linear combinations such as

∑n
j=1 αgj gj ,

∑m
k=1 βhk

hk with αgj , βhk
∈ C,

gj , hk ∈ G. Elements of G are viewed as a basis for the linear space C[G] over
C. Multiplication on C[G] is given as

n∑
j=1

αgj gj

m∑
k=1

βhk
hk =

n∑
j=1

m∑
k=1

αgj βhk
gjhk.

This operation on C[G] extends the group operation of G. The involution on
C[G] is defined by

(
n∑

j=1

αgj gj)∗ =
n∑

j=1

αgj g
−1
j .

By definition, for any f ∈ C[G], we have (f∗)∗ = f . Namely, the involution is
reflexive (or reflective) or a reflexion (or reflection). Also, for f1, f2 ∈ C[G] and
α, β ∈ C, we have

(αf1 + βf2)∗ = αf∗
1 + βf∗

2 .

The involution is conjugate linear. With f1 =
∑n

j=1 αgj gj , f2 =
∑m

k=1 βhk
hk,

(f1f2)∗ = (
n∑

j=1

m∑
k=1

αgj βhk
gjhk)∗

=
n∑

j=1

m∑
k=1

αgj βhk
(gjhk)−1

=
m∑

k=1

βhk
h−1

k

n∑
j=1

αgj g
−1
j = f∗

2 f∗
1
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The involution is anti-homomorphism.
The trace τ on C[G] to C is given as

τ(
n∑

j=1

αgj gj) =

{
0 (gj ̸= 1G, j = 1, · · · , n),
αj (gj = 1G).

This is certainly a positive linear functional on C[G] with τ(1G) = 1, i.e., a state
and with traceness. Is this faithful? With f =

∑n
j=1 αgj gj , we compute

τ(f∗f) = τ(
n∑

k=1

αgk
g−1

k

n∑
j=1

αgj gj)

= τ(
n∑

k=1

n∑
j=1

αgk
αgj g

−1
k gj)

= τ(
n∑

j=1

αgj αgj 1G) =
n∑

j=1

|αgj |2 = 0

does imply that f = 0. That’s it faithfulness!

Example 2.1.5. Let (X,µ) be a probability space with X ⊂ Rn for some
integer n ≥ 1 and Lebesgue like measure µ(X) = 1. We denote by L1(X,µ) the
Banach ∗-algebra of all integrable measurable functions on (X,µ) up to measure
zero sets by convolution. The convolution of f, g ∈ L1(X,µ) is defined to be

(f ⋆ g)(x) =
∫

X

f(x − y)g(y)dµ(y) ∈ L1(X,µ).

Indeed, we have that an integration estimate and the Fubini theorem imply that

∥f ⋆ g∥1 =
∫

X

|(f ⋆ g)(x)|dµ(x)

≤
∫

X

dµ(x)
∫

X

|f(x − y)g(y)|dµ(y)

=
∫

X

|g(y)|dµ(y)
∫

X

|f(x − y)|dµ(x) = ∥g∥1∥f∥1 < ∞.

Associability for the convolution may be checked by the Fubini. The involution
for f ∈ L1(X,µ) is just complex conjugate. Namely, f∗ = f . The integration∫

X
on L1(X,µ) to C is a positive linear functional with

∫
X

1dµ(x) = 1. Since
f ⋆ g = g ⋆ f , then

∫
X

is a tracial state. This is faithful. As well, we have a
picture like that ∫

X

: L1(X,µ) → C ∼= C1 ⊂ L1(X,µ)

where we identify C with C1 a (Banach ∗-)subalgebra of L1(X,µ).

More generally, the following notion is considered.
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Example 2.1.6. Let A be a unital algebra and B a unital subalgebra of A. A
conditional expectation E from A to B is defined to be a linear map E : A →
B ⊂ A such that

E(b) = b b ∈ B and E(b1ab2) = b1E(a)b2 a ∈ A, b1, b2 ∈ B.

We may say that the triple (A, E, B) is an operator probability space with
operator integration.

For instance,
∫

X
α1dµ(x) = α for α ∈ C ⊂ L1(X,µ). Also,

∫

X

(α1f(x)α2)dµ(x) = α1

∫

X

f(x)dµ(x)α2.

Thus, the triple (L1(X,µ),
∫

X
, C) is an example by functions as operators.

Example 2.1.7. Let (A, ϕ) be an operator probability space with 1 ∈ A and
ϕ(1) = 1. Then M2(C) is a unital ∗-subalgebra of M2(A) the 2 × 2 matrix
algebra over A. Define a conditional expectation E : M2(A) → M2(C) to be

E

(
a b
c d

)
=

(
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)
.

We check that

E

(
α11 α12

α21 α22

)
=

(
ϕ(α111) ϕ(α121)
ϕ(α211) ϕ(α221)

)
=

(
α11 α12

α21 α22

)
∈ M2(C).

As well,

E

[(
α11 α12

α21 α22

)(
b11 b12

b21 b22

)(
α′

11 α′
12

α′
21 α′

22

)]

= E

[(
α11b11 + α12b21 α11b12 + α12b22

α21b11 + α22b21 α21b12 + α22b22

)(
α′

11 α′
12

α′
21 α′

22

)]
=

E

(
(α11b11 + α12b21)α′

11 + (α11b12 + α12b22)α′
21 (α11b11 + α12b21)α′

12 + (α11b12 + α12b22)α′
22

(α21b11 + α22b21)α′
11 + (α21b12 + α22b22)α′

21 (α21b11 + α22b21)α′
12 + (α21b12 + α22b22)α′

22

)

=




(α11ϕ(b11) + α12ϕ(b21))α′
11 + (α11ϕ(b12) + α12ϕ(b22))α′

21

(α11ϕ(b11) + α12ϕ(b21))α′
12 + (α11ϕ(b12) + α12ϕ(b22))α′

22

(α21ϕ(b11) + α22ϕ(b21))α′
11 + (α21ϕ(b12) + α22ϕ(b22))α′

21

(α21ϕ(b11) + α22ϕ(b21))α′
12 + (α21ϕ(b12) + α22ϕ(b22))α′

22




=
(

α11 α12

α21 α22

)
E

[(
b11 b12

b21 b22

)](
α′

11 α′
12

α′
21 α′

22

)
.

That’s it conditional!

An expectation from a unital C∗-algebra onto a subalgebra is defined to be
a positive unital idempotent map (cf. [4]).
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Example 2.1.8. A conditional expectation E from a unital C∗-algebra A onto
a C∗-subalgebra B is an expectation.

We may refer to [22]. Let A be a von Neumann algebra and B a von
Neumann subalgebra. A conditional expectation (co-expe) E from A to B is
defined to be a linear map E : A → B which satisfies the following desirable
conditions: (1) E(b) = b for b ∈ B, (2) E(a∗) = E(a)∗ for a ∈ A, (3) E(a∗a)
is positive in B, (4) ∥E(a)∥ ≤ ∥a∥ for a ∈ A, (5) E(a∗a) = 0 if and only if
a = 0. (6) E(b1ab2) = b1E(a)b2, (7) E(a∗a) ≥ E(a)∗E(a), (8) For the limit a of
a monotone increasing sequence of positive elements aj ∈ A, E(a) is the limit
of the monotone increasing sequence of E(aj) ∈ B. (9) For any normal state ϕ
of A, we have ϕ(E(a)) = ϕ(a) for a ∈ B.

The co-expe map E on A may be denoted as Eϕ(· |B).
Similarly, we may define a co-expe map from a (unital) C∗-algebra A to a

(unital) C∗-subalgebra B, where the (weak or strong) limit in (8) is replaced
by the norm limit and normal states in (9) are replaced by just states.

Therefore, by this definition, in particular, a conditional expectation E is
always positive. Since E(1) = 1 ∈ B ⊂ A, then E is unital. Also, E(a) ∈ B
for any a ∈ A. Thus, E(E(a)) = E(a). Namely, E2 = E. It says that E is
an idempotent. It also follows from the condition (4) that the operator norm
∥E∥ ≤ 1. It says that E is contractive. Since ∥E(1)∥ = ∥1∥ = 1, then we have
the norm ∥E∥ one.

Example 2.1.9. The condition (2) like that

E

[(
a b
c d

)∗]
=

(
ϕ(a∗) ϕ(c∗)
ϕ(b∗) ϕ(d∗)

)
=

(
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)∗

is provided if ϕ(a∗) = ϕ(a)∗ = ϕ(a) for any a ∈ A.
A positive linear functional τ on a C∗-algebra A (unital or not) has that

τ(a∗) = τ(a) for a ∈ A.
Let (uλ) be an approximate unit for A as an increasing net of positive ele-

ments of the closed unit ball of A. Then

τ(a∗) = lim
λ

τ(a∗uλ) = lim
λ

τ(uλa) = τ(a).

Also, as for the condition (3), we have

E(M∗M) = E

[(
a b
c d

)∗ (
a b
c d

)]
= E

(
a∗a + c∗c a∗b + c∗d
b∗a + d∗c b∗b + d∗d

)

=
(

ϕ(a∗a) + ϕ(c∗c) ϕ(a∗b) + ϕ(c∗d)
ϕ(b∗a) + ϕ(d∗c) ϕ(b∗b) + ϕ(d∗d)

)
∈ M2(C).

This matrix is self-adjoint. Is this positive? Let

N =
(

a z
z b

)
, a, b ≥ 0, z ∈ C.

－ 16 － － 17 －



Then the eigen equation for the matrix N is

0 = det(λ12 − N) = (λ − a)(λ − b) − |z|2

= λ2 − (a + b)λ + ab − |z|2.

This is solved as

λ =
a + b ±

√
(a + b)2 − 4(ab − |z|2)

2
=

a + b ±
√

(a − b)2 + 4|z|2
2

.

As well, we always have a + b ≥ |a − b|. This is strictly positive if and only if
ab > 0. Anyhow, the eigen values λ are not always positive. But for ab > 0, if
a and b are near and if |z| is small, then N can become positive.

A bounded operator T on a Hilbert space H is positive (definite), i.e.,
〈Tξ, ξ〉 ≥ 0 for any ξ ∈ H, if and only if T = S∗S for some S ∈ B(H), if
and only if the spectrum of T is contained in the interval [0,∞) ⊂ R.

Consequently, the condition (3) may be removed from the definition from
the first.

As for the condition (5), E(M∗M) = 0 ∈ M2(C) implies that ϕ(a∗a) = 0,
ϕ(c∗c) = 0, ϕ(b∗b) = 0, and ϕ(d∗d) = 0. Thus, if ϕ is faithful, then a = 0,
c = 0, b = 0, and d = 0, so that M = 0. The converse also holds.

As for the condition (7), we compute

E(M)∗E(M) =
(

ϕ(a) ϕ(c)
ϕ(b) ϕ(d)

) (
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)

=
(

|ϕ(a)|2 + |ϕ(c)|2 ϕ(a)ϕ(b) + ϕ(c)ϕ(d)
ϕ(b)ϕ(a) + ϕ(d)ϕ(c) |ϕ(b)|2 + |ϕ(d)|2

)
.

Thus, we obtain

E(M∗M) − E(M)∗E(M) =
(

ϕ(a∗a) + ϕ(c∗c) − |ϕ(a)|2 − |ϕ(c)|2 ϕ(a∗b) + ϕ(c∗d) − ϕ(a)ϕ(b) − ϕ(c)ϕ(d)
ϕ(b∗a) + ϕ(d∗c) − ϕ(b)ϕ(a) − ϕ(d)ϕ(c) ϕ(b∗b) + ϕ(d∗d) − |ϕ(b)|2 − |ϕ(d)|2

)

with ∥ϕ∥ = 1 and ϕ(a∗a) = ϕ(a∗a)∥ϕ∥ ≥ |ϕ(a)|2. This matrix is a type of
the matrix N above. Consequently, the condition (7) may be removed from the
(special) definition from the first.

As for the condition (4), we have

∥E(M)
(

α
β

)
∥2 = ∥

(
ϕ(a)α + ϕ(b)β
ϕ(c)α + ϕ(d)β

)
∥2

(
α
β

)
∈ C2, ∥

(
α
β

)
∥ = 1

= |ϕ(a)α + ϕ(b)β|2 + |ϕ(c)α + ϕ(d)β|2.

On the other hand, if E is positive, then it is bounded so that ∥E(M)∥ ≤
∥E∥∥M∥ for any M ∈ M2(A) with ∥E∥ = ∥E(12) = 12∥ = 1. That’s it that the
(4) holds by positiveness for E.
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As for the condition (8), positiveness of E implies boundedness of E so that
E is norm continuous.

As for the condition (9), we let ψ be a state on M2(A).
By the way, a positive linear functional on a C∗-algebra is bounded. A

bounded linear functional on a C∗-algebra is positive!
Anyhow, M2(C)∗ ∼= (C4)∗ ∼= C4. As a possible choice, we can write

ψ(M) = ψ(a11, a12, a21, a22) =
2∑

i,j=1

βijψ
∼(aij)

for some βij ∈ C and ψ∼ ∈ A∗ with ψ∼(1) = 1. In this case, we also have

ψ(E(M)) =
2∑

i,j=1

βijϕ(aij).

The condition requires to that ϕ = ψ∼. This seems to be that it is difficult in
general. Thus, the condition may be removed from the (C∗-)definition from the
first.

2.2 Operator freeness

The operator freeness is omitted. Because we have outlooked the kindness.
There is another notion named as Boolean independence. As well there are

two notions named as monotone independence and anti-monotone independence.
We may refer to [13].

There are related concepts such as traffic freeness and matricial freeness. We
may refer to [11] and [9] respectively.

The Voiculescu Bifreeness concept is obtained in [28].

Example 2.2.1. Let f, g be independent random variables of L∞(X) with X
a probability space by a probability measure µ in the classical sense that

E(fg) =
∫

X

f(x)g(x)dµ(x) = E(f)E(g) =
∫

X

f(x)dµ(x)
∫

X

g(x)dµ(x).

It then follows that for any positive integers k, l, we have E(fkgl) = E(fk)E(gl).
Namely, f and g are independent in tensor. Perhaps, that’s the definition.

As checked some above, on L∞(X ×X) ∼= L∞(X)⊗L∞(X) with µ×µ and
µ ⊗ µ respectively, we certainly have

E[xk ⊗ yl] =
∫

X×X

xk ⊗ yld(µ ⊗ µ)(x, y) =
∫

X×X

xk ⊗ 1d(µ ⊗ µ)(x, y)
∫

X×X

1 ⊗ yld(µ ⊗ µ)(x, y)

= E[xk ⊗ 1]E[1 ⊗ yl].
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What we need to have is the following?

E(akbl) = Πk
i=1E(a)Πl

j=1E(b), E(ak) = Πk
i=1E(a), E(bl) = Πl

j=1E(b).

This seems to be wrong. That claim says that multiples fk and gl are indepen-
dent from independence of f and g.

Example 2.2.2. We consider the free group Fn of n generators. We have
Fn+m = Fn ∗ Fm the free product. The groups Fn and Fm sit freely inside
Fn+m.

Let G = Fn+m of generators xj for 1 ≤ j ≤ n + m with no relations and
with 1 the unit of G. Let G1 and G2 be subgroups of G generated by x1, · · · , xn

and xn+1, · · · , xn+m respectively. Then G1 and G2 are free in the sense that
for gj ∈ Gij with i1 ̸= i2 ̸= · · · ̸= ik with gj ̸= 1, we have g1 · · · gn ̸= 1. It says
that no relations between G1 and G2. This may be the definition of freeness of
two subgroups of a group.

That notion can be applied to the case of group algebras. Let A = CFn+m,
A1 = CFn, and A2 = CFm be the group algebras of free groups. For finite
sums aj =

∑
l αgl

gl ∈ Aij with i1 ̸= i2 ̸= · · · ̸= ik such that all gl ̸= 1, we have
a1 · · · ak =

∑
βgg ∈ A has no term for g = 1.

We would like to formalize free sitting of the free group operator factors
LFn and LFm inside LFn+m. This seems to be difficult to say so because of
topology.

Those group algebras of free groups are also said to be free if we have the
trace τ(aj) = 0 for such indices j, then τ(a1 · · · an) = 0.

This notion by trace can be extended to the case of the enveloping von
Naumann group algebras with strong topology as well as the group C∗-algebras
with operator norm topology.

Example 2.2.3. Let H be a Hilbert space. The full Fock space for H is defined
to be l2 direct sum Hilbert space of tensor product Hilbert spaces as

F (H) = Cω ⊕ [⊕∞
n=1(⊗nH)]

where ω is the vaccum vector with norm 1. The C∗- and von Naumann algebra
B(F (H)) = B of bounded operators on F (H) is viewed as an operator probabil-
ity space with the vector space ϕ(T ) = 〈Tω, ω〉 for T ∈ B, so ϕ(1) = ∥ω∥2 = 1.

The left creation operator l(ξ) for ξ ∈ H is defined by l(ξ)ω = ξ ∈ H and

l(ξ)(η1 ⊗ · · · ηk) = ξ ⊗ η1 ⊗ · · · ⊗ ηk ∈ ⊗k+1H, k ≥ 1.

The adjoint operator l(ξ)∗ is the left annihilation operator.
For an orthonormal system {ξ1, · · · , ξk} of H, the operators l(ξ1), · · · , l(ξk)

with their adjoints are (dual) free in B with respect to ϕ in the sense that ∗-
algebras Aj generated by l(ξj) and l(ξj)∗, 1 ≤ j ≤ k are free by ϕ. Namely, if
ϕ(aj) = 0 for aj ∈ Aij with i1 ̸= i2 ̸= · · · ̸= il, then ϕ(a1 · · · al) = 0.

Note that we have l(ξj)∗l(ξj) = 1, so ϕ(1) ̸= 0. Also, ϕ(l(ξj)) = 0. As well,
l(ξ)∗ω = 0, so ϕ(l(ξ)∗) = 0.
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Similarly, the right creation operators r(ξ) are defined by tensor placing ξ
to the right side of tensor vectors of F (H). The play of left and right creation
operators on the Fock start with to the Voiculescu bi-freenss.

⋆ Let ξ, η ∈ H be orthogonal, so 〈ξ, η〉 = 0. Then we have

〈l(ξ)(α,⊕∞
j=1xj), l(η)(β,⊕∞

j=1yj)〉
= 〈(0, αξ,⊕∞

j=1ξ ⊗ xj), (0, βη,⊕∞
j=1η ⊗ yj)〉

= αβ〈ξ, η〉 +
∞∑

j=1

〈ξ, η〉〈xj , yj〉 = 0.

It thus follows that the ranges of l(ξ) and l(η) are orthogonal. Hence the prod-
ucts l(η)∗l(ξ) and l(ξ)∗l(η) are zero. But their products l(η)l(ξ) and l(ξ)l(η)
and their adjoints may be not.

Tensor like classical independence for two elements a, b of an operator proba-
bility space (A, ϕ) with moments ϕ(an) and ϕ(bm) for n, m natural numbers as-
sumed to be known implies that the mixed moments ϕ(anbm) = ϕ(an)ϕ(bm) are
obtained so. We now assume that a, b ∈ A are freely independent and their mo-
ments are known. Then we can obtain mixed moments as ϕ(an1bm1 · · · ankbmk)
as poylnomials in the moments of a and b.

⋆ Since ϕ(a − ϕ(a)1) = 0 and ϕ(b − ϕ(b)1) = 0, then we obtain by freeness
that

0 = ϕ((a − ϕ(a)1)(b − ϕ(b)1))
= ϕ(ab − ϕ(b)a − ϕ(a)b + ϕ(a)ϕ(b)1) = ϕ(ab) − ϕ(b)ϕ(a).

Also, the freeness implies that

0 = ϕ((a − ϕ(a)1)(b − ϕ(b)1)(a − ϕ(a)1))
= ϕ({ab − ϕ(b)a − ϕ(a)b + ϕ(a)ϕ(b)1}(a − ϕ(a)1))

= ϕ({aba − ϕ(b)a2 − ϕ(a)ba + ϕ(a)ϕ(b)a})
− ϕ({ϕ(a)ab − ϕ(b)ϕ(a)a − ϕ(a)2b + ϕ(a)2ϕ(b)1})

= ϕ(aba) − ϕ(b)ϕ(a2) − ϕ(a)ϕ(ba) + ϕ(a)2ϕ(b)

− ϕ(a)ϕ(ab) − ϕ(b)ϕ(a)2 + ϕ(a)2ϕ(b) − ϕ(a)2ϕ(b)

= ϕ(aba) − ϕ(b)ϕ(a2).
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Moreover,

0 = ϕ((a − ϕ(a)1)(b − ϕ(b)1)(a − ϕ(a)1)(b − ϕ(b)1))

= ϕ({aba − ϕ(b)a2 − ϕ(a)ba + ϕ(a)ϕ(b)a}(b − ϕ(b)1))

− ϕ({ϕ(a)ab − ϕ(b)ϕ(a)a − ϕ(a)2b + ϕ(a)2ϕ(b)1}(b − ϕ(b)1))

= ϕ(abab) − ϕ(b)ϕ(a2b) − ϕ(a)ϕ(bab) + ϕ(a)2ϕ(b)2

− ϕ(aba)ϕ(b) + ϕ(b)2ϕ(a2) + ϕ(a)ϕ(ba)ϕ(b) − ϕ(a)2ϕ(b)2

− ϕ(a)ϕ(ab2) + ϕ(b)ϕ(a)ϕ(ab) + ϕ(a)2ϕ(b2) − ϕ(a)2ϕ(b)2

+ ϕ(a)ϕ(ab)ϕ(b) − ϕ(b)2ϕ(a)2 − ϕ(a)2ϕ(b)2 + ϕ(a)2ϕ(b)2

= ϕ(abab) − ϕ(b)ϕ(a2b) + ϕ(b)2ϕ(a2) − ϕ(a)ϕ(ab2) + ϕ(a)2ϕ(b2) − ϕ(a)2ϕ(b)2.

Furthermore,

0 = ϕ((a2 − ϕ(a2)1)(b − ϕ(b)1))

= ϕ(a2b − ϕ(b)a2 − ϕ(a2)b + ϕ(a2)ϕ(b)1)

= ϕ(a2b) − ϕ(a2)ϕ(b).

It then follows by our computation that ϕ(abab) = ϕ(a)2ϕ(b)2. This seems to
be correct.

2.3 Operator like distributions

Let (A, ϕ) be an operator like probability space. For elements a1, · · · , an ∈ A,
their joint distribution is defined to be the set of all joint moments ϕ(ai1 · · · aim)
for 1 ≤ ik ≤ n, 1 ≤ k ≤ m, and m ∈ N.

We denote by C∗[X1, · · · , Xn] the algebra of all polynomials over C in mu-
tually non-commuting variables X1, · · · , Xn.

The joint distribution for the elements a1, · · · , an ∈ A may be also defined
to be the linear functional µ : C∗[X1, · · · , Xn] → C given by

µ(p(X1, · · · , Xn)) = ϕ(p(a1, · · · , an)).

Similarly, the joint ∗-distribution for a1, · · · , an ∈ A with their adjoints in A
is defined to be the joint distribution for a1, · · · , an ∈ A as well as their adjoints
involved.

For a normal a ∈ A, i.e. aa∗ = a∗a, there is a compactly supported measure
µ on C such that

∫

C
zkzldµ(z) = ϕ(ak(a∗)l), k, l ∈ N.

If a = a∗ is self-adjoint, then the measure is compactly supported on R.
This is an analytic interpretation as a distribution of moments in one vari-

able.
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We now consider operator probability spaces (A, ϕ) and (An, ϕn) for n ∈ N.
Let J be some index set. A family (an,j)n∈N,j∈J of a family (an,j)n∈N for j ∈ J
and an,j ∈ An converges in distribution to a family (aj)j∈J with aj ∈ A if

lim
n→∞

ϕn(an,i1 · · · an,ik
) = ϕ(ai1 · · · aik

)

for any k ∈ N and i1, · · · , ik ∈ J . Similarly, convergence in ∗-distribution is
defined as that the same limit holds for joint ∗-moments involved. As well, such
a family of operator random variables is said to be asymptotically free if the
family converges in distribution to some family of free elements.

2.4 Operator like distributions by examples

Example 2.4.1. Let (X,µ) be a classical probability space with µ(X) = 1.
The expectation functional ϕ = E on L∞(X,µ) = L∞(X) is defined to be

ϕ(f) = E(f) =
∫

X

f(x)dµ(x), f ∈ L∞(X).

Suppose that X ⊂ R and f ∈ L∞(X) with f : X → R. We may refer to
[33]. Then the distribution function F for f on R is defined to be

F (y) = µ({x ∈ X | f(x) ≤ y}), y ∈ R.

A distribution function F is said to be absolutely continuous if there is a
non-negative measurable density function g on R to R such that

F (y) =
∫ y

−∞
g(t)dt

the Legesgue or Riemann broad (or wide) sense integral.
The (Lebesque) integral of f with respect to F is defined to be

∫
R f(x)dF (x)

as a Lebesgue-Stieltjes integral with respect to real-valued functions with bounded
variation. The expectation for f with respect to F is defined to be this inte-
gral.

⋆ We have µ(a < f ≤ b) = F (b) − F (a) for a < b ∈ R. The function F (y) is
monotone non-descreasing and continuous from the right on R, taking values 0
and 1 at infinities −∞ and ∞ respectively.

Example 2.4.2. Let ϕ = 1
n tr : Mn(C) → C be the normalized trace with

ϕ(1) = 1. Let A be a normal (or self-adjoint) matrix in Mn(C). Let λ1, · · · , λn ∈
C (or real R) be the eigenvalues of A with multiplicity counted. We can diago-
nalize the normal matrix A by a unitary matrix U by using Linear Algebra.

⋆ Namely,

U∗AU =




λ1 0
. . .

0 λn


 .
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It then follows that

ϕ(A) = ϕ(U∗AU) =
1
n

n∑
j=1

λj =
1
n

n∑
j=1

λj

∫

C
dδλj (z)

=
∫

C
d


 1

n

n∑
j=1

λjδλj


 (z) ≡

∫

C
dµ(z)

where δλj is the Dirac measure on the point λj , and µ is a complex measure
defined so above.

Example 2.4.3. A semi-circle or a semi-circular element with variance σ2 is
given by an self-adjoint element s of an operator probability space (A, ϕ) such
that its moments are given by

ϕ(s2m) = σ2m 1
m + 1

(
2m

m

)
≡ σ2mCtm, ϕ(s2m+1) = 0

for m ∈ N, where we denote by Ctm the m-th Catalan number as a binomial
coefficient defined so as in combinatorics. If the variance σ2 = 1, then s is said
to be standard.

⋆ We have the Catalan numbers computed as Ct1 = 1, and

Ct2 =
1
3

(
4
2

)
=

1
3

4!
2!2!

= 2, Ct3 =
1
4

6!
3!3!

= 5,

Ct4 =
1
5

8!
4!4!

=
8 · 7 · 6
4 · 3 · 2

= 14, Ct5 =
1
6

10!
5!5!

=
10 · 9 · 8 · 7
5 · 4 · 3 · 2

= 42,

Ctm =
1

m + 1
2m!
m!m!

=
2m(2m − 1)(2m − 2) · · · (m + 2)

m(m − 1)(m − 2) · · · 2

with cancellation such as 2m
m·2 = 1, 2m−2

m−1 = 2 and so.
The Catalan numbers are either the numbers of non-crossing (any) pair (like)

partitions of the set of 2m elements like {1, 2, · · · , 2m}, denoted as NCr2(2m),
or the numbers of non-crossing partitions of the set of m elements, denoted as
NCr(m).

⋆ Note that the numbers NCr2(2m) are given like by

{1, 2} = {1, 2},
{1, 2, 3, 4} = {1, 2, 3, 4} = {1, 2} ⊔ {3, 4},
{1, 2, 3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}
= {1, 2} ⊔ {3, 4} ⊔ {5, 6} = {1, 2, 3, 4} ⊔ {5, 6}
= {1, 2} ⊔ {3, 4, 5, 6} = {1, 2, 3} ⊔ {4, 5, 6}.
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Also the numbers NCr(m) are given like by

{1} = {1}, {1, 2} = {1, 2} = {1} ⊔ {2},
{1, 2, 3} = {1, 2, 3} = {1} ⊔ {2} ⊔ {3}
= {1, 2} ⊔ {3} = {1} ⊔ {2, 3} = {1, 3} ⊔ {2},
{1, 2, 3, 4} = {1, 2, 3, 4} = {1} ⊔ {2} ⊔ {3} ⊔ {4}
= {1, 2} ⊔ {3} ⊔ {4} = {1} ⊔ {2, 3} ⊔ {4} = {1} ⊔ {2} ⊔ {3, 4}
= {1, 3} ⊔ {2} ⊔ {4} = {1, 4} ⊔ {2} ⊔ {3} = {1} ⊔ {2, 4} ⊔ {3}
= {1, 2} ⊔ {3, 4} = {1, 4} ⊔ {2, 3} = {1, 2, 3} ⊔ {4}
= {1} ⊔ {2, 3, 4} = {1, 2, 4} ⊔ {3} = {1, 3, 4} ⊔ {2}.

The (operator) cumulants kn : An → C of such a semi-circle element s is
given by k1 = ϕ,

k2(s, s) = σ2, kn(s, · · · , s) = 0, n ≥ 3.

The corresponding measure to ϕ has the (upper) semi-circle density function

1
2πσ2

√
4σ2 − t2, t ∈ [−2σ, 2σ].

⋆ Note that the semi-circle disk denoted as Dsc has the volume known as

|Dsc| =
∫ 2σ

−2σ

1
2πσ2

√
4σ2 − t2dt =

1
4πσ2

π(2σ)2 = 1.

A semi-circle in operator probability plays the role of the Gaussian (function
or measure) in classical probability. That is the limit distribution by the central
limit theorem.

⋆ The Gauss function is defined to be

G(x) =
1√
2πσ

e−
(x−m)2

2σ2 , x ∈ R

for some non-negative constants m and σ.
Let f(x) be a random variable on a probability space (R, µ). Suppose that

µ(a ≤ f ≤ b) =
∫ b

a

G(y)dy.

In this case, we say that the distribution for f is Gaussian or normal distribution
denoted as N(m,σ2) with m mean and σ2 variance, where

m =
∫ β

α

yG(y)dy, σ2 =
∫ β

α

(y − m)2G(y)dy,
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where α = infx∈R f(x) and β = supx∈R f(x).
Let f∼ = 1

σ (f − m). Then the distribution for f∼ is the standard normal
distribution N(0, 12) with density function as Gaussian 1

2π e−
1
2 x2

.
The central limit theorem is stated as follows. Suppose that a sequence of

mutually independent random variables (fj) on some probability space (R, µ)
have the same distribution and that E(f2

j ) < ∞, so that µ = E(fj) and σ2 =
V (fj) = E(f2

j ) − E(fj)2 for any j ∈ N. For mean functions Mn = 1
n

∑n
j=1 fj ,

the following holds as n → ∞,

µ(
Mn − E(Mn)√

V (Mn)
≤ y) = µ(

Mn − µ√
σ2

n

≤ y) →
∫ y

−∞

1√
2π

e−
t2
2 dt.

The proof is omitted. In that case we note that

E(Mn) =
1
n

E(
n∑

j=1

fj) =
1
n

n∑
j=1

E(fj) = µ,

V (Mn) =
1
n2

V (
n∑

j=1

fj) =
1
n2

n∑
j=1

V (fj) +
1
n2

∑
j<k

Cov(fj , fk) =
σ2

n
,

with covariance

Cov(fj , fk) = E((fj − µ)(fk − µ))

= E(fjfk) − µE(fk) − µE(fj) + µ2E(1)

= E(fj)E(fk) − µ2 = 0.

Example 2.4.4. Let l2(N) be the Hilbert space of square summable complex-
valued functions on N. Let (en) be the canonical orthonormal basis for l2(N).
Namely, en(n) = 1 and en(m) = 0 for m ̸= n ∈ N. The unilateral shift S on
l2(N) is defined by S(en) = en+1 for n ≥ 1. Let ϕ : B(l2(N)) → C be the state
on the C∗-algebra B(l2(N)) defined by ϕ(x) = 〈xe1, e1〉 for x ∈ B(l2(N)).

The shift S is an isometry, so S∗S = 1. Thus, ∥S∥2 = ∥S∗S∥ = 1.
The sum S + S∗ is a (standard) semi-circle with respect to ϕ.
Let F (H) be the Fock space by some Hilbert space H, with ω the vacuum

vector. Let l(ξ) be the left creation operator on F (H) for ξ ∈ H. Let ϕ :
B(F (H)) → C be defined by ϕ(x) = 〈xω, ω〉. Then l(ξ) + l(ξ)∗ is a semi-circle
with respect to ϕ, with σ2 = ∥ξ∥.

Let {ξ1, · · · , ξn} ⊂ H be an orthonormal system. Then the operators l(ξj)+
l(ξj)∗ for 1 ≤ j ≤ n are standard semi-circular elements that are free.

⋆ We compute that

ϕ((S + S∗)2) = ϕ(S2 + SS∗ + S∗S + (S∗)2)

= 〈S2e1, e1〉 + 〈SS∗e1, e1〉 + 1 + 〈S∗0, e1〉
= 1 = σ2Ct1 = σ2.
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Also,

ϕ((S + S∗)3) = ϕ((S2 + SS∗ + S∗S + (S∗)2)(S + S∗))

= ϕ(S3 + S + S∗S2 + (S∗)2S)
= 〈e4, e1〉 + 〈e2, e1〉 + 〈e2, e1〉 + 〈0, e1〉 = 0.

⋆ We also compute that

ϕ(l(ξj) + l(ξj)∗) = 〈0 ⊕ ξj , ω ⊕ 0〉 + 〈0, ω〉 = 0,

ϕ((l(ξj) + l(ξj)∗)(l(ξk) + l(ξk)∗))

= 〈ξj ⊗ ξk, ω〉 + 〈l(ξj)∗ξk, ω〉 =

{
0 j ̸= k,

1 j = k.

Example 2.4.5. Let s1 = s∗1, s2 = s∗2 be free standard semi-circle operators
with respect to ϕ. A circular element for these is defined to be c = 1√

2
(s1 + is2).

Then c is not normal.
Note that ∥ 1√

2
(x + iy)∥ =

√
x2+y2

2 for x + iy ∈ C, x, y ∈ R. In particular,
we have ∥ 1√

2
(1 + i1)∥ = | 1√

2
(1 + i)|∥1∥ = 1.

We compute that

c∗c =
1
2
(s1 − is2)(s1 + is2) =

1
2
(s2

1 + s2
2 + i(s1s2 − s2s1)).

cc∗ =
1
2
(s1 + is2)(s1 − is2) =

1
2
(s2

1 + s2
2 − i(s1s2 − s2s1)).

Thus, c is normal if and only if s1 and s2 commute.
Being free implies being non-commutative? Or being commutative implies

being non-free? If so, that’s the reason for being non-normal. It seems to be
difficult at this moment.

The answer to the question above is false in general. Any operator and the
identity operator are freely independent and commute. Because for any state
ϕ, we have ϕ(1) = 1 ̸= 0 and the algebra generated by 1 is C. But if not
constant, how much about the question? As well, the identity operator is not a
semi-circle, since ϕ(1n) = 1 ̸= 0 for any n ∈ N.

We consider moment expressions like

ϕ(ca1(c∗)b1ca2 · · · (c∗)bn), aj , bj ∈ {0} ∪ N.

If
∑n

j=1 aj ̸=
∑n

j=1 bj , then the moment vanishes.
Since ϕ(s1) = ϕ(s2) = 0, then ϕ(c) = ϕ(c∗) = 0.
Since ϕ(s1s2) = ϕ(s2s1) = 0, then

ϕ(c∗c) = ϕ(cc∗) =
1
2
(ϕ(s2

1) + ϕ(s2
2)) = σ2 = 1.
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We also have

cc∗c =
1√
2
(s1 + is2)

1
2
(s2

1 + s2
2 + i(s1s2 − s2s1))

=
1

2
√

2
(s3

1 + s1s
2
2 + i(s2

1s2 − s1s2s1))

+
1

2
√

2
(i(s2s

2
1 + s3

2) − (s2s1s2 − s2
2s1)),

so that ϕ(cc∗c) = 0 by free independence for s1 and s2 with respect to ϕ.
The cumulants are given by

k2(c, c∗) = k2(c∗, c) = 1

and the other cumulants are equal to zero.
Note that k1 = ϕ. Check that

k2(c, c∗) = ϕ(cc∗) − ϕ(c)ϕ(c∗) = 1 − 0 = 1,

with ϕ(a1a2) = k2(a1, a2) + k1(a1)k2(a2).
Being non-normal of c implies that there does not exist such a measure

corresponding to ϕ at ∗-multiples of c. Then to what it corresponds? A nice
question? Anyhow, by normality we can use C∗-algebra representation theory
for normal operators. Such a normal operator commuting with its adjoint is
represented as the complex variable function on the spectrum contained in C.

Example 2.4.6. A Haar unitary is defined to be a unitary u in an operator
probability space A with ϕ such that the moments ϕ(uk) and ϕ((u∗)k) for
integers k ≥ 1 are zero. The cumulants non-vanishing only have the form

k2m(u, u∗, · · · , u, u∗) = k2m(u∗, u, · · · , u∗, u) = (−1)m−1Ctm−1.

The measure corresponds to the normalized Lebesgue (or Haar unitary) measure
µ on the unit circle S1 in C, in which the spectrum sp(u) of u is contained.

We have
k1(u) = ϕ(u) =

∫

S1
zdµ(z) = 0.

Is the spectrum of u full? As well, with Ct0 = 1,

k2(u, u∗) = ϕ(uu∗) − ϕ(u)ϕ(u∗) = 1 = (−1)1−1Ct1−1.

Example 2.4.7. A (mod) k-Haar unital for k ∈ N is defined to be a unitary
u ∈ A an operator probability space with ϕ such that uk = 1 and the moments
are given as ϕ(um) = 0 and ϕ((u∗)m) = 0 for positive integers m which can not
be divided by k, denoted as k � m. The corresponding measure is the uniform
(Dirac like?) measure µk on the set Rk of all k-th roots of the unity.
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We have
k1(u) = ϕ(u) =

1
k

∑
z∈Rk

z = 0 =
∫

Rk

zdµk(z)

and ϕ(1) = 1
kk1 = 1. Is this so? Note that

0 = zk − 1 = (z − 1)(zk−1 + · · · + 1).

There are no nice formula of cumulants for u, except for the case k = 2.
If u2 = 1, then ϕ(u2m) = 1 with 2 | 2m and ϕ(u2m+1) = 0 with 2 � 2m+1.

Example 2.4.8. Let u be a Haar unitary with respect to ϕ. The distribution
of u + u∗ is said to be the arcsine law.

The moments of u + u∗ are given as

ϕ((u + u∗)2m) =
(

2m

m

)
, ϕ((u + u∗)2m+1) = 0.

We have ϕ(u + u∗) = ϕ(u) + ϕ(u∗) = 0 + 0 = 0. As well,

ϕ((u + u∗)(u + u∗)) = ϕ(u2 + uu∗ + u∗u + (u∗)2) = 0 + 2 + 0 =
(

2
1

)
.

Moreover,

ϕ((u + u∗)3) = ϕ(u3 + u + u + (u∗)2u) + ϕ(u2u∗ + u∗ + u∗ + (u∗)3) = 0.

Furthermore,

ϕ((u + u∗)4) = ϕ(u4 + u2 + u2 + (u∗)2u2) + ϕ(u2 + 1 + 1 + (u∗)3u)

+ ϕ(u2 + 1 + 1 + (u∗)2) + ϕ(u2(u∗)2 + (u∗)2 + (u∗)2 + (u∗)4) = 6 =
(

4
2

)
.

The cumulants of u + u∗ are given as
{

k2m(u + u∗, · · · , u + u∗) = 2(−1)m−1Ctm−1,

k2m+1(u + u∗, · · · , u + u∗) = 0.

Note that k1(u + u∗) = ϕ(u + u∗) = 0. As well,

k2(u + u∗, u + u∗) = ϕ((u + u∗)2) − ϕ(u + u∗)2

= 2 = 2(−1)1−1Ct0.

The density function of the arcsine law is given by 1
π
√

4−t2
for t ∈ (−2, 2).

Note that (arcsinx)′ = 1√
1−x2 for x ∈ (−1, 1). As well,

∫ 2

−2

1
π
√

4 − t2
dt =

∫ 2

−2

1

2π
√

1 − ( t
2 )2

dt (
t

2
= s),

=
∫ 1

−1

1
2π

√
1 − s2

2ds =
1
π

[arcsin s]1s=−1 = 1.
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Example 2.4.9. An operator a ∈ A an operator probability space with ϕ is
said to be a free Poisson with rate λ ≥ 0 and jump size α ∈ R or to be the
Marchenko-Pastur law, if the moments are given as

ϕ(an) = αn
n∑

k=1

λk

n − k + 1

(
n

k

)(
n − 1
k − 1

)
.

In particular, ϕ(a) = αλ
(
1
1

)
= αλ.

The cumulants are given as kn(a, · · · , a) = λαn. In particular, we have

k2(a, a) = ϕ(a2) − ϕ(a)2

= α2(
λ

2

(
2
1

)
+ λ2

(
2
2

)
) − (αλ)2 = α2λ.

The measure of the free Poisson law with rate λ ≥ 0 is given by (1−λ)δ0 +ν
if 0 ≤ λ ≤ 1, and by ν if λ > 1, where δ0 is the Dirac at 0 and ν has density

1
2παt

√
4λα2 − (t − α(1 + λ))2, t ∈ [α(1 −

√
λ)2, α(1 +

√
λ)2].

The square s2 of a semi-circle element s of variance σ2 is a free Poisson
element with rate λ = 1 and jump size α = σ2.

Note that ϕ(s2) = σ2 = α = αλ. As well,

ϕ((s2)2) = σ4Ct2 = 2σ4 = α2(1 + 1).

The measure is ν with λ = 1 and α = σ2, so that it has density

1
2παt

√
4α2 − (t − 2α)2, t ∈ [0, 4α].

We compute that
∫ 4α

0

√
4α2 − (t − 2α)2dt (t − 2α = s)

=
∫ 2α

−2α

√
4α2 − s2ds =

1
2
π(2α)2 = 2πα2.

It seems that the factor 1
2παt in the density should be corrected as 1

2πα2 .

Example 2.4.10. A self-adjoint operator b in A with ϕ is said to be a symmetric
Bernoulli variable if the moments are given by ϕ(b2m) = α2m with α > 0 and
ϕ(b2m+1) = 0. The cumulants are given by

k2m(b, · · · , b) = (−1)m−1Ctm−1α
2m, k2m+1(b, · · · , b) = 0.

The corresponding measure is 1
2 (δ−α + δα).
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Example 2.4.11. Let p = p∗ = p2 ∈ A be a projection with ϕ(p) = t ∈ [0, 1].
We have ϕ(p) = ϕ(p∗) = ϕ(p) ∈ R and ϕ(p) = ϕ(p∗p) ≥ 0. As well,

ϕ(p) ≤ ∥ϕ∥∥p∥ = 1 · 1 = 1.
The moments are ϕ(pn) = ϕ(p) = t = k1(p) for any n ∈ N.
The k2(p) = ϕ(p2) − ϕ(p)2 = t − t2.
The corresponding measure is (1 − t)δ0 + tδ1.

Example 2.4.12. The free Cauchy distribution is the distribution of an un-
bounded operator. This is the same as the classical Cauchy distribution.

3 The third outlooking at the random matrices

3.1 Gaussian random matrices

Let (X,µ) be a classical probability space with measure µ(X) = 1. A random
matrix is defined to be a matrix f = (fij) with entries fij given by classical
random variables fij : X → C measurable functions on X.

The operator probability space of n×n random matrices of p-times integrable
measurable functions on X for any 1 ≤ p < ∞ is given by

A = Mn(C) ⊗ {∩1≤p<∞Lp(X,µ)}

with ϕ = tr ⊗ E, where tr is the normalized trace on Mn(C) and E is the
expectation on L1(X,µ).

For any f = (fij) ∈ A, we have

ϕ(f) = E(tr(f)) =
1
n

n∑
j=1

∫

X

fij(x)dµ(x).

The space as the infinite intersection of Lp(X,µ) for 1 ≤ p < ∞ in the
operator tensor algebra A above is that of random variables for which all power
moments exist. We may denote it by L∞(X,µ).

Let f ∈ A be a self-adjoint random matrix. Suppose that u∗fu for some
unitary random matrix u is a diagonal random matrix with diagonal entries
gjj . This is possible if f = a ⊗ 1 with a = a∗ ∈ Mn(C) or with a normal as
a∗a = aa∗. Then we have

ϕ(fk) = E(tr(fk)) = E(tr((u∗fu)k)) =
1
n

n∑
j=1

E[gk
jj ].

If gjj = λj ∈ R, then the right hand side above can be written as

∫

R
tkdµ(t), µ =

1
n

n∑
j=1

δλj (t).
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Definition 3.1.1. A Gaussian random matrix is defined to be a self-adjoint
n × n random matrix f = (fij) so that f = f∗ = (f ji) such that fij for
1 ≤ i ≤ j ≤ n are independent complex Gaussian random variables satisfying
E[fij ] = 0, E[f2

ij ] = 0 for i ̸= j, and E[fijfji] = E[fijf ij ] = 1
n .

Such a G random matrix is called GUE (Gaussian unitay ensemble). Note
that the distribution of the entries of f is invariant under unitary conjugates.

We may find such an example.

Example 3.1.2. Let x + iy = x ⊗ 1 + i(1 ⊗ y) ∈ C ⊗ (⊗2L∞(R, µ)) with µ
gaussian measure. Then E[x + iy] = E[x] + iE[y] = 0, and moreover,

E[(x + iy)2] = E[x2] − E[y2] + E[2ixy] = 2iE[x]E[y] = 0.

That’s it! As well, E[(x+iy)(x−iy)] = E[x2+y2]. Then we obtain the following
Gaussian random matrix as an example.




1√
nE[x2

11]
x11

1√
nE[x2

12+y2
12]

(x12 + iy12) · · · 1√
nE[x2

1n+y2
1n]

(x1n + iy1n)

1√
nE[x2

12+y2
12]

(x12 − iy12) 1√
nE[x2

22]
x22

. . .
...

...
. . . . . .

...
1√

nE[x2
1n+y2

1n]
(x1n − iy1n) · · · · · · 1√

nE[x2
nn]

xnn




which is an element of Mn(C) ⊗ (⊗kL∞(R, µ)) with k = n + 2 (n−1)n
2 = n2,

where self-adjoint random variables xjj = x∗
jj and pairs xij = x∗

ij with yij = y∗
ij

for i < j belong respectively to different tensor factors L∞(R, µ) of the k-fold
tensor product.

Definition 3.1.3. Random variables x1, · · · , xn, n ∈ N make a Gaussian family
if the Wick (in physics 1950) or the Isserlis (in probability theory 1918) formula
holds as follows. For any 1 ≤ i1, · · · , im ≤ n with m ∈ N even, we have

E[xi1 · · ·xim ] =
∑

q∈P2(m)

Πq:⊔{r,s}E[xirxis ],

where P2(m) denotes the set of pair-wise partitions of the set {1, · · · ,m} of
numbers, with m = 2k ∈ N even, like that

q : {1, 2} ⊔ {3, 4} ⊔ · · · ⊔ {m − 1,m} = ⊔k
j=1{2j − 1, 2j} = {1, · · · ,m}.

This combinatorial formula says that all the (variable-wise) joint moments
of such a Gaussian family can be expressed in terms of the pair moments.

Example 3.1.4. Let x1, · · · , xn be Gaussian random variables which are mu-
tually independent. It then follows that with m odd, we have

E[xi1 · · ·xim ] = Πm
j=1E[xij ] = 0m = 0.
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Without independence, the Wick formula for m = 2 is the trivial identity
E[xi1xi2 ] = E[xi1xi2 ]. The Wick formula for m = 4 is the following

E[xi1xi2xi3xi4 ] = E[xi1xi2 ]E[xi3xi4 ]
+ E[xi1xi3 ]E[xi2xi4 ] + E[xi1xi4 ]E[xi2xi3 ].

With independence, we have E[xixj ] = δijσ
2 with σ2 = E[x2

j ] − E[xj ]2.
Note also that for m ∈ N, we have

E[xm
j ] =

1√
2πσ

∫

R
tme−

t2

2σ2 dt

=

{
0 (m odd),
σm(m − 1)!! (m even).

Note that the function integrated is an odd function if m is odd. If m = 2, then
E[x2

j ] = σ2 with (m − 1)!! = 1. For m = 4, the Wick formula implies that

E[x4
j ] = 3σ2σ2 = 3!!σ4

with 3!! = 3 ·1 = 3 = |P2(4)| the cardinal number of P2(4). For m = 2k general,
the Wick formula implies that E[xm

j ] = |P2(m)|σm.
By induction, we suppose that |P2(m)| = (m − 1)!!. We then have

|P2(m + 2)| = (m + 1)|P2(m)| = (m + 1)!!

Example 3.1.5. Let A = (aij) be an n×n GUE. Then the entries Re(aij) and
Im(aij) for 1 ≤ i, j ≤ n make a Gaussian family.

Note that Re(ajj) = ajj and Im(ajj) = 0. As well, with i ̸= j,

Re(aij) =
aij + a∗

ij

2
=

a∗
ji + aji

2
= Re(aji).

Also,

Im(aij) =
aij − a∗

ij

2i
=

a∗
ji − aji

2i
= −Im(aji).

By independence and being Gaussian, we have

E[aijakl] =
1
n

δilδjk, 1 ≤ i, j, k, l ≤ n.

We can compute the even moments of A as with m even,

ϕ(Am) = E[tr(Am)].

Suppose that m = 2. Then

A2 =
(

a11 a12

a∗
12 a22

)2

=
(

a2
11 + a12a

∗
12 a11a12 + a12a22

a∗
12a11 + a22a

∗
12 a∗

12a12 + a2
22

)
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so that

ϕ(A2) = E[tr(A2)]

=
1
2
(E[a2

11] + E[a12a
∗
12] + E[a∗

12a12] + E[a2
22])

=
1
2
(E[a2

11] + E[a12a21] + E[a21a12] + E[a2
22])

=
1
2

2∑
i1,i2=1

E[ai1i2ai2i1 ] =
1
2
· 4
2

= 1.

Moreover, we compute

A4 =
(

a11 a12

a∗
12 a22

)4

=
(

a2
11 + a12a

∗
12 a11a12 + a12a22

a∗
12a11 + a22a

∗
12 a∗

12a12 + a2
22

)2

with the diagonal entries

(a2
11 + a12a

∗
12)

2 + (a11a12 + a12a22)(a11a12 + a12a22)∗ and

(a11a12 + a12a22)∗(a11a12 + a12a22) + (a∗
12a12 + a2

22)
2

so that

ϕ(A4) = E[tr(A4)]

=
1
2
(E[a4

11] + E[a2
11a12a21] + E[a12a21a

2
11] + E[a12a21a12a21])

+
1
2
(E[a11a12a21a11] + E[a11a12a22a21] + E[a12a22a21a11] + E[a12a

2
22a21])

+
1
2
(E[a21a

2
11a12] + E[a21a11a12a22] + E[a22a21a11a12] + E[a22a21a12a22])

+
1
2
(E[a21a12a21a12] + E[a21a12a

2
22] + E[a2

22a21a12] + E[a4
22])

=
1
2
(3

1
22

+
1
22

+
1
22

+ 2
1
22

) +
1
2
(

1
22

+ 0 + 0 +
1
22

)

+
1
2
(

1
22

+ 0 + 0 +
1
22

) +
1
2
(2

1
22

+
1
22

+
1
22

+ 3
1
24

)

=
7
22

+
2
22

=
9
4

= 2 +
1
22

.
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As well, we have, with i1, i2 mod 2,

ϕ(A4) =
1
2
(E[a4

11] + E[a12a21a12a21] + E[a21a12a21a12] + E[a4
22])

+
1
2
(E[a2

11a12a21] + E[a12a21a
2
11] + E[a2

11a12a21] + E[a12a21a
2
11])

+
1
2
(E[a11a12a21a11] + E[a22a21a12a22]) +

1
2
(E[a12a

2
22a21] + E[a21a

2
11a12])

=
1
2

2∑
i1,i2=1

E[ai1i2ai2i1ai1i2ai2i1 ] +
1
2

2∑
i1,i2=1

E[ai1i2ai2i1ai1i2+1ai2+1i1 ]

+
1
2

2∑
i1=1

E[ai1i1ai1i1+1ai1+1i1ai1i1 ] +
1
2

2∑
i1=1

E[ai1+1i1ai1i1ai1i1ai1i1+1].

Is it possible to have such a formula for ϕ(Am) in general?

The limits of the moments ϕ(Am) of an n×n GUE A = (aij) as n → ∞ are
equal to the number of the set of non-crossing pair partitions of even m elements
set. The numbers are also equal to the Catalan numbers Ctm

2
= 2

m+2

(
m
m
2

)
.

Namely, with any integer m ≥ 0,

lim
n→∞

ϕ(A2m) = Ctm.

On the other hand, the Catalan numbers Ctm are the moments for the semi-
circle law in the sense that (for m even?)

Ctm =
1
2π

∫ 2

−2

tm
√

4 − t2dt.

Example 3.1.6. We compute

1
2π

∫ 2

−2

√
4 − t2dt =

1
π

∫ 2

0

√
4 − t2dt (t = 2 sin θ)

=
1
π

∫ π
2

0

2 cos θ(2 cos θdθ) =
1
π

∫ π
2

0

2(1 + cos 2θ)dθ

=
2
π

[θ +
1
2

sin 2θ]
π
2
θ=0 = 1 = Ct0.

We also compute

0 =
1
2π

∫ 2

−2

t
√

4 − t2dt (t = 2 sin θ)

=
1
2π

∫ π
2

−π
2

2 sin θ(2 cos θ)(2 cos θdθ) =
1
2π

∫ π
2

−π
2

8 cos2 θ sin θdθ

=
1
2π

[−8
3

cos3 θ]
π
2
θ=−π

2
= 0 ̸= 1 = Ct1.
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Moreover,

1
2π

∫ 2

−2

t2
√

4 − t2dt (t = 2 sin θ)

=
1
π

∫ π
2

0

4 sin2 θ(2 cos θ)(2 cos θdθ) =
1
π

∫ π
2

0

4 sin2 2θdθ

=
1
π

∫ π
2

0

2(1 − cos 4θ)dθ = 1 = Ct1.

Is the above formula correct?
Furthermore,

1
2π

∫ 2

−2

t4
√

4 − t2dt (t = 2 sin θ)

=
1
π

∫ π
2

0

24 sin4 θ(2 cos θ)(2 cos θdθ) =
1
π

∫ π
2

0

26(sin4 θ − sin6 θ)dθ

=
26

π

π

2
(
3 · 1
4 · 2

− 5 · 3 · 1
6 · 4 · 2

) = 25 3
6 · 4 · 2

= 2 = Ct2.

The corrected formula is the following. For any integer m ≥ 0,

Ctm =
1
2π

∫ 2

−2

t2m
√

4 − t2dt.

Check that

1
2π

∫ 2

−2

t6
√

4 − t2dt (t = 2 sin θ)

=
1
π

∫ π
2

0

26 sin6 θ(2 cos θ)(2 cos θdθ) =
1
π

∫ π
2

0

28(sin6 θ − sin8 θ)dθ

=
28

π

π

2
(
5 · 3 · 1
6 · 4 · 2

− 7 · 5 · 3 · 1
8 · 6 · 4 · 2

) = 27 5 · 3
8 · 6 · 4 · 2

= 5 = Ct3.

Theorem 3.1.7. The asymptotic eigenvalue distribution of an n × n GUE A
is given by the Wigner semi-circle law. Namely, the measures µA as n → ∞
converge weakly to µS (or as moments), where dµS(t) = 1

2π

√
4 − t2dt for t ∈

[−2, 2]. It says that for any integer m ≥ 0,

lim
n→∞

(tr ⊗ E)(A2m) = lim
n→∞

∫

R
t2mdµA(t)

=
∫ 2

−2

t2m 1
2π

√
4 − t2dt = Ctm

with µA = 1
n

∑n
j=1 δλj,A with λj,A eigenvalues for A with multiplicity (if possible

as in the case of complex matrices).
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3.2 The Central Limit Theorem analogues

We may refer to [16].
Let A be an operator probability space with ϕ. Let (an) be a sequence of self-

adjoint elements of A as random variables which are either independent or freely
independent. Assume that the variables an are centered, so that ϕ(an) = 0 for
n ∈ N, and the common variance of the variables is σ2 = ϕ(a2

n) ≥ 0 for n ∈ N.
A central limit theorem (CLT) says that the limit

lim
n→∞

1√
n

n∑
j=1

aj

is valued in some sense with certain convergence involved.
Let (A, ϕ) and (An, ϕn) for n ∈ N be operator probability spaces. We say

that random variables an ∈ An converge in distribution to a ∈ A as n → ∞ if
for any k ∈ N, we have

lim
n→∞

ϕn(ak
n) = ϕ(ak) ∈ C.

This convergence in distribution is weaker in general than the usual conver-
gence in the classical central limit theorems. So the classical CLT is stronger
than the quantum CLT. But the convergence in distribution is said to be the
weak convergence, so the classical convergence may be called the strong conver-
gence. Anyhow, we may distinguish these convergences.

The classical convergence in distribution (or convergence in law) for proba-
bility measures µn on compact spaces Xn ⊂ R to µ on a compact space X ⊂ R
means the weak convergence as the following limit

lim
n→∞

∫

Xn

f(t)dµn(t) =
∫

X

f(t)dµ(t)

for any bounded continuous functions f on R. Also, the Stone-Weierstrass
theorem implies that f can be replaced with polynomials in t. It just looks like
that t ∈ C(Xn) converge in distribution to t ∈ C(X) in the sense above as the
commutative case. Is this correct?

The classical CLT is the following.

Theorem 3.2.1. Let A be an operator probability space with ϕ. Let (an) be a
sequence of self-adjoint random variables of A which are independent. Assume
that the variables are centered so that ϕ(an) = 0 for n ∈ N and the common
variance of the variables is σ2 = ϕ(a2

n). Then we have that there is a normally
distributed random variable x on R with variance σ2 in the sense that

lim
n→∞

ϕ((
1√
n

n∑
j=1

aj)k) = ϕ(xk) = E[tk]

=
1√

2πσ2

∫

R
tke−

t2

2σ2 dt =

{
0 if k is odd,

σk(k − 1)!! if k is even
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with (k − 1)!! = (k − 1)(k − 3) · · · 3 · 1 = P2(k) the number of partitions of the
set of even k elements by pairs.

The free or quantum CLT is the following.

Theorem 3.2.2. Let A be an operator probability space with ϕ. Let (an) be
a sequence of self-adjoint random variables of A which are freely independent.
Assume that the variables are centered so that ϕ(an) = 0 for n ∈ N and the
common variance of the variables is σ2 = ϕ(a2

n). Then we have that there is a
semi-circlular self-adjoint element s with variance σ2 in the sense that

lim
n→∞

ϕ((
1√
n

n∑
j=1

aj)k) = ϕ(sk) =

{
0 if k is odd,

σk 2
k+2

(
k
k
2

)
= σkCt k

2
if k is even

with Ct k
2

the Catalan number defined so. With σ2 = 1 we also have

ϕ(sk) =
1
2π

∫ 2

−2

tk
√

4 − t2dt

for any k ∈ N, and as well ϕ(2k) = NCr2(2k) = Ctk.

Note as well that the number (or family) of non-crossing partitions of the
set of even 2k elements by pairs, denoted as NCr2(2k) by us is equal to the
Catalan number Ctk. This is also equal to the number (or family) of non-crossing
partitions of the set of k elements, denoted as NCr(k) by us.

By the way, a partition of the set Xn of even or not n elements 1 to n by
pairs is said to be non-crossing if any two pairs {p1, p2} and {q1, q2} of elements
of Xn with 1 ≤ p1 < p2 ≤ n and 1 ≤ q1 < q2 ≤ n dose not satisfy the inequality

p1 < q1 < p2 < q2.

Example 3.2.3. We have NCr2(2) = 1.
We have NCr2(4) = 2. The non-crossing partitions of X4 by pairs are given

by
X4 = {1, 2} ⊔ {3, 4} = {1, 4} ⊔ {2, 3}.

There is only one crossing partition {1, 3} ⊔ {2, 4}.
Theorem 3.2.4. Let {(an,j)) |n ∈ N, j ∈ J} be a sequence of families (an,j)j∈J

indexed by an index set J of freely independent random variables an,j ∈ A for
j ∈ J such that ϕ(an,j) = 0 and ϕ(a2

n,j) = 1. Then we have

lim
n→∞

ϕ((
1√
n

n∑
i=1

ai,j)k) = ϕ(sk
j ), k ∈ N

where (sj)j∈J is a family of semi-circular elements of covariance (cij)i,j∈J with
cij = ϕ(an,ian,j) so that

ϕ(si1 · · · sim) =
∑

P∈NCr2(m)

Π{r,p}⊂P cirip

for any even m ∈ N.
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3.3 Operator cumulants and more

Definition 3.3.1. Let (A, ϕ) be an operator probability space. Then the first
operator cumulant k1 : A → C is defined to be k1 = ϕ on A.

The second operator cumulant k2 : A × A → C is defined by the equation

ϕ(a1a2) = k2(a1, a2) + k1(a1)k1(a2), a1, a2 ∈ A

the terms of which correspond to non-crossing partitions of the set {1, 2}.
Namely,

k2(a1, a2) = ϕ(a1a2) − ϕ(a1)ϕ(a2) = k1(a1a2) − k1(a1)k2(a2).

The third operator cumulant k3 : A3 → C is defined by

ϕ(a1a2a3) = k3(a1, a2, a3) + k1(a1)k2(a2, a3) + k1(a2)k2(a1, a3)
+ k1(a3)k2(a1, a2) + k1(a1)k1(a2)k1(a3)

the terms of which correspond to non-crossing partitions of the set {1, 2, 3}.
Inductively, the n-th operator cumulant kn : An → C is defined by

ϕ(a1 · · · an) =
∑

{p1,··· ,pl}∈NCr(n)

kp1(aj11 , · · · , aj1p1
) · · · kpl

(ajl1 , · · · , ajlpl
)

where NCr(n) is the number as well as the set of non-crossing partitions of the
set {1, · · · , n}, and {p1, · · · , pl} corresponds to the numbers of elements of parts
in a non-crossing partition. Namely, kn corresponds to the trivial partition, and
the other terms are multiples of cummulants of lower degree, corresponding to
non-trivial non-crossing partitions.

Definition 3.3.2. Let NCr(n) denote the set of non-crossing partitions of the
set {1, · · · , n} of n elements. A partial order on this set is denoted as P1 ≤ P2

and is defined that if any part of the partition P1 is contained in a part of P2.

Example 3.3.3. As for NCr(3), we have the following (total) ordering.

{1} ⊔ {2} ⊔ {3} ≤




{1, 2} ⊔ {3}
{1} ⊔ {2, 3}
{1, 3} ⊔ {2}

≤ {1, 2, 3}.

There is a lattice structure of the ordered set NCr(n). Namely, for any two
partitions P,Q ∈ NCr(n), there is a minimal partition (or sup or join) P ∨ Q
such that P,Q ≤ P ∧Q, and there is a maximal partition (or inf or meet) P ∧Q
such that P ∧ Q ≤ P,Q.

Namely, decreasing in that order means being finer in separation. Also,
increasing means being non-finer.
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Example 3.3.4. As for the ordered set NCr(4), we have

[{1, 2, 3} ⊔ {4}] ∧ [{1} ⊔ {2, 3, 4}] = {1} ⊔ {2, 3} ⊔ {4}.

As well,
[{1, 2, 3} ⊔ {4}] ∨ [{1} ⊔ {2, 4} ⊔ {3}] = {1, 2, 3, 4}.

The lattice NCr(n) has the largest element {1, · · · , n} = Nn and the small-
est element {1} ⊔ · · · ⊔ {n} = nn.

Note that for any partition P ∈ NCr(n), we have P∨Nn = Nn and P∧Nn =
P . Also, P ∧ nn = nn and P ∨ nn = P . That’s it!

Example 3.3.5. With multiples b1 = a1a2 and b2 = a3 such that b1b2 = a1a2a3

with 2 ≤ 3, we compute that

k2(b1, b2) = k2(a1a2, a3) = ϕ((a1a2)a3) − ϕ(a1a2)ϕ(a3)
= ϕ(a1a2a3) − (k2(a1, a2) + k1(a1)k1(a2))k1(a3)
= k3(a1, a2, a3) + k1(a1)k2(a2, a3) + k1(a2)k2(a1, a3).

The terms correspond to
{

P1 = {1} ⊔ {2, 3}
P2 = {2} ⊔ {1, 3}

≤ {1, 2, 3} = N3

with

[{1} ⊔ {2, 3}] ∨ [{1, 2} ⊔ {3} = P3] = {1, 2, 3},
[{2} ⊔ {1, 3}] ∨ [{1, 2} ⊔ {3} = P3] = {1, 2, 3}.

Namely, the above summation Σ for k2(a1a2, a3) just corresponds to the sum
Σ with respect to partitions P of NCr(n) such that P ∨ P3 = N3.

By the way, the factors b1 = a1a2 and b2 = a3 of b1b2 just correspond to
P3.

There is a formula as a theorem (of Speicher) that fully generalizes the exam-
ple above to operator cumulants involving multiples b1, · · · , bm of a1, · · · , an ∈ A
such that the product b1 · · · bm = a1 · · · an with m ≤ n, as the sum decomposi-
tions of operator cumulants with respect to partitions P of NCr(n) such that
P ∨Q = Nn for some same partition Q (chan). The Q corresponds to the factors
b1, · · · , bm of b1 · · · bm.

Recall that two unital subalgebras A1 and A2 of (A, ϕ) are free if ϕ(a1 · · · an) =
0 for aj ∈ Aij with i1 ̸= i2 ̸= · · · ̸= in in {1, 2} and ϕ(aj) = 0 for 1 ≤ j ≤ n.

In such a case, it implies that k2(a1, a2) = ϕ(a1a2) = 0 and k3(a1, a2, a3) =
ϕ(a1a2a3) = 0. Inductively, kn(a1, · · · , an) = ϕ(a1 · · · an) = 0. Namely, the
operator cumulants vanish for such elements.

There is a theorem (of Speicher) that the converse of the implication by
freeness holds under a suitably weakened condition on vanishing of operator
cumulants, where the two of two unital subalgebras can be taken to be an
arbitrary finite number. Moreover, subalgebras can be replaced with elements
or operators.
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3.4 Operator operations by certain transformations

Let (A, ϕ) be an operator probability space. Let a, b ∈ A that are self-adjoint
and free.

The question is that how the distribution of a + b can be described in terms
of the distributions of a and b?

We may calculate the moments of a + b in terms of the moments of a and b.
But this seems to be somewhat complicated as in the case of higher powers of
a + b. We may use cumulants instead.

Let denote the cumulant kn(a, · · · , a) = kn(a). Being free of a and b and
distributive like law for kn implies that

kn(a + b) = kn(a) + kn(b).

Because the cumulants for mixed elements of a and b such as (a, b, · · · , b, a)
vanish by freeness.

By the way, in such a case, it seems that the moments for a + b are also
computable.

Example 3.4.1. In general, we have

ϕ((a + b)2) = ϕ(a2 + ab + ba + b2)

= ϕ(a2) + ϕ(ab) + ϕ(ba) + ϕ(b2).

As well,

k2(a + b, a + b) = ϕ((a + b)2) − ϕ(a + b)2

= ϕ(a2) + ϕ(ab) + ϕ(ba) + ϕ(b2) − {ϕ(a)2 + 2ϕ(a)ϕ(b) + ϕ(b)2}.

On the other hand, we have

k2(a, a) + k2(a, b) + k2(b, a) + k2(b, b)

= ϕ(a2) − ϕ(a)2 + ϕ(ab) − ϕ(a)ϕ(b) + ϕ(ba) − ϕ(b)ϕ(a) + ϕ(b2) − ϕ(b)2.

Therefore, we obtain that

k2(a + b, a + b) = k2(a, a) + k2(a, b) + k2(b, a) + k2(b, b).

This is a distributive law that we obtained. It seems to be interesting to consider
more general cases as a question.

Let a be an element of (A, ϕ). The series of moments of a ∈ A is defined to
be a formal power series with respect to a variable z such that

sm(z) =
∞∑

n=0

ϕ(an)zn

where ϕ(a0)z0 = ϕ(1) = 1. The series of cumulants of a ∈ A is defined to be

sc(z) =
∞∑

n=0

kn(a)zn

where k0(a)z0 = 1.
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Theorem 3.4.2. The relation among moments ϕ(an) and cumulants kn(a) such
that ϕ(an) is equal to the sum of certain multiples Πl

j=1knj (a) for 1 ≤ nj ≤ n

with
∑l

j=1 nj = n, with respect to non-crossing partitions of the set {1, · · · , n},
is equivalent to the equation

sm(z) = sc(z · sm(z)).

Proof. (Sketch of the proof). We compute the series sm(z) of the moments by
inserting the moments as sums of the cumulants term-wise. We then convert the
series to those of the cumulants with z·sm(z) as a variable by manipulating sums
of multiples of the cumulants to the corresponding multiples of the moments,
with summations changed.

By the way, for the classical cumulants (cn) for a random variable f , there
is the formula among moments and cumulants so defined such that

ϕ(fn) = E[fn] =
∑

{k1,··· ,kj}∈P (n)

ck1 · · · ckj

where P (n) denotes the set of partitions p1 ⊔ · · · ⊔ pj of the set {1, · · · , n} with
|p1| = k1, · · · , |pj | = kj cardinal numbers identified.

In particular, E[f ] = c1(f). Also, E[f2] = c2(f, f) + c1(f)2. As well,

E[f3] = c3(f, f, f) + 3c1(f)c2(f, f) + c1(f)3.

Is this correct?
We define the following two exponential like formal power series of moments

and cumulants

em(z) =
∞∑

n=0

1
n!

E[fn]zn and ec(z) =
∑
n=0

1
n!

cnzn.

We then have the following equation ec(z) = log em(z).

Proof. We may refer to [5]. Recall that we have the following cumulant formula.

log E[eitx] =
∞∑

n=1

1
n!

(it)ncn.

We let z = it. Then we have

E[ezx] =
∫ ∞∑

n=0

1
n!

znxndµ(x)

=
∞∑

n=0

1
n!

E[xn]zn

by integration by terms. Therefore, the cumulant formula implies the desired
equation above.
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That equation may be deduced from the formula among moments and cumu-
lants. How? Possibly, we insert the formula to em(z) term-wise, and then covert
to another series involving summations changed, and then take log operation to
become ec(z). Right?

The Cauchy transform with respect to a ∈ (A, ϕ) is a map Cu(z) defined to
be

Cu(z) = ϕ(
1

z − a
) =

∞∑
n=0

1
zn+1

ϕ(an)

where
1

z − a
=

1
z

1
1 − a

z

=
1
z

∞∑
n=0

an

zn

for ∥a
z ∥ < 1, so |z| > ∥a∥. As well, |ϕ(an)| ≤ ∥a∥n. It then follows that

sm(
1
z
) = zCu(z) or Cu(z) =

1
z
sm(

1
z
).

The Voiculescu R-transform with respect to a ∈ (A, ϕ) is a map R(z) defined
to be

R(z) =
∞∑

n=0

kn+1(a)zn.

It then follows that

sc(z) = 1 + zR(z) or R(z) =
1
z
(sc(z) − 1).

If An has the supremum norm, then we have |kn+1(a)zn| ≤ ∥kn+1∥∥a∥|z|n,
so that it is sufficient to have the series of ∥kn+1∥|z|n convergent, to define R(z).

The relation sm(z) = sc(z · sm(z)) between sm and sc can be converted in
terms of Cu(z) and R(z) to

1
z
Cu(

1
z
) = sm(z) = sc(z · sm(z))

= 1 + (z · sm(z))R(z · sm(z))

= 1 + Cu(
1
z
)R(Cu(

1
z
)).

Replacing 1
z with z implies that

zCu(z) = 1 + Cu(z)R(Cu(z)).

Therefore, dividing the equation by Cu(z) implies

z =
1

Cu(z)
+ R(Cu(z)).
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It then follows that the composition of the maps Cu(z) and 1
z + R(z) is the

identity map with respect to z. Since the maps are inverses each other, we also
have

Cu(
1
z

+ R(z)) = z.

Since we have
Cu(z) = ϕ(

1
z − a

) =
∫

R

1
z − t

dµ(t)

for some measure with respect to a = a∗, we can define an analytic function
Cu(z) from C+ to C−.

Note that the integration above can be viewed as the convolution 1
t ∗ dµ(t)

at z.
The measure µ can be recovered from Cu(z) by the Stieltjes inversion for-

mula. Namely, we have

dµ(t) = − 1
π

lim
ε→0+0

Im(Cu(t + iε)).

Note that for z = a + ib ∈ C with a, b ∈ R with b > 0, we have

1
z − t

=
1

a − t + ib
=

1
(a − t)2 + b2

(a − t − ib).

Its imaginary part is negative!
We have that for s ∈ R,

Cu(s + iε) =
∫

R

1
s − t + iε

dµ(t) =
∫

R

1
(s − t)2 + ε2

(s − t − iε)dµ(t).

Thus, we have

Im(Cu(s + iε)) = −
∫

R

ε

(s − t)2 + ε2
dµ(t) ≡ −Iε.

The integral Iε above is computed, as in the Lebesgue or Riemann measure
case, but not compactly supported,

Iε =
∫

R

ε

x2 + ε2
dµ(x) (x = t − s)

=
1
ε

∫

R

1
(x

ε )2 + 1
dµ(x) (y =

x

ε
)

=
1
ε

∫

R

1
y2 + 1

εdµ(y) = [arctan y]∞y=−∞ = π.

In this case, we then have − 1
π limε→0+0(−Iε) = 1. But for the formula in

general, involved as a weak limit is any bounded continuous function f on R as
a function multiplied to the measure in the integration. Namely, in that case,

∫

R
f(t)dµ(t) =

∫

R
f(t)dt.
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Example 3.4.3. Suppose that we have the cumulant k2 = 1 but kn = 0 for
n ̸= 2. In this case, we have

R(z) =
∞∑

n=0

kn+1(a)zn = z.

It then follows that
z =

1
Cu(z)

+ Cu(z).

The equation implies Cu(z)2 − zCu(z) + 1 = 0. This is solved as

Cu(z) =
z ±

√
z2 − 4
2

.

Since

|Cu(z)| = |1
z

∞∑
n=0

1
zn

ϕ(an)|

≤ |1
z
|

∞∑
n=0

(
∥a∥
|z|

)n = |1
z
|e

∥a∥
|z| ,

then Cu(z) is approximated closely to 1
z as |z| large enough. It implies that

Cu(z) =
z −

√
z2 − 4
2

=
4

2(z +
√

z2 − 4)
=

1
1
2 (z +

√
z2 − 4)

.

Then we compute

Cu(s + iε) =
s + iε −

√
(s + iε)2 − 4
2

=
s + iε −

√
s2 − ε2 − 4 + i2sε

2
.

Note that for z ∈ C with z = |z|eiθ, we have
√

z =
√
|z|ei θ

2 . Then the
imaginary part Im(

√
z) is

√
|z| sin θ

2 , with sin2 θ
2 = 1

2 (1 − cos θ).
It then follows that the imaginary part

Im(
√

s2 − ε2 − 4 + i2sε)

= ((s2 − ε2 − 4)2 + 4s2ε2)
1
4

1√
2

√
1 − s2 − ε2 − 4√

(s2 − ε2 − 4)2 + 4s2ε2

=
1√
2

√√
(s2 − ε2 − 4)2 + 4s2ε2 − (s2 − ε2 − 4).

Therefore, we obtain that

Im(Cu(s + iε)) =
ε

2
− 1

2
√

2

√√
(s2 − ε2 − 4)2 + 4s2ε2 − (s2 − ε2 − 4).
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Taking the limit as ε → 0 + 0 and multiplying − 1
π implies that

{
0 (s2 ≥ 4)

1
2π

√
2

√
4 − s2 (s2 < 4).

This Stieltjes inversion formula form is corrected in part.

The free convolution of two distributions µ1 and µ2 is defined by the following
way by 4 steps.

(1) We make the Cauchy transforms C1 and C2 and the R-transforms R1

and R2 for µ1 and µ2 respectively.
(2) The R-transform R3 of the free convolution is defined to be R1 + R2 by

additivity of the cumulants of free variables.
(3) We compute the Cauchy transform C3 of the free convolution from R3

by using the composition Cu(R(z) + 1
z ) = z.

(4) We obtain the free convolution measure µ from C3 by the Stieltjes in-
version formula.

We may denote µ by µ1C ∗R µ2 or µ1 � µ2 the additive (box) convolution.
Suppose that

∫

R
xkdµj(x) = ϕ(ak

j ), k ∈ N, j = 1, 2

where µj are compactly supported probability measures on R and aj are self-
adjoint operator random variables in relation free with respect to ϕ. Then we
have ∫

R
xkd(µ1 � µ2)(x) = ϕ((a1 + a2)k), k ∈ N.

Example 3.4.4. Suppose that
∫

R
xkdδtj (x) = tkj = ϕ(ak

j ), k ∈ N, j = 1, 2

It then follows that

ϕ((a1 + a2)k) = (t1 + t2)k =
∫

R
xkdδt1+t2(x)

so that δt1 � δt2 = δt1+t2 .

Let µ1 and µ2 be compactly supported probability measures on R that cor-
responds respectively to self-adjoint operators a1 and a2 which are free with
respect to ϕ on a C∗-algebra A. The multiplicative (box) free convolution µ

of µ1 and µ2 is defined to be the (spectral) measure corresponding to a
1
2
1 a2a

1
2
1 ,

where a1 is assumed to be positive. We denote it by µ1 � µ2.
Note that a1a2 is not self-adjoint in general. Also, if ϕ is a trace, then

ϕ((a1a2)n) = ϕ(a
1
2
1 (a

1
2
1 a2a

1
2
1 )n−1(a

1
2
1 a2))

= ϕ((a
1
2
1 a2a

1
2
1 )n).
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There is a theorem of Speicher that for {a1, · · · , an} and {b1, · · · , bn} two fi-
nite subsets of A which are free by ϕ, the formulae such that the cumulants
of (a1b1, · · · , anbn) can be written as the sum of products of cumulants of
(a1, · · · , an) and (induced) cumulants (b1, · · · , bn) over NCr(n) of non-crossing
partitions, and as well the moments of a1b1 · · · anbn can be written as the sum
of products of cumulants of (a1, · · · , an) and (induced) moments of (b1, · · · , bn)
over NCr(n).

The Voiculescu S-transform S for an operator a ∈ A is defined to be

S(z) = Sa(z) =
1 + z

z
sm−1(z)

where sm−1(z) means the inverse of the moment series function sm(z) for a by
ϕ with respect to composition.

It then holds multiplicatively that

Sbc(z) = Sb(z)Sc(z)

for b, c ∈ A that are free with respect to ϕ.

3.5 Asymptotic freeness of random matrices

Two sequences (An) and (Bn) of matrices of operator random variables are said
to be asymptotically free if they converge in distribution respectively to some
operators a, b in an operator probability space A by ϕ, namely,

lim
m→∞

ϕ(Am
n ) = ϕ(am), lim

m→∞
ϕ(Bm

n ) = ϕ(bm),

where ϕ = E ◦ tr (or E ⊗ tr) (E = ϕ on A), and a, b are free with respect to ϕ.
Equivalently, the convergence in distribution means that

lim
n→∞

ϕ(p(An, Bn)) = ϕ(p(a, b))

for any complex polynomial p(x, y) in non-commuting variables x, y.
There is a theorem (of Speicher) that elements of a semi-circular family

s1, · · · , sn with diagonal covariance such that

ϕ(si1 · · · sim) =
∑

P∈NCr2(m)

Π{r,p}⊂P ϕ(sirsip)

and ϕ(sisj) = δij for i, j = 1, · · · , n are free. It then follows that independent
Gaussian GUE random matrices are asymptotically free.

A sequence of complex matrices (Dn)n∈N with Dn ∈ Mn(C) is said to be
deterministic if the limits of tr(Dm

n ) for m ∈ N as n → ∞ exist.
Namely, the sequence (Dn) converges in distribution to some D ∈ A, ∪∞

n=1Mn(A),
or A ⊗ K so that

ϕ(Dm) = lim
n→∞

tr(Dm
n ).
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4 Appendixes

4.1 Appendix to moments

We may refer to [12].
The moment generating function with respect to a density function f on a

space X is defined to be the integration function

M(θ) =
∫

X

eθxf(x)dx = E[eθx].

In particular, M(0) =
∫

X
f(x)dx = E[1] = 1.

The k-th moments as with µ =
∫

X
xf(x)dx are obtained by differentiating

in integration as

µk =
∫

X

xkf(x)dx =
dk

dθk
M(θ)|θ=0.

We define as g(t) = M(it) with θ = it for t ∈ R as a distribution character-
istic function.

We can have the function g Taylor expanded around zero as

ϕ(t) = ϕ(0) +
m∑

k=1

ck

k!
(it)k + o(|t|m)

if and only if ck = µk for k ≤ m the moments exist.
Note that

g′(t)|t=0 =
∫

X

ixeitxf(x)dx|t=0 = iµ1.

The cumulant generating function associated to M(θ) is defined to be K(θ) =
log M(θ).

We have the Taylor expansion for K as

K(θ) =
∑
j=0

kj

j!
θj

with coefficients kj named as cumulants, each of which can be written as poly-
nomials of the moments µs for s ≤ j.

⋆ Note that
k0 = K(0) = log M(0) = log 1 = 0.

Also,

k1 = K ′(θ)|θ=0 = (log M(θ))′|θ=0

=
M ′(θ)
M(θ)

|θ=0 = M ′(0) = µ = µ1.
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Moreover,

k2 = K ′′(θ)|θ=0 = (log M(θ))′′|θ=0

=
M ′′(θ)M(θ) − (M ′(θ))2

M(θ)2
|θ=0

= M ′′(0) − (M ′(0))2 = µ2 − µ2
1.

For the normal distribution, M(θ) is given as eµθ+ σ2
2 θ2

, so that K(θ) =
µθ + σ2

2 θ2 with the cumulants of degree more than two vanishing.

⋆ The normal distribution is defined to be f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 for x ∈ R.
Then with θ = it, the Fourier transform implies that

M(θ) =
∫

R
eitx 1√

2πσ
e−

(x−µ)2

2σ2 dx (
x − µ√

2σ
= −v)

=
∫

R
eit(−

√
2σv+µ) 1√

2πσ
e−v2√

2σdv

=
eitµ

√
π

∫

R
e−v2

e−i(
√

2σt)vdv

=
1√
π

eitµe−2σ2t2 =
1√
π

eµθe2σ2θ2
=

1√
π

eµθ+2σ2θ2

(corrected as so).

4.2 Appendix to distributions

We may refer to [7]. As well we may refer to [8].
• The binomial distribution B(n, p) has density f(k) = nCkpkqn−k at 0 ≤

k ≤ n with 0 < p < 1 and p + q = 1.
Note that

∑n
k=0 f(k) = (p + q)n = 1.

We have binomial expansion (q + px)n =
∑n

k=0 nCkpkqn−kxk with x ∈ R.
Differentiating both sides with respect to x implies

np(q + px)n−1 =
n∑

k=1

nCkpkqn−kkxk−1.

Evaluating both sides at x = 1 we obtain np =
∑n

k=0 kf(k) = E[k].
Multiplying both sides by x and differentiating implies

np(q + px)n−1 + n(n − 1)p2x(q + px)n−2

= np(q + px)n−2(q + npx) =
n∑

k=1

nCkpkqn−kk2xk−1

Evaluating both sides at x = 1 we obtain np(q + np) =
∑n

k=0 k2f(k) = E[k2].
It then follows that with k = X,

σ2 = V (X) = E(X2) − E(X)2 = npq.
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The moment generating function is given by

E[etk] =
n∑

k=0

etkf(k) = (q + pet)n.

• The Poisson distribution Poi(λ) with λ > 0 is the limit distribution of
B(n, λ

n ) as n → ∞. It has density f(k) = e−λ λk

k! for integers k ≥ 0.
Note that

∑n
k=0 nCk(λ

n )k(1 − λ
n )n−k = (λ

n + (1 − λ
n ))n = 1.

We have
∑∞

k=0 f(k) = e−λ
∑∞

k=0
λk

k! = 1. We compute

E[k] =
∞∑

k=0

kf(k) = e−λ
∞∑

k=1

λ
λk−1

(k − 1)!
= λ.

We also have

E[k2] = e−λ
∞∑

k=1

kλ
λk−1

(k − 1)!
= λe−λ

∞∑
t=0

(t + 1)
λt

t!

= λ(E[t] + 1) = λ(λ + 1).

Therefore, σ2 = V (k) = E(k2) − E(k)2 = λ.
The moment generating function is given by

E[etk] =
∞∑

k=0

etk−λ λk

k!
= e−λ

∞∑
k=0

(etλ)k

k!

= e−λeetλ = eλ(et−1).

By the way, the density limit is obtained as follows. With p = λ
n ,

nCkpkqn−k =
n!

k!(n − k)!
(
λ

n
)k(1 − λ

n
)n−k

=
λk

k!
n(n − 1) · · · (n − k + 1)

nk
(1 − λ

n
)−k(1 − λ

n
)n.

As n → ∞ we have the second fraction factor and the third factor (1 − λ
n )−k

going to 1. As well, we have

(1 − λ

n
)n = (1 +

1
n
−λ

)
n

−λ (−λ)

going to e−λ as n → ∞. Therefore the binomial density goes to the limit as the
Poisson density in the way as p = λ

n .
• What is the Bernoulli distribution? The Bernoulli (local) density is pkqn−k

(or nCkpkqn−k) for n ∈ N with p + q = 1. With 0 < p < 1 as a constant, we
have

1 = lim
n→∞

(p + q)n = lim
n→∞

n∑
k=0

nCkpkqn−k.
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Is this the meaning?
• What is the Cauchy distribution? This is Cau(µ, σ) that is µ + σ X

Y with
σ > 0, where Cau(0, 1) is the distribution of X

Y where X and Y are independent
under N(0, 1). The Cauchy density is f(x) = 1

π
σ

σ2+(x−µ)2 . In particular, f(µ) =
1

πσ . We have the derivative of f at x ∈ R as

f ′(x) = −σ

π

2(x − µ)
(σ2 + (x − µ)2)2

.

It then follows that f(µ) is the maximal value and the maximum. We compute
the integral

∫

R
f(x)dx =

1
πσ

∫

R

1
(x−µ

σ )2 + 1
dx (

x − µ

σ
= t)

=
1

πσ

∫

R

1
t2 + 1

σdt =
1
π

[arctan t]∞t=−∞ = 1.

Note also that
∫

x

(x−µ
σ )2 + 1

dx =
∫

σt + µ

t2 + 1
σdt

= σ2 1
2

log(t2 + 1) + µσ arctan t + C.

It then follows that the Cauchy mean E[x] does not exist.
The Cauchy density for X

Y under N(0, 1) is computed as follows.
We take the transformation u = x

y and v = y. Then x = uv and y = v. The
Jacobian for this transformation is

J = det
(

xu xv

yu yv

)
=

����
v u
0 1

���� = v.

The vectors (1, s) and (0, 1) in the uv-plane are mapped respectively to (s, s)
and (0, 1) in the xy-plane. The volume of the parallelogram in (u, v) is 1 and
that of (x, y) is |s|.

The density with respect to (u, v) is given by

g(x)g(y)|J | ≡ 1√
2π

e−
1
2 x2 1√

2π
e−

1
2 y2

|J |

=
1
2π

e−
1
2 (uv)2e−

1
2 v2

|v|.

Note that we have, because of independence,

1 =
∫∫

R2
g(x)g(y)dxdy =

∫

R\{0}
dv

∫

R

1
2π

e−
1
2 (uv)2e−

1
2 v2

|v|du.

－ 50 － － 51 －



The density for u = x
y is given by the integral, by changing order of integra-

tions, with replacing R \ {0} to R up to measure zero sets,
∫

R

1
2π

e−
1
2 (uv)2e−

1
2 v2

|v|dv =
1
π

∫ ∞

0

e−
1
2 (u2+1)v2

vdv

=
1
π

[− 1
u2 + 1

e−
1
2 (u2+1)v2

]∞v=0 =
1
π

1
u2 + 1

.

The density for µ + σ x
y is given by

1
σ

1
π

1
(u−µ

σ )2 + 1
=

1
π

σ

(u − µ)2 + σ2
.

That’s it!

4.3 Appendix to the central limit

We may refer to [8].
The classical CLT with respect to binomial distribution is the following.

Theorem 4.3.1. By the transformation t = k−mn

σn
, the binomial distribution

B(n, p) with respect to k as a variable converges to the normal distribution
N(0, 1) with respect to t as n → ∞.

Proof. Recall that for the binomial B(n, p), the mean mn = np and the variance
σ2

n = npq.
The variables t and k are discrete, but they become continuous like in the

limit so that with n large enough,

dt =
1
σn

dk

Let fn(t) be the distribution transformed from B(n, p)(k) so that

fn(t)dt = B(n, p)(k)dk

as change of variables. It then follows that with p + q = 1,

fn(t) =
√

npq

(
n

k

)
pkqn−k =

√
n

n!
k!(n − k)!

pk+ 1
2 qn−k+ 1

2 .

On the other hand, the Stirling limit formula implies that

lim
n→∞

n!√
2nπnne−n

= 1.

The Stirling limit formula is

lim
x→∞

Γ(x)√
2πxx− 1

2 e−x
= 1
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where the Gamma function is defined to be

Γ(x) =
∫ ∞

0

e−ttx−1dt, x > 0.

Namely, n! is equivalent to
√

2πnn+ 1
2 e−n as n → ∞. The equivalence is

denoted as ∼. Therefore, equivalently, we have

fn(t) =
√

n
n!

k!(n − k)!
pk+ 1

2 qn−k+ 1
2

∼
√

n√
2πkk+ 1

2 e−k

√
2πnn+ 1

2 e−n

√
2π(n − k)n−k+ 1

2 e−n+k
pk+ 1

2 qn−k+ 1
2

=
1√
2π

(
np

k
)k+ 1

2 (
nq

n − k
)n−k+ 1

2

Note that since t = k−mn

σn
= k−np√

npq then we have k = np +
√

npqt. Thus, if t is
fixed and n is large, then k is large and positive. Indeed, if t is positive, then
k > np > M any positive with some n > M

p . If negative, then for any positive
M , if

k =
√

n(
√

np +
√

pqt) > M,

there is some n > q
p (−t)2 such that p(

√
n)2 + (

√
pqt)

√
n − M > 0 so that

√
n >

√
pq(−t)+

√
pqt2+4pM

2p with pqt2 + 4pM > 0.

It then follows that k
np = 1 +

√
q

np t. Also,

n − k = n − np −√
npqt = nq −√

npqt

so that n−k
nq = 1 −

√
p

nq t. Inserting these equalities into the limit equivalence
above we obtain

fn(t) ∼ 1√
2π

(1 +
√

q

np
t)−np−√

npqt− 1
2 (1 −

√
p

nq
t)−nq+

√
npqt− 1

2 .

It then follows that

− log(
√

2πfn(t)) ∼ (np +
√

npqt +
1
2
) log(1 +

√
q

np
t)

+ (nq −√
npqt +

1
2
) log(1 −

√
p

nq
t)

= (np +
√

npqt +
1
2
)[

√
q

np
t − 1

2
q

np
t2 + O(n− 3

2 )]

+ (nq −√
npqt +

1
2
)[−

√
p

nq
t − 1

2
p

nq
t2 + O(n− 3

2 )]
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where log(1 + x) = x − x2

2 + O(x3) for x small enough. Indeed,

log(1 + x) = x − x2

2
+

x3

3(1 + θx)3

with 0 < θ = θ(x) < 1. Therefore, with 1 + θx > 1
2 for x small enough,

|
log(1 + x) − x + x2

2

x3
| =

1
3|1 + θx|3

<
23

3
.

As well,

(
√

q

np
)3 = (

q

p
)

3
2 n− 3

2 (−
√

p

nq
)3 = (

p

q
)

3
2 n− 3

2 .

It then follows by expanding and summing the right hand side in the limit
equivalence above converted to that

√
npqt − 1

2
qt2 + npO(n− 3

2 ) + qt2 − 1
2

q
3
2

√
np

t3 +
1
2
[
√

q

np
t − 1

2
q

np
t2 + O(n− 3

2 )]

−√
npqt − 1

2
pt2 + nqO(n− 3

2 ) + pt2 +
1
2

p
3
2

√
nq

t3 +
1
2
[−

√
p

nq
t − 1

2
p

nq
t2 + O(n− 3

2 )]

= −1
2
t2 + (n + 1)O(n− 3

2 ) + t2 − 1
4

p2 + q2

npq
t2 +

1
2

p2 − q2

√
npq

t3 +
1
2

q − p
√

npq
t

=
1
2
t2 + O(n− 1

2 )

for n large enough, where with some positive constant M ,

| (n + 1)O(n− 3
2 )

n− 1
2

| ≤ (n + 1)Mn−1 ≤ 2M

as n → ∞, and as well, with 1√
n
≤ 1,

| − 1
4

p2 + q2

npq
t2 +

1
2

p2 − q2

√
npq

t3 +
1
2

q − p
√

npq
t|
√

n

≤ 1
4

p2 + q2

pq
t2 +

1
2
|p2 − q2|
√

pq
|t|3 +

1
2
|q − p|
√

pq
|t|.

It then follows that

lim
n→∞

log(
√

2πfn(t))
−1

2 t2 + O(n− 1
2 )

= 1.

Moreover, taking exponential in the limit equivalence termwise if allowed,
then we obtain

lim
n→∞

√
2πfn(t)

exp(− 1
2 t2 + O(n− 1

2 ))
= 1.
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By the way, O(n− 1
2 ) looks like Mn− 1

2 so that this function is vanishing as
n → ∞.

Namely, obtained is that

lim
n→∞

fn(t) =
1√
2π

e−
1
2 t2 .

Note that if f(x) and g(x) are differentiable, with both limits as x → ∞
zero or ±∞, and f(x) ∼ g(x) as x → ∞, then log f(x) ∼ log g(x) as x → ∞?
In fact, the l’Hospital theorem implies that

lim
x→∞

log f(x)
log g(x)

= lim
x→∞

f ′(x)
f(x)

g(x)
g′(x)

= lim
x→∞

f ′(x)
g′(x)

provided that limx→∞
f ′(x)
g′(x) exists, with respective limits of f ′ and g′ indefinite

as x → ∞. If so, and if the limit is equal to 1, then this can be applied for that
case above.

Similarly, the limit equivalence f(x) ∼ g(x) as x → ∞ implies the limit
equivalence ef(x) ∼ eg(x)? The l’Hospital theorem implies that

lim
x→∞

ef(x)

eg(x)
= lim

x→∞

ef(x)f ′(x)
eg(x)g′(x)

with ef(x)−g(x) = eg(x)(1− f(x)
g(x) ), provided that the limit in the right hand side

exists. If so, and if the limit is equal to 1, with g(x) vanishing to 0 as x → ∞,
then this cane be applied for that case.

But this is a general case. In that case, elog f(x) = f(x), that’s enough.

4.4 Appendix to covariance

We may refer to [7].
The variance of a (classical) random variable f is defined to be

v(f) = E[(f − E[f ])2].

It then follows that

v(f) = E[f2 − 2E[f ]f + E[f ]2] = E[f2] − E[f ]2.

The covariance of two (classical) random variables f and g is defined to be

c(f, g) = E[(f − E[f ])(g − E[g])].

It then follows that

c(f, g) = E[fg − E[g]f − E[f ]g + E[f ]E[g]]
= E[fg] − E[f ]E[g] = c(g, f).
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In particular, if E[f ] = 0 or E[g] = 0, then c(f, g) = E[fg] = c(g, f).
Moreover, we have

v(f + g) = E[(f + g)2] − E[f + g]2

= E[f2 + 2fg + g2] − E[f ]2 − 2E[f ]E[g] − E[g]2

= v(f) + v(g) + 2c(f, g).

We may continue to investigate the next stage, but do not at this moment.
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