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Abstract
We begin to study the operator probability theory to some extent.
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1 Introduction

We would like to love people and mathematics for peace and stability to the
world. Yes, we can do, as possible, to some extent.

Following [30] we as beginners, outsiders, fools, or not would like to study
the free probability theory for operator algebras.

This is a sort of mathematical surfing to make it clear against a mathematical
water wall such a lecture notes book. It means a mathematical understanding for
some unkind notions such as independence, freeness, and more, together with
illustrative helpful examples at the basic level. We made some considerable
effort to do this somewhat completely (Yatta mine).

This is nothing but a review.

We use the standard notation by our taste.
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1.1 The first outlooking at the background

The commutation relation of (linear) operators X, Y, and I the identity operator
on a Hilbert space in quantum mechanics is given as

XY -YX=[X,Y]=al, acC.

In this case, the commutator [X,Y] commutes with X and Y.

Let F,, denote the free group of n generators with respective n inverses.
Then elements of F,, are viewed as words generated by 2n characters, with
cancellation as gg~' = 1. where such words may have multiplicity free as g2.
Even usual words such as Good or Look do have multiplicity, but they are not
so many? We may consider only multiplicity non-free words such as God or so.

Let H be a Hilbert space. We consider the infinite (or /2-)direct sum (or
product) of n-fold tensor product spaces " H = H®---® H of H. Namely, let

T(H)=F(H)=a>,9"H, &"H=C=Cl1

named as the Fock (tensor sum) space of states of (elementary) particles with
®YH vacuum state (cf. [3]).

For any h € H, the left creation (or tensor multiplication) operator L;, on
T(H) a Hilbert space is defined as

for € = (&,) € T(H), & € 9" H.
The operator L, creates new states of particles by tensor with shift.
The operator Lj, and its adjoint operator Lj generate the extended Cuntz
(?) C*-algebra.
* Note that (cf. [14])

1h® &nll® = (h ® &n, 7 @ &n) = (B, h)(Ens €n) = IR 16017
As well, [|€]2 =307 €nll* < oo for & € T(H). Therefore,

IZEN® = llh @ &all® = IR NEN.

n=0

Thus, ||Ly|| < ||h|| by definition of the operator supremum norm. Namely, Ly,
is a bounded operator. Conversely,

Therefore, || Ly|| = ||h]]. In particular, Lj is an isometry for A with norm 1.
We also compute that with T;, = L,

(& T Tun) = (Th&, Tom) = Y _(h @ &n, h @ 1)
n=0
= 1817 > (nsmn) = [IRI (€, ).

n=0



Therefore, if || k|| = 1, then T;T}, is the identity operator 1 on T'(H). As well,

T;(Thn) :T}T(O7h®n0ah®n17) = (770’7717) =1

That’s it! Moreover,

(€. T3 (0, 0, -+ )) = (Th&, (0, 0,---)) = 0,

so that T;(ng,0,---) = 0.

The operator 17 is called the annihilation operator. It annihilates vacuum
state of particles.

Annihilation in physics means that when particles collide (or bump) with
anti-particles, their mass become energy to disappear.

The C*-algebra generated by 7}, and T} for h € H with norm 1 is certainly
called the Toeplitz algebra.

Suppose now that vectors h, k € H are orthogonal. Namely, the inner prod-
uct (h, k) =0. Then

o0

<Th€7 Tk77> = Z<h & €n7 k® nn>

n=0

- Z<h’ k><§n7’r]n> - 0
n=0

Therefore, the operators T, and T have ranges orthogonal. In this case, but
the direct sum of their ranges is not F'(H), so that the C*-algebra generated
by T}, and T}, with their adjoints on F'(H) may be called as the Cuntz like (or
similar) algebra denoted by O3 by us.

Similarly, for mutually orthogonal n vectors h; € H, j = 1,---,n, the
operators Tj,; have ranges mutually orthogonal, but the direct sum of their
ranges is not F'(H), so that the C*-algebra generated by Ty, j = 1,--- ,n may
be the Cuntz like (or similar) algebra O;.

However, if we can identify F'(H) with the direct sum of those ranges, then
our like O; can be identified with Cuntz O,,.

Moreover, for a sequence of mutually orthogonal vectors h,, € H, n € N, the
operators Tp, have ranges mutually orthogonal, so that the unital C*-algebra
generated by T}, , n € N is just isomorphic to the (universal) Cuntz algebra
Ow. O

Random variables in probability as measurable (real or complex valued)
functions on a measurable space are replaced with (some) operators on a Hilbert
space (of square summable or integrable measurable functions) in free (or semi-
free) or noncommutative probability, as which are also observables in quantum
mechanics.

A noncommutative probability (function) space is defined to be a unital
(operator) algebra 2( over C endowed with a (positive) liner functional ¢ : % — C
as probability (?) integral (!) such that ¢(1) =1 (so that ¢(a*a) > 0 for any
aeA).



Table 1: A comparison of Classical and Quantum mechanics bases

Classical Quantum
A function f on a space X | An operator T on a Hilbert space H
Bounded or unbounded The same as the left
Real valued or Hermite Self-adjoint or real spectrum
Circle valued Unitary or circle (part) spectrum
Commutative algebra by f Operator algebra 2 by T
(L) Integral [ f(x)dx Functional value ¢(T')

Elements of 2{ are called noncommutative random variables.

The distribution of a family of elements a; of 2 for j € J a set is provided
by the information of moments ¢(aj, ---a;,) for ji,---,jn € J.

Let P = P({X,},es) be the algebra over C of polynomials of mutually
uncommuting inderminates X;. There is a homomorphism x from ‘P to A by
sending X; to a;. Thus, there is the linear map ¢ o x from P to C. Namely,

(pox)(Xj, ---Xj,) = plaj, ---aj,) €C.

Table 2: Moments and more for functions and operators

Type Classical (Lebesgue) Quantum
Mean or expectation 1= [y xdr = Elx] w=o(T)
n-th moments fin = [y " dx = E[z"] = @(T™)
Variance 0 =[]z —pde o((T* — @) (T — pl))
Standard deviation c>0 The similar

Let 2 be a (unital) C*-algebra and a = a* € A an Hermitian element and ¢
a state on 2, that is, a positive linear functional on A with supremum norm 1
on the unit ball of 2. We say that (2, ) as above is a C*-probability space.

There corresponds to a compactly supported probability measure pu, for the
element a on R such that

plam) = / (1)

which extends by linearity to polynomials by the element a. In particular, in
the unit case, with the support supp(ua) C R compact (or bounded and closed),

1=¢(1) = /Rldua(t) = Ha(supp(ta))



Therefore, for Hermitian random variables, we obtain corresponding probability
(P) measures as in the classical P theory. That is determined completely by the
moments collected.

* The spectrum theory (cf. [17]) implies that the C*-algebra generated by
a normal element o (i.e. aa® = a*a) and 1 is isomorphic to the C*-algebra
C'(sp(a)) of all continuous complex-valued functions on the spectrum sp(a) of a.
If @ = a*, then sp(a) is contained in R (cf. [6]). The spectrum for any element
is contained in C and always closed. For any bounded operator b, its spectrum
is bounded by the operator norm of b. Thus, if an operator is bounded, then
its spectrum is compact. For a bounded self-adjoint operator a, the measure
g or the corresponding functional ¢ can be given by the normalized Lebesgue

measure restricted to sp(a). Namely, p, = mu with p L measure, and

0(a) = Jipa tia(t). O

* The dual (Banach) space 2* of bounded linear functionals on a C*-algebra
2 is certainly known to somewhat extent. The space of states on 2l is a closed
subspace of 2A*. In particular, it is known as the Riesz theorem that the dual
(Banach) space C(I)* of the C*-algebra C(I) of all continuous functions on a
closed interval I = [a, b] is identified with the space V(1) of bounded variation
functions v(t) on I such that v(a) = 0, and that the Stieltjes integral of f € C(I)
by v defines the corresponding functional as

b
o(f) = / f)du(t), o ()"

with norm of ¢ equal to the total variation of v on I as the supremum of finite
sums of variations of v with respect to finite partitions of I (cf. [10]). O

The independence distinguishes free and the other quantum or noncommu-
tative, or classical probabilities.

In quantum (or operator) mechanics, the independence is said to be classical
independence, modeled on tensor products of algebras.

Two (unital) subalgebras % and € of (2, ¢) are said to be classically inde-
pendent if they commute, namely [B, €] = 0, and if

p(be) = p(b)p(c) beB,ced.

Note that the last condition amounts to that independent random variables (in
classical mechanics) factorize under expectation (E).

* Let (B, ) and (€, 1) be C*-probability spaces with 9B, unital. Then
they are identified with respective tensor factors of the tensor product B ® €
with a C*-norm and be classically independent in (B ® €, ¢ ® v). Indeed,
B®l,1®¢ =0and

(peY)(b@c)=(p@P)(b@1)(¢@Y)(1&c)=p®)Y(c) beB,cel

by the definition of ¢ ® 1. O



* Let X C R™ be a (L) measurable set with (L) measure u(X) = 1. For two
random variables f(x) and g(y) for (z,y) € X x X, which are integrable on X
with respect to u, we have

E[f(2)g(y H-—t[;xxrf( 2)9(y)dulx)du(y)

/ flx)du(z / 9(y)dpu(y)

_/XXX fla@)dp(z )du(y)/ 9(y)dp(z)du(y)

= E[f(2)|Elg(y)]

by the Fubini theorem. Namely, f(x) and g(y) on X x X are independent in
the usual or classical sense. O

We have the free independence in the free probability theory. A family of
unital subalgebras ;, j € J in a C*-probability space (2, ¢) is said to be freely
independent or free if

plaraz---ax) =0, a; €A, 1 <5<k

such that 44 # 49 # --- # i, in J and ¢(a;) =0, 1 < j < k. The sets of some
variables in (2, ¢) are said to be free if the algebras generated by each of the
variables are free.

*x Let f(x) =a for v € X = [—1,1] =Y the interval. In this case, we have

1.1 b b z?
(flx)®1)zde=dy = / xfdx/ —dy=[~]t__,=0.
/X2 272 L2 )2 4 !

But

/<x®mu®ww®nu®yﬁm%@
X2

S| ! 23 2
= 7d d—2 — o .
/_lmzw/_y y [6]1;71 370

Therefore, the two variables x ® 1 and 1 ® y are not free with respect to ¢ =
J 2 %dx%dy, but they are classically independent. So what are free variables?
O

We denote by vN(F,) the von Neumann algebra by the left regular repre-
sentation of the free group F,, of n generators.

The problem of Murray and von Neumann is whether the von Neumann
algebras vN(F,,) and vN(F,,) are non-isomorphic for n # m.

This seems to be still unsolved since it is raised some long time about 90
years ago.

* A C*-algebra can be represented isometrically as an operator (sup) norm
closed, involutive (or #-) subalgebra of the C*-algebra B(H) of all bounded



operators on a Hilbert space H. A von Neuamnn algebra is defined to be an

operator strongly (or weakly) closed, *-subalgebra of B(H) for some Hilbert H.
Note that for an operator T € B(H) and vectors &, € H, we have the

Cauchy-Schwarz inequality and the vector to operator norm estimate

(T < Tl < T €Nl

which implies that norm convergence for operators implies strong convergence
and strong convergence implies weak convergence.

Let V be a strongly closed subset of B(H). If a sequence of operators of
V' converges to an operator T' in B(H) in norm, then it converges strongly to
T, so that T belongs to V. Thus V is norm closed. It then follows that a von
Neumann algebra is a C'*-algebra. O

* We denote by [2(F),) the Hilbert space of square summable complex-valued
functions on the free (or any discrete) group F,, as a space. The left regular
(unitary) representation \ of Fj, on [2(F,) is defined to be that

)‘gf(x):f(gilw% g,xEFn,fEF(Fn).

Note that for g1, gs € F),, we have

Moo f (@) = flg3 97" w) = Mg ) (97 ' 2) = Xg, (Ao ) ().

Also, we compute

Mo foh) = (FAgh) = > fla)h(gTz) (s=g 'x)

zeF,

= 3 FGIRE) = ()

seF,

Hence, A\j = Aj-1 = )\g_l, that is unitary. The free group von Neumann algebra
vN(F,) is defined to be the von Neumann algebra generated by the unitary
operators \,, g € Fy, on [?(F,). What is difficulty? It’s F,, which is non-
amenable. O

* By the way, the free groups F,, and F,,, are non-isomorphic for n # m. This
hard question has been solved by (Pimsner-Voiculescu), Cuntz (and Blackadar)
by using the K-theory of the full (or reduced) group C*-algebras C*(F,,) of the
free groups F,,. Indeed, the Ky-group of C*(F,,) is Z, but the K; is Z", which
implies the non-isomorphism (cf. [2]). O

* The operator weak or strong closures for some sets of operators are larger
than the operator norm closure in general. For instance, the commutative C*-
algebra C(I) of continuous functions on the interval I = [0,1] C R is strictly
contained in the abelian von Neumann algebra L>°(I) of essentially bounded
measurable complex-valued functions on 1. O]

* The C*-algebras corresponding to groups or spaces do remember topologi-
cal space invariants to somewhat extents. On the other hand, the von Neumann



algebras to them do only Borel space invariants in some sense. Therefore, the
von Neumann problem is probably solved to be the unique isomorphism class
by this sense only. O]

The von Neumann tracial state of vIN(F},) is defined to be that
T(T) = (TXe, Xe), T €vN(E,)

where e is the identity element of F,, and . is the characteristic function on
F,, at {e} as support. The set {x,|g € F,,} is the canonical basis of the Hilbert
space [2(F},).

* For T, S € vN(F,) and «, 8 € C, we have

(T + 3S) = ((aT + BS)Xe; Xe) = at(T) + B7(S).

As well, 7(T*T) = ||[Tx.||> > 0. Thus, 7 is a positive functional on vN(F,).
Moreover, 7(1) = ||x||*> = 1. Hence, 7 is a state on v N (F},). O

* We compute that for Ay, \, € vN(F,,) for g, h € F,, with gh # e,

<)‘g/\hX67Xe> = Z /\!J()‘hXe)(x)XT(x): Z Xe(h_lg_lx)m: 0,

reFy, ceFy,

and similarly, (AnAgxe, Xe) = 0, so that 7(AgAn) = T(ApAg) = 0. Moreover,
T(Ag) = 0if g # e. On the other hand, 7(\¢) = 1 with A\c =1 € vN(F,,). It
then follows that 7 is a tracial state on vN(F,,). Namely, 7(T'S) = 7(ST) for
any T, S € vN(F,). Indeed, suppose that nets of elements generated by A, for
g € F,, with the trace 7 zero converge weakly to some element T of vN(F},).
Then it follows that 7(T") = 0, so that 7(7'S) =0 = 7(ST) for TS # 1 # ST. O

* It also follows in particular the following. Let a,b be the generators of
F,. Then the (unital) (involutive) subalgebra generated by A\, and the subalge-
bra generated by A, in vN(Fy) are freely independent with respect to the von
Neumann trace 7. 0

*Let Ty =3 cp aghg € vN(Fy) and Tp = 35, BuAn € vN(F},) with
ag, Bn € C and with Ay and A, distinguished. We have F,,, = F, * I}, the
free product group of F,, and F,, and also C*(Fp4m) & C*(F,) * C*(Fy,) the
(unital) free product of C*(F,) and C*(F,,) (and as well the reduced version
and the von Neumann version). The (multiplication) operators T} and T5 both
extend to those on the vN(F,,4,,) with 1 on vN(F,,) and vN(F,,) respectively.
Let 7 be the von Neumann trace on vN(F,,1,,). Then

(T +1s) = e + Be = 7(T1) + 7(13).
On the other hand, we compute that
T((Ty + T2)*) = 0 + 20efe + 02 = 7(TF) + 2r(TVTy) + 7(T3).
Moreover,

T((Ty + T2)%) = af + 3028, + 3a 07 + 32
= 7(TP) + 37(T?Ty) + 37(TyT2) + 7(T%).



It then certainly follows inductively that the n-moments of 77 4+7% depend on the
n-moments of 77 and 75 as well as the n-moments of TlnfkTQk forl1<k<n-1,
but not on the (first) moments of 7} and T5. Note also that we do have

(I T3) = 7(T7 )7 (T3).

By the way, we have

TiTo = ) aghg > Budn

geFy h€Fp,

=3 S aBudhn (k=ghe Fopn)

gEF, helFy,

= > g Bk

kan+mka:gh7g€anh€Fm

Namely, the product of the operators T4, T5 is given by a sort of convolution. [

* Let M,,(C) be the C*-algebra of all n x n matrices over complex numbers.
The trace on M, (C) is defined to be tr((ai;)) = >°7_ a;; € C for A = (a;;) €
M, (C) as a linear functional. The tracial state on M, (C) is then given by
¢ = ~tr. Note that (1) = 1 with 1 € M,,(C) the identity matrix and that

ZZ‘T‘%—ZZWH = 0.
k=1 j=1

k=1j=1

As well,

= ZZakj ZZ jkQAkj = tI‘ BA)
j=1k=1

k=1 j=1

O

* Let X be a compact Hausdorff space with u a probability measure. Let
C(X,M,(C)) 2 C(X)® M,(C) be the C*-algebra of continuous M, (C)-valued
functions on X. Define a tracial state ¢ on C(X, M, (C)) by

o) = [ Lut@)inte). = f) € CLX.M,(O)).

In particular, (1) = [y ldu(z) = p(X) = 1. If f = f*, then ¢(f) € R. The
functions f may be viewed as random matrices. O

The von Neumann algebra vN(F),) can be viewed as being asymptotically
generated by random matrices.

There is an isomorphism between v N (F,,) and p(vN(F))p for a projection
p with trace rational or not.

There are the Dykema-Radulescu interpolated free group factors DR(F,.) for
real r > 1 generalizing v N (F},). In particular, we have DR(F, ;) ~ DR(F,) %
DR(F).



2 The second outlooking at the basics

2.1 Operator probability spaces

Let ¢ : A — C be a positive unital linear functional on a unital C*-algebra 20
over C. Then ¢(a*) = ¢(a) for a € A.

Proof. Define a positive sesquilinear form (or an inner product) p on A2 by
p(a,b) = p(b*a) for (a,b) € A%. In particular, p(a,a) > 0. Then we have

pla,b) = p(b,a) = (a*b).

This is one of the properties of an inner product.
Indeed, the p defines a norm on 2 by /p(a, a). Then the p can be written by
the norm as a linear combination. It then follows that that property holds. [

Let 2 be a von Neumann algebra. A normal state ¢ on 2 is ultra-weakly
continuous.

Proof. We may refer to [21]. Assume that 2l is represented on a Hilbert space H.
We denote by 2, the Banach space of all o-weakly continuous linear functionals
on 2. Each element of 2, is said to be normal. The space 2l is named as the
pre-dual of .

The o-weak topology on 2 is the (2, 2L, )-topology.

Convergence by this topology is given by |p(z)| for z € 2 and ¢ € 2,

Each ¢ is given as a limit of sums of vector states on 2. Namely,

p(x) =Y a;(x&,n), o €C¢& e H
j=1

where 777, o] < oo, 3577 [1€5]1* < 00, and 377, [In;|* < oo. O

A linear functional ¢ on a C*-algebra 2 is said to be faithful if p(a*a) =0,
then a =0 € 2.

Example 2.1.1. Let (X, ) be a probability space with p(X) = 1. We denote
by L*°(X) the von Neumann algebra of all essentially bounded measurable
complex-valued functions on X. Define o(f) = [y f(z)du(z) € C for f €
L*°(X). This is a faithful normal tracial state on L>°(X). Normal?

The L>°(X) is represented on the Hilbert space L?(X) by multiplication
operators M. Note that

1Myl = ||f§||§:/X\f(fv)f(w)FdM(I) < 1 £llsollE13-

As well, convergence with respect to the inner product

(My€,m) = /X F@)E@)n@)duz)



to (Mg, n) implies the convergence by ¢. Why? We can choose { = 1 = n.
That’s it!

If (f*f) =0, then [, |f|*du(z) = 0. Hence |f| = 0 almost everywhere on
X. Thus, f = 0 up to measure zero sets. Each element of L>°(X) is a class of
functions up to measure zero sets. L]

Example 2.1.2. The tracial state ¢ = Ltr on M, (C) is faithful and normal.

The M, (C) is represented on C" by matrix multiplication. Let Xj =
(x5(k)) € M, (C) such that for any £ € C", there exists lim X§ =n € C™ for
some 7 € C™. In particular, for the canonical basis ey, --- , e, of C",

lim Xye; = lim(a;(k))izy = (limay; (k))iz, € C™
Let X = (limg x5(k))}' =1 € My, (C). That is the strong limit of the sequence

(Xk). Namely, M, (C) is a von Neumann algebra.
If (A*A) =0, then tr(A*A) = 0. It then follows that A = (a;;) = (0).

If the inner products (Xye;, e;) converge to (Xej, e;) fori,j =1,--- ,n, then
in particular, x;,(k) converge to x;; for 1 < j < n respectively, so that p(X})
converge to p(X). O

Example 2.1.3. Let H be a Hilbert space. We have the von Neumann C*-
algebra B(H) of all bounded linear operators on H with the operator norm.
We have the C*-norm condition ||T*T|| = ||T'||? for any T € B(H).
The operator norm for 7" is defined to be

T
7€l _ up e = sup 7€)
cemezo €l jer<t lEl=1

1Tl =
Note that Hﬁé‘” =1 for £ # 0. Also, we obtain that

T¢
sup [|T¢|| < sup |T¢|| = sup [|TE| < sup ué sup || T¢|.
lell=1 lell<t o<lgl|<1 cemezo €Il 7 jer=1

As well, for €] =1,
IT€|* = (T€,T€) = (T"T¢€, &) < | T*T¢|l < |T°T|.

It then follows that ||T||* < || T*T|.
On the other hand, we have | T*T| < |[T*||||T|| with ||T*| = |||l
Indeed, for any S,T € B(H), we have that for [|£|| =1,

ISTE|? = (ST¢, STE) < ||S*STEN|TE| < ||S*ST |-

It then follows that ||ST'||? < ||S*ST||||T||. What’s this? We next estimate that

|STe| = us<ﬁmnunn (IT€]l # 0, €]l = 1)
< ISIIT].



It then follows that ||ST| < |IS|IT||. As well, for ||€]| =1,

|T*E|[* = (T*€,T*€) = (TT*E,€)
<||TT¢| < ||TT*| < ||T||T* |-

It then follows that |72 < ||T||||T*||. Hence ||T*|| < ||T||. Since T' = (T*)*,
then || T < [T Thus, [T = |7

A C*-algebra may be defined to be an involutive Banach (or x-)algebra with
the C*-norm condition.

Since H is a Banach space, then B(H) is a Banach space.

Indeed, for any Cauchy sequence (T;,) of B(H), and for any £ € H, we have
the Cauchy sequence (||T7,£]|) in H. Thus, the (7,,&) converges to some T¢ € H.
This is extended to the limit operator T' € B(H).

Let us have the co x oo matrix representation such as

tu(’n) tlg(n)
(1) = | 1) t22(0) | e B

with respect to a (countable or not) basis (ex) for H. The strong or weak limit
T of (T},) looks like that

limn tll (TL) hmn tlg(n)
T — hmn t21 (n) hmn t22 (n) e c B(H)

Indeed, we have

<Tn€k, €l> = tlk(n) — h’rILntlk(n) = <T€k, €l>.
Also,

ITwerl® =D Itie(m)* — [Terl® =Y [limtju(n)|* € R.
j=1 =1

The weak or strong limit of bounded operators is always bounded? We can
not prove it in general, can do we. But it is only assumed from the first.

For instance, let X = [0,2] and let f,,(z) = 2™ for z € X, n € N. Then (f,)
is a sequence of bounded functions. But the point-wise (or strong) limit is given
by

0 (0<z<1),
nh_{%o fal) =41 (z=1),
oo (I<ax<2).

This limit function is not (essetially) bounded.
By the way, the von Neumann double commutant theorem is that for a unital
x-algebra 2 (of bounded operators) on a Hilbert space H, 2 is a von Neumann



algebra if and only if the commutant of the commutant of 2 is the same as 2,
fe, (A) =2

In particular,

(B(H)')" = (C1)' = B(H).

Also, the commutant 2!’ is a von Neumann algebra.

Indeed, suppose that a net (Ty) of 2’ converge strongly to a bounded op-
erator T on H. Then for any S € A (C B(H)), we have TS = STy. For any
¢ € H, we then have

[TASEll= ISTAE] —— [ISTE]|

l

IS¢

and it then follows (by the uniqueness of the strong or weak limit) that 7" € 2U'.

Let £ € H with ||€|| = 1. Define a positive linear functional ¢ on B(H) by
o(T) = (T&, &) with (1) = 1. Thus, ¢ is a (vector) state on B(H). This is
neither a trace nor faithful if dimension dim H > 2. O

Example 2.1.4. Let G be a (finite or not) group with 1g the unit. The
group algebra C[G] of G is defined to be the (formal) algebra over C of all
finite linear combinations such as E;-lzl g, 95 2 opey Bryhie with ag,, Bp, € C,
gj,hi € G. Elements of G are viewed as a basis for the linear space C[G] over
C. Multiplication on C[G] is given as

Z Qy;9; Z By e = Z > ag, Bugihi.

j=1k=1

This operation on (C[G] extends the group operation of G. The involution on
C[G] is defined by
Z g, 95)" O‘g;

By definition, for any f € (C[ ], we have ( f *) = f. Namely, the involution is
reflexive (or reflective) or a reflexion (or reflection). Also, for f1, fo € C[G] and
a, 3 € C, we have

(afi + Bf2)" =aff +Bfs.
The involution is conjugate linear. With f; = le g, 955 f2 =D ey Bhyhies

(fif2)" Zzagjﬂhkgjhk




The involution is anti-homomorphism.
The trace 7 on C[G] to C is given as

= 0 (9'7&16’7.7':17"'7”)’
DIRIES (R
j=1 J J G)-

This is certainly a positive linear functional on C[G] with 7(1¢) = 1, i.e., a state
and with traceness. Is this faithful? With f = 2?21 Qy,;gj, we compute

n n
T(f*f) _TZ Og, 9y ZangJ
n

= T(Z Z O‘gkagjglzlgj)

=1
QJQ(]JlG Z|a9J|2

does imply that f = 0. That’s it faithfulness! O
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Example 2.1.5. Let (X, p) be a probability space with X C R™ for some
integer n > 1 and Lebesgue like measure ;(X) = 1. We denote by L'(X, i) the
Banach x-algebra of all integrable measurable functions on (X, ) up to measure
zero sets by convolution. The convolution of f,g € L'(X, 1) is defined to be

(fxg)(@ /fa:— du(y) € LY(X, ).

Indeed, we have that an integration estimate and the Fubini theorem imply that

1f % gl = / (% 9) (@) dps(z)

/du /Ifx— Wldu(y)
- / l9(9)ld(y) / (@ — y)ldu(z) = gl | flh < oo.
X X

Associability for the convolution may be checked by the Fubini. The involution
for f € LY(X, ) is just complex conjugate. Namely, f* = f. The integration
Jx on L*(X, ) to C is a positive linear functional with [, 1du(z) = 1. Since
f*g=gxf, then [ is a tracial state. This is faithful. As well, we have a
picture like that

/ cLNX,p) - C=Clc LYX,p)
X

where we identify C with C1 a (Banach x-)subalgebra of L*(X, u). O

More generally, the following notion is considered.



Example 2.1.6. Let 2 be a unital algebra and B a unital subalgebra of 2. A
conditional expectation E from 2 to B is defined to be a linear map E : A —
B C U such that

Eb)=b beB and E(biabs) = b E(a)by a€ A by, by €B.

We may say that the triple (2(, E,%) is an operator probability space with
operator integration.
For instance, [, aldu(z) = a for a € C C L'(X, ). Also,

/ (o f(£)an)du(z) = o / f(@)du(z)as.
X X

Thus, the triple (L' (X, p), fX, C) is an example by functions as operators. [J

Example 2.1.7. Let (2, ) be an operator probability space with 1 € 2 and
©(1) = 1. Then M5(C) is a unital *-subalgebra of M5(2() the 2 x 2 matrix
algebra over 2. Define a conditional expectation E : M (1) — M5(C) to be

(2 0)=(%0 o)
‘We check that

5 (Om alg) _ (90(06111) %0(04121)) _ (O‘H 0‘12> € M, (C).

a1 Qg2 plag1l)  p(agel) Qg1 (22

As well,

! !
gl (o o b1 b2\ (a1 g
/ /
a1 g2 ) \ba1r baa ) \ah oy
_ o11b11 + a12bar anibia + ai2bas ) (@

- B 11 e _
op1b11 + aaobar a1bia 4 22ban Qg

B (a11b11 + cabar )y + (aa1bia + cabas)ady  (ar1bin + anabar )y + (a11b12 + aabas)
(21b11 + ooy )y + (21bi2 + qaabas)ady;  (aa1bi1 + aaabar )y + (21b12 + aaabas) ity

(11p(b11) + 12p(b21))y + (a11p(bi2) + a1a¢(baz))ay
(11p(b11) + a12p(b21))z + (a1190(b12) + a12¢(b22) ),

(a21(b11) + aaap(ba1))ady + (a21¢(b12) + aaap(baz))ad,
(21p(b11) + c226p(ba1)) s + (a210(b12) + q220(b22)) gy

_ (o o2\ 5 b1 b2 afp Ay
T\« o b b aby  aby )
21 (22 21 b22 21 Qg
That’s it conditional! O

An expectation from a unital C*-algebra onto a subalgebra is defined to be
a positive unital idempotent map (cf. [4]).



Example 2.1.8. A conditional expectation E from a unital C*-algebra 2l onto
a C*-subalgebra B is an expectation.

We may refer to [22]. Let 2l be a von Neumann algebra and B a von
Neumann subalgebra. A conditional expectation (co-expe) E from 2 to 9B is
defined to be a linear map F : A — B which satisfies the following desirable
conditions: (1) E(b) = b for b € B, (2) E(a*) = E(a)* for a € A, (3) E(a*a)
is positive in B, (4) [|[E(a)|| < |la] for a € A, (5) E(a*a) = 0 if and only if
a=0. (6) E(byabs) = b1 E(a)bs, (7) E(a*a) > E(a)*E(a), (8) For the limit a of
a monotone increasing sequence of positive elements a; € A, F(a) is the limit
of the monotone increasing sequence of E(a;) € B. (9) For any normal state ¢
of 2, we have p(E(a)) = ¢(a) for a € B.

The co-expe map E on 2 may be denoted as E, (- |B).

Similarly, we may define a co-expe map from a (unital) C*-algebra 2 to a
(unital) C*-subalgebra 9B, where the (weak or strong) limit in (8) is replaced
by the norm limit and normal states in (9) are replaced by just states.

Therefore, by this definition, in particular, a conditional expectation F is
always positive. Since E(1) =1 € B C 2, then E is unital. Also, E(a) € B
for any a € 2. Thus, E(E(a)) = E(a). Namely, E? = E. It says that F is
an idempotent. It also follows from the condition (4) that the operator norm
|IE|l < 1. It says that F is contractive. Since ||E(1)|| = ||1]] = 1, then we have
the norm || E|| one. O

Example 2.1.9. The condition (2) like that

B[t )] (5 s < (s ey
c d p(b*)  (d”) p(c)  ¢(d)
is provided if p(a*) = p(a)* = ¢(a) for any a € 2.
A positive linear functional 7 on a C*-algebra 2l (unital or not) has that
7(a*) = 7(a) for a € 2.
Let (uy) be an approximate unit for 2l as an increasing net of positive ele-
ments of the closed unit ball of 2(. Then

7(a*) = liinT(a*u)\) = h{IlT(U)\a) =71(a).
Also, as for the condition (3), we have
. a b\ [a b\] a*a+c*c a*b+c'd
E(M'M)=E Kc d) (c d)} =k (b*a+d*c b*b+d*d)

_ (pla*a) + @(c*c)  @(a*b) + ¢(c*d)
B @(b*a) + g(d*c) :Z(b*b) + ;f(d*d)> € M2(C).

This matrix is self-adjoint. Is this positive? Let

N:<a Z), a,b>0,z¢€C.
z b



Then the eigen equation for the matrix NV is

0 =det(Alg — N) = (A —a)(A—b) — |2
=X\ — (a+ D)X+ ab— |z

This is solved as

)\_a+bi\/(a+b)2—4(ab—|z|2) _a+bt/(a—0b)*+4[z[2
= 5 = .

As well, we always have a + b > |a — b|. This is strictly positive if and only if
ab > 0. Anyhow, the eigen values \ are not always positive. But for ab > 0, if
a and b are near and if |z| is small, then N can become positive.

A bounded operator T on a Hilbert space H is positive (definite), i.e.,
(T€,6) > 0 for any & € H, if and ounly if T = S*S for some S € B(H), if
and only if the spectrum of 7' is contained in the interval [0, 00) C R.

Consequently, the condition (3) may be removed from the definition from
the first.

As for the condition (5), E(M*M) = 0 € M3(C) implies that ¢(a*a) = 0,
p(c*c) = 0, o(b*b) = 0, and @(d*d) = 0. Thus, if ¢ is faithful, then a = 0,
c=0,b=0, and d =0, so that M = 0. The converse also holds.

As for the condition (7), we compute

. _(ela) ¢ (¢la) @b
sonen = (555 55) (20 60)

_ ( Ip@P +p@P  playe(b) + @(C)w(d)> |
Ablp(@) +wdple)  LeB) + lp(d)?

Thus, we obtain
EM*M)—-EM)"E(M) =
( pla*a) +p(cre) — (@)’ = [p(@)]*  ¢(a*b) + p(c*d) — p(a)p(b) — p(c )w(d)>

(b*a) +¢(d*c) — p(b)p(a) — p(d)p(c)  @(b*b) + p(d*d) — |(b)|? — [ (d)|?

with [|o|| = 1 and ¢(a*a) = p(a*a)|¢| > |¢(a)>. This matrix is a type of
the matrix N above. Consequently, the condition (7) may be removed from the
(special) definition from the first.

As for the condition (4), we have

o\ 2 _ (ela)a+e®)B) 2 (a 2 ()=
igan (§) 12 =1 (Za s foa e (5) ecn(3)i-1
= lp(a)a+ o(0)B + lp(c)a + o(d)B*.
On the other hand, if E is positive, then it is bounded so that |E(M)] <

IE|IM]| for any M € My() with ||E|| = ||E(12) = 12|| = 1. That’s it that the
(4) holds by positiveness for E.




As for the condition (8), positiveness of E implies boundedness of E so that
E is norm continuous.

As for the condition (9), we let ¢ be a state on My (21).

By the way, a positive linear functional on a C*-algebra is bounded. A
bounded linear functional on a C*-algebra is positive!

Anyhow, My(C)* = (C*)* =2 C*. As a possible choice, we can write

2
V(M) = (a1, a12, a1, aze) = Z Bij 0"~ (aij)

ij=1

for some f3;; € C and ¢~ € 2A* with ¢~ (1) = 1. In this case, we also have

2
V(E(M)) = Z Bijelaiz)-

4,j=1

The condition requires to that ¢ = ¥™. This seems to be that it is difficult in
general. Thus, the condition may be removed from the (C*-)definition from the
first. O

2.2 Operator freeness

The operator freeness is omitted. Because we have outlooked the kindness.

There is another notion named as Boolean independence. As well there are
two notions named as monotone independence and anti-monotone independence.
We may refer to [13].

There are related concepts such as traffic freeness and matricial freeness. We
may refer to [11] and [9] respectively.

The Voiculescu Bifreeness concept is obtained in [28].

Example 2.2.1. Let f, g be independent random variables of L>°(X) with X
a probability space by a probability measure p in the classical sense that

E(fg) = /X f(@)g(@)du(x) = E(f)E(g) = /X f(@)dulz) /X o) dp(z).

It then follows that for any positive integers k, [, we have E(f*¢') = E(f*)E(g").
Namely, f and g are independent in tensor. Perhaps, that’s the definition.

As checked some above, on L (X x X) = L>®(X)® L>®(X) with u x p and
1 ® p respectively, we certainly have

Ehk®dk=/‘ " @ yld(p @ p)(z,y) =
XxX

/ * © 1d(p ® p)(z, y) / 1 & y'd(u® p)(z, y)
XxX XxX

= Ez" @ 1]E[1 @ 4!].



What we need to have is the following?
B(a"b') = H§:1E(G)H§:1E(b)a E(a") =TI} E(a), E(@)= Hé‘:1E(b)-

This seems to be wrong. That claim says that multiples f* and ¢' are indepen-
dent from independence of f and g. O

Example 2.2.2. We consider the free group F, of n generators. We have
Foym = F, * F,, the free product. The groups F,, and F}, sit freely inside
Frim.

Let G = Fj,4, of generators z; for 1 < j < n + m with no relations and
with 1 the unit of G. Let G; and G2 be subgroups of G generated by x1, -+ ,x,
and x, 41, ,Tnim respectively. Then GG; and G4 are free in the sense that
for g; € Gy, with iy # ig # -+ # ix with g; # 1, we have g1 --- g, # 1. It says
that no relations between G; and G5. This may be the definition of freeness of
two subgroups of a group.

That notion can be applied to the case of group algebras. Let A = CF,, 1,
Ay = CF,, and Ay, = CF,, be the group algebras of free groups. For finite
sums a; =y, 0q,g; € A;; with iy # i # -+ # i such that all g; # 1, we have
ai---ap =y fgg € A has no term for g = 1.

We would like to formalize free sitting of the free group operator factors
LF, and LF,, inside LF, ,,. This seems to be difficult to say so because of
topology.

Those group algebras of free groups are also said to be free if we have the
trace 7(a;) = 0 for such indices j, then 7(a; - - - a,) = 0.

This notion by trace can be extended to the case of the enveloping von
Naumann group algebras with strong topology as well as the group C*-algebras
with operator norm topology. O

Example 2.2.3. Let H be a Hilbert space. The full Fock space for H is defined
to be {2 direct sum Hilbert space of tensor product Hilbert spaces as

F(H) = Cw e [opL, (" H)]

where w is the vaccum vector with norm 1. The C*- and von Naumann algebra

B(F(H)) = B of bounded operators on F(H) is viewed as an operator probabil-

ity space with the vector space p(T) = (Tw,w) for T € B, so p(1) = |Jw|]? = 1.
The left creation operator [(§) for £ € H is defined by {(§)w = £ € H and

WOYM @ m) =€@m®@---@mn € M H, E>1.

The adjoint operator {(£)* is the left annihilation operator.

For an orthonormal system {&1,---, &} of H, the operators (&), ,1(&k)
with their adjoints are (dual) free in B with respect to ¢ in the sense that -
algebras A; generated by [(§;) and I(§;)*, 1 < j < k are free by ¢. Namely, if
¢(a;) =0 for aj € A;, with iy # iy # -+ # i;, then p(a; ---a;) = 0.

Note that we have [(§;)*1(§;) = 1, so (1) # 0. Also, ¢({(&;)) = 0. As well,
1(€)"w = 0, 50 p(I(€)") = 0.



Similarly, the right creation operators r(§) are defined by tensor placing &
to the right side of tensor vectors of F(H). The play of left and right creation
operators on the Fock start with to the Voiculescu bi-freenss. O]

* Let £, € H be orthogonal, so ({,n7) = 0. Then we have

(L&) (e, ®5Z15), L) (B, BTZ195))
<(07 0‘57 @jilf 0 xj)’ (07 5777 @}?‘;177 02y y7)>

= aB(&m) + D (&) (w),y;) =0,

Jj=1

It thus follows that the ranges of [(£) and I(n) are orthogonal. Hence the prod-
ucts 1(n)*1(&) and 1(§)*I(n) are zero. But their products I(n)l(£) and 1(£)l(n)
and their adjoints may be not. O]

Tensor like classical independence for two elements a, b of an operator proba-
bility space (2, ¢) with moments p(a™) and ¢(b™) for n, m natural numbers as-
sumed to be known implies that the mixed moments ¢ (a™b™) = p(a™)(b™) are
obtained so. We now assume that a,b € 2 are freely independent and their mo-
ments are known. Then we can obtain mixed moments as p(a™b™ - - - a™kp™*)
as poylnomials in the moments of a and b.

* Since p(a — p(a)l) = 0 and p(b — ¢(b)1) = 0, then we obtain by freeness
that

0=w((a—p(a)l)(b—®)1))
= p(ab — p(b)a — p(a)b + p(a)p(b)1) = ¢(ab) — p(b)¢p(a).

Also, the freeness implies that

0= ¢((a = p(a)1)(b = pb)1)(a - ¢(a)1))
= ¢({ab = p(b)a w(a)b p(a)p(b)1}(a - ¢(a)1))
= ¢({aba — p(b)a” — p(a)ba + p(a)p(b)a})
—p({(a)ab — p(b)p(a)a — p(a)’b + p(a)*p(b)1})
= @(aba) — p(b)p(a®) — p(a)p(ba) + ¢(a)*o(b)
—p(a)p(ab) — p(b)p(a)* + ¢(a)®o(b) — ¢(a)*p(b)
= @(aba) — p(b)p(a?).



Moreover,

0=9((a—¢(a)l)(b—p®d)1)(a—pa)l)(b—¢pb)1))
= p({aba — @(b)a® — p(a)ba + ¢(a)p(b)a} (b — (b)1))

— o({p(a)ab — o(b)p(a)a — p(a)®b+ p(a)*o(b)1} (b — @ (b)1))
= p(abab) — (b)p(a’b) — p(a)p(bab) + ¢(a)*p(b)?
— p(aba)p(b) + o(b)*¢(a®) + p(a)p(ba)e(b) — p(a)’p

p(a)p(ab®) + p(b)p(a)p(ab) + (a)*(b?) — p(a)*e

p(a)p(ab)e(b) — p(b)*p(a)? — p(a)’p(b)* + p(a)’p
= w(abab) — p(0)p(a®b) + (b)*p(a®) — p(a)p(ab®)

Furthermore,

—

0

o((a® — p(a®)1)(b — ¢(b)1))
= p(a’b — p(b)a® — p(a®)b + (a®)p(b)1)
= ¢(a®b) — p(a®)o(b).

It then follows by our computation that p(abab) = p(a)?p(b)?. This seems to
be correct. O

2.3 Operator like distributions

Let (2, ¢) be an operator like probability space. For elements ay,--- ,a, € 2,
their joint distribution is defined to be the set of all joint moments p(a;, - - a;,,)
for 1 <ip<n,1<k<m,and méeN.

We denote by C*[X1, -+, X,,] the algebra of all polynomials over C in mu-
tually non-commuting variables Xi, -, X,,.

The joint distribution for the elements aq,--- ,a, € 2 may be also defined
to be the linear functional p : C*[ X7, -+, X,,] — C given by

p(p(X1, -, Xn)) = @(plas, - an)).

Similarly, the joint *-distribution for a;,--- ,a, € 2 with their adjoints in A
is defined to be the joint distribution for ay,--- ,a, € 2 as well as their adjoints
involved.

For a normal a € 2, i.e. aa* = a*a, there is a compactly supported measure
w1 on C such that

/Czkfldﬂ(z) = p(a®(a")"), k,l€N.

If a = a* is self-adjoint, then the measure is compactly supported on R.
This is an analytic interpretation as a distribution of moments in one vari-
able.



We now consider operator probability spaces (2, ¢) and (2, ¢, ) for n € N.
Let J be some index set. A family (an_ j)nen,jes of a family (ay, j)nen for j € J
and a, ; € A, converges in distribution to a family (a;);cs with a; € 2 if

lim Qpn(a’”,il e an,ik) = (p(ail e aik)

n—oo
for any £ € N and 41, - ,4; € J. Similarly, convergence in *-distribution is
defined as that the same limit holds for joint *-moments involved. As well, such

a family of operator random variables is said to be asymptotically free if the
family converges in distribution to some family of free elements.

2.4 Operator like distributions by examples

Example 2.4.1. Let (X, pu) be a classical probability space with pu(X) = 1.
The expectation functional ¢ = F on L (X, u) = L>=(X) is defined to be

o(f) = B(f) = /X f@)du(z), | e L®(X).

Suppose that X C R and f € L*°(X) with f: X — R. We may refer to
[33]. Then the distribution function F for f on R is defined to be

F(y) =p({z € X | f(z) <y}), yeR

A distribution function F' is said to be absolutely continuous if there is a
non-negative measurable density function g on R to R such that

the Legesgue or Riemann broad (or wide) sense integral.

The (Lebesque) integral of f with respect to F is defined to be [, f(x)dF(x)
as a Lebesgue-Stieltjes integral with respect to real-valued functions with bounded
variation. The expectation for f with respect to F' is defined to be this inte-
gral. ]

* We have p(a < f <b) = F(b) — F(a) for a < b € R. The function F(y) is
monotone non-descreasing and continuous from the right on R, taking values 0
and 1 at infinities —oo and oo respectively.

Example 2.4.2. Let ¢ = 1tr : M,(C) — C be the normalized trace with
(1) = 1. Let A be anormal (or self-adjoint) matrix in M, (C). Let Ay, -+, A\, €
C (or real R) be the eigenvalues of A with multiplicity counted. We can diago-
nalize the normal matrix A by a unitary matrix U by using Linear Algebra.
* Namely,
A1 0
U*AU = )
0 An



It then follows that

where ¢y, is the Dirac measure on the point \;, and p is a complex measure
defined so above. O

Example 2.4.3. A semi-circle or a semi-circular element with variance o? is

given by an self-adjoint element s of an operator probability space (2, ) such
that its moments are given by

1 2m
2my . __2m _ 2m 2m-4+1y\
S = _— = Ct s =0
o) =g L () =gt ()
for m € N, where we denote by Ct,, the m-th Catalan number as a binomial
coefficient defined so as in combinatorics. If the variance o2 = 1, then s is said
to be standard.
* We have the Catalan numbers computed as Ct; = 1, and

1/4 1 4! 1 6!
ct=3(5) 2, Cty =5,

3\2) ~ 3211~ 7 = 4313

18 8.7-6 1100 10-9-8-7
Cu=sam~ 132 % =G~ 5432 @
Ct. — L 2m!  2m(2m —1)(2m —2)---(m +2)
" m A4 1mim! m(m—1)(m—2)---2

with cancellation such as 22 =1, 2m=2 — 2 and so.
m-2 m—1

The Catalan numbers are either the numbers of non-crossing (any) pair (like)
partitions of the set of 2m elements like {1,2,---,2m}, denoted as NCry(2m),
or the numbers of non-crossing partitions of the set of m elements, denoted as
NCr(m).

* Note that the numbers NCry(2m) are given like by

{172}’ = {152}5

{1,2,3,4} ={1,2,3,4} = {1,2} U {3,4},
{1,2,3,4,5,6} ={1,2,3,4,5,6}

— (1,2} U {3.4} U {5,6} = {1,2,3,4} U {5, 6}
={1,2} U{3,4,5,6} = {1,2,3} U {4,5,6}.



Also the numbers NCr(m) are given like by

{1 =1} {L2h={1,2} = {1} u{2},

{1,2,3} = {1,2,3} = {1} U {2} LU {3}

= {12 U {3} = {1;u{2,3} = {1, 3} L {2},

{1,2,3,4} = {1,2,3,4} = {1} U {2} U {3} L {4}

={L2 U {3} U4} = {1J U{2.3) U {4} = {1} U {2} U (3,4}
= {13 u {2y U4} = {14 u{2} U {3} = {1} U{2,4} U {3}
={1,2}U{3,4} = {1,4} U{2,3} = {1,2,3} LU {4}

= {1} u{2,3,4} = {1,2,4} U {3} = {1,3,4} LU {2}.

The (operator) cumulants k,, : 2A™ — C of such a semi-circle element s is
given by k1 = ¢,

ka(s,s) = 0%, kn(s,---,s) =0, n>3.

The corresponding measure to ¢ has the (upper) semi-circle density function

Vdo? —t2, te[-20,20].

* Note that the semi-circle disk denoted as Dy, has the volume known as

20
1 1
D= | VAT =Pt = —_r(20) = 1.
—20

2702 4mo?

2mo?

A semi-circle in operator probability plays the role of the Gaussian (function
or measure) in classical probability. That is the limit distribution by the central
limit theorem. O]

* The Gauss function is defined to be

1 (z—m)?
G(Z‘) = ﬁe_ 202, relR

for some non-negative constants m and o.
Let f(x) be a random variable on a probability space (R, ). Suppose that

b
pa<i<v= [ G

In this case, we say that the distribution for f is Gaussian or normal distribution
denoted as N(m,0?) with m mean and o2 variance, where

6] 6]
= / yGy)dy, o = / (v — m)*G(y)dy,



where o = inf cr f(2) and [ = sup,cp f(2).

Let f~ = %(f —m). Then the distribution for f~ is the standard normal
distribution N (0, 1?) with density function as Gaussian ie*%ﬁ.

The central limit theorem is stated as follows. Suppose that a sequence of
mutually independent random variables (f;) on some probability space (R, 1)
have the same distribution and that E(f?) < oo, so that u = E(f;) and 0* =
V(f;) = E(f}) — E(f;)? for any j € N. For mean functions M, = 5 >7_, f;,

the following holds as n — oo,

M, — E(M,) M, — pu /” 1 e
—_— < = — ——e 2z dt.
( V(M,) v) === <) —oo V2

IN

The proof is omitted. In that case we note that

3

V(M) = iV(Z )= SV + % ZCOV(fj,fk) = %

Jj=1 Jj=1 J<k

with covariance

Cov(fy. i) = E((f; — ) (f — )
— B(f, 1) — nE(fe) — nE(f;) + n*E(1)
— B(f))E(fe) —p2 =0. O

Example 2.4.4. Let [?(N) be the Hilbert space of square summable complex-
valued functions on N. Let (e,) be the canonical orthonormal basis for I?(N).
Namely, e,(n) = 1 and e,(m) = 0 for m # n € N. The unilateral shift S on
I2(N) is defined by S(e,) = enq1 for n > 1. Let ¢ : B(12(N)) — C be the state
on the C*-algebra B(I2(N)) defined by ¢(x) = (ze1, e1) for x € B(I*(N)).

The shift S is an isometry, so S*S = 1. Thus, ||S]|? = ||S*S]| = 1.

The sum S + S* is a (standard) semi-circle with respect to .

Let F(H) be the Fock space by some Hilbert space H, with w the vacuum
vector. Let [(§) be the left creation operator on F(H) for £ € H. Let ¢ :
B(F(H)) — C be defined by ¢(x) = (zw,w). Then I(§) + 1(£)* is a semi-circle
with respect to ¢, with o2 = ||€].

Let {&1,--+ ,&0} C H be an orthonormal system. Then the operators I(;) +
1(&)* for 1 < j < n are standard semi-circular elements that are free.

* We compute that

0((S+ 8%)?) = p(5% + SS* + 5*S + (S*)?)
= <52€1,61> + <SS*61,61> + 1+ <S*0761>

=1=02Cty; = o>



Also,

©((S 4+ 8*)%) = p((S? + S5* + S*S + (8*)?)(S + %))
= (% + 5+ 5757 + (57)9)
= (eq,e1) + (ea,e1) + (e2,€1) + (0,e1) = 0.

* We also compute that

e(l(&) +1(&)") = (0@ &, wd 0) +(0,w) =0,
(&) + UEH ) (UEK) + 1))

:@Wﬁmw+ﬂﬁm&wﬁ:{?;i: =

Example 2.4.5. Let s; = s7,s2 = s5 be free standard semi-circle operators
with respect to ¢. A circular element for these is defined to be ¢ = %(31 +is2).
Then ¢ is not normal.

Note that ||%(x +uy)|l = x2;y2 for x + iy € C, z,y € R. In particular,
we have ||%(1 +i4l)| = |%(1 +)|1] = 1.

We compute that

. , , 1 ‘

e = 5(sl — 282)(81 -+ ZSQ) = 5(8% + S% + 7/(5152 - 8281))'
L1 , . ,

cct = 5(31 +is9)(s1 — is2) = 5(8% + s% —i(s152 — $251)).

Thus, ¢ is normal if and only if s; and ss commute.

Being free implies being non-commutative? Or being commutative implies
being non-free? If so, that’s the reason for being non-normal. It seems to be
difficult at this moment.

The answer to the question above is false in general. Any operator and the
identity operator are freely independent and commute. Because for any state
©, we have p(1) = 1 # 0 and the algebra generated by 1 is C. But if not
constant, how much about the question? As well, the identity operator is not a
semi-circle, since ¢(1™) =1 # 0 for any n € N.

We consider moment expressions like

(™ ()2 oo ()b, aj,b; € {0} UN.
If 327, aj # 37—, bj, then the moment vanishes.

Since ¢(s1) = ¢(s2) =0, then p(c) = p(c*) = 0.
Since p(s182) = p(s281) = 0, then

ple*c) = plec’) = L (p(s3) +pls3) = ” = 1



We also have

1

1
ccte=—(s1+ i82)§(8% + 83 + (5180 — 5251))

-5

= (s‘;’ + slsg + 2(5%82 — $15251))

2v/2
1 .
+ Tﬁ(z(SQS% + sg) — (828182 — sgsl)),

so that ¢(cc*c) = 0 by free independence for s; and so with respect to .
The cumulants are given by

kQ(Cv C*) = ]{32(8*,6) =1

and the other cumulants are equal to zero.
Note that k; = ¢. Check that

ka(e, ") = plec”) = p(e)p(c”) =1-0=1,

with gp(alag) = k2(a1,a2) + kl(al)kg(ag).

Being non-normal of ¢ implies that there does not exist such a measure
corresponding to ¢ at s-multiples of ¢. Then to what it corresponds? A nice
question? Anyhow, by normality we can use C*-algebra representation theory
for normal operators. Such a normal operator commuting with its adjoint is
represented as the complex variable function on the spectrum contained in C.

O

Example 2.4.6. A Haar unitary is defined to be a unitary v in an operator
probability space 21 with ¢ such that the moments op(u*) and o((u*)*) for
integers k > 1 are zero. The cumulants non-vanishing only have the form

kom (u,u®, - Ju,u”) = ko (™, uy -+ -y u™ u) = (—1)m_1Ctm,1.

The measure corresponds to the normalized Lebesgue (or Haar unitary) measure
w on the unit circle S* in C, in which the spectrum sp(u) of u is contained.
We have

) = ola) = [ zdulz) =
Sl
Is the spectrum of u full? As well, with Ctq = 1,
ko (u,u*) = p(uu) — p(u)p(u*) =1 = (1) "'Ct 1. O

Example 2.4.7. A (mod) k-Haar unital for k& € N is defined to be a unitary
u € A an operator probability space with ¢ such that u* = 1 and the moments
are given as p(u"™) = 0 and ¢((u*)™) = 0 for positive integers m which can not
be divided by k, denoted as k 1 m. The corresponding measure is the uniform
(Dirac like?) measure pu on the set Ry of all k-th roots of the unity.



We have .
) = plu) = 5 3 2=0= [ zdm(2

and (1) = £k1 = 1. Is this so? Note that

0=2F-1=(z-1)CE""1+-.-+1).
There are no nice formula of cumulants for u, except for the case k = 2.

If u? = 1, then (u?™) = 1 with 2| 2m and @(u?™*1) = 0 with 24 2m+1. O

Example 2.4.8. Let u be a Haar unitary with respect to ¢. The distribution
of u + u* is said to be the arcsine law.
The moments of u + u* are given as

et =

2m

), (a2 = 0.

We have ¢(u+ u*) = p(u) + o(u*) =0+ 0 =0. As well,

m

o((u+u)(u+u)) = pu? +uwu* +u'u+ (u*)?) =0+2+0= (i) :
Moreover,
o((u+u*)?) = p(u® +u+u+ (u*)?u) + p(u?u* +u* +u* + (u*)®) = 0.
Furthermore,
((u+u*)*) = pu* +u® +u® + (w)*u?®) + o’ + 1+ 1+ (u*)3u)
+ o +1+14 Ww)?) + o) + ()2 + )+ u)) =6= (3)

The cumulants of u + u* are given as

kom(u+u*, -+ ju+u*) =2(=1)""1Ctypp_1,
k2m+1(u—|—u*,~-~ ,u+u*) =0.

Note that ki (u + u*) = o(u + u*) = 0. As well,

ko (u+u* u+ ") = o((u+u*)?) — p(u+u*)?
=2=2(-1)""Cto.

The density function of the arcsine law is given by Nﬁ for t € (—2,2).
Note that (arcsinz) = \/1177 for x € (—1,1). As well,

2 1 2 1 t
= [ —————at (5 =5),
_omV4—1t -2 91 /1_(%)2
1
1

1
= — —  9ds= —[arcsins]l__, = 1. O
/_1 21rVI— 52 . Jims



Example 2.4.9. An operator a € 2l an operator probability space with ¢ is
said to be a free Poisson with rate A > 0 and jump size @ € R or to be the
Marchenko-Pastur law, if the moments are given as

p(a") = Oé"i:n—AkkJrlG) (Z: i>

k=1
In particular, p(a) = a)\(}) = al.
The cumulants are given as k,(a,--- ,a) = Aa™. In particular, we have

ka(a,a) = p(a®) — p(a)?

= o2(} (f) 2 @)) ~(@N)? = a2,

The measure of the free Poisson law with rate A > 0 is given by (1 —\)dg +v
if 0 <A <1, and by v if A > 1, where §y is the Dirac at 0 and v has density

1
2mat

VA2 — (t—a(1+N)2, tela(l— VA2 a(l+ VA2

The square s of a semi-circle element s of variance o2 is a free Poisson

element with rate A = 1 and jump size o = 2.

Note that ¢(s?) = 02 = a = a\. As well,
o((s%)?) = 0*Cty = 20" = a*(1 4 1).
The measure is v with A = 1 and o = o2, so that it has density

1
——\/4a? — (t — 2a)? t 4al.
rar V4o (t—2)%, te€l0,4a]

We compute that

4o
Vida? — (t —2a)2dt  (t —2a = s)

0

2a
1
= Va2 — s2ds = 571'(204)2 = 27ma’.
2c

1

It seems that the factor 5-—

in the density should be corrected as 5. [

Example 2.4.10. A self-adjoint operator b in 20 with ¢ is said to be a symmetric
Bernoulli variable if the moments are given by (b*™) = a?™ with a > 0 and
(6™ *+1) = 0. The cumulants are given by

k277L(b7 e 7b) = (_l)milctm—loﬂmy k2m+1(ba T 7b) = 0.

The corresponding measure is $(6_q + ). O



Example 2.4.11. Let p = p* = p? € 2 be a projection with ¢(p) =t € [0, 1].
We have o(p) = ¢(p*) = ¢(p) € R and ¢(p) = ¢(p*p) = 0. As well,

e(p) < llellpll =1-1=1.
The moments are ¢(p") = ¢(p) =t = ki (p) for any n € N.

The ky(p) = p(p?) — (p)* =t — 2.
The corresponding measure is (1 — t)dp + td;. O

Example 2.4.12. The free Cauchy distribution is the distribution of an un-
bounded operator. This is the same as the classical Cauchy distribution. O

3 The third outlooking at the random matrices

3.1 Gaussian random matrices

Let (X, u) be a classical probability space with measure pu(X) = 1. A random
matrix is defined to be a matrix f = (f;;) with entries f;; given by classical
random variables f;; : X — C measurable functions on X.

The operator probability space of nxn random matrices of p-times integrable
measurable functions on X for any 1 < p < oo is given by

A = Mn((C) ® {ﬂlgp<ooLp(X7 /J')}

with ¢ = tr ® F, where tr is the normalized trace on M, (C) and E is the
expectation on L1(X, ).
For any f = (fi;) € A, we have

1 n
o) = Bl =5 ) | fit@uto)

The space as the infinite intersection of LP(X,pu) for 1 < p < oo in the
operator tensor algebra 2 above is that of random variables for which all power
moments exist. We may denote it by Lo (X, pt).

Let f € 2 be a self-adjoint random matrix. Suppose that u* fu for some
unitary random matrix v is a diagonal random matrix with diagonal entries
gjj- This is possible if f = a ® 1 with a = a* € M,,(C) or with a normal as
a*a = aa*. Then we have

PI*) = B(x(r) = B(ex(w" fu)) = 5 S Blgly).

If g;; = A; € R, then the right hand side above can be written as

/ thdu(t), p= 1 > 6, (1)
R N4



Definition 3.1.1. A Gaussian random matrix is defined to be a self-adjoint

n x n random matrix f = (fi;) so that f = f* = (f;;) such that f;; for
1 <4 < j < n are independent complex Gaussian random variables satisfying
E[fij] =0, E[f}] =0 for i # j, and E[fy; f;i] = Elfi; fi;] = +.

Such a G random matrix is called GUE (Gaussian unitay ensemble). Note
that the distribution of the entries of f is invariant under unitary conjugates.

We may find such an example.

Example 3.1.2. Let z +iy = 2 ® 1+ i(1 ®y) € C® (@2Loo(R, 1)) with
gaussian measure. Then E[z + iy] = E[z] + iE[y] = 0, and moreover,

El(z +iy)*] = E[2”] - Ely®] + E[2izy] = 2iB[z] Ely] = 0.

That’s it! As well, E[(z+iy)(x—iy)] = E[2?+y?]. Then we obtain the following
Gaussian random matrix as an example.

\/mxll \/m(xl2 +'Ly12) m(xm +'Ly1n)
1 1 . .

T \L12 — ile T 22
A% "E[l'%fi‘y%z] ( ) A% ”E[wgz]

S WO . . R

VRERT T i T n) wBlE,] "
which is an element of M, (C) ® (®*Loo(R, ) with k = n + 2@ = n?,
where self-adjoint random variables z;; = z7; and pairs z;; = z7; with y;; = y;
for ¢ < j belong respectively to different tensor factors Loo (R, i) of the k-fold
tensor product. ]

Definition 3.1.3. Random variables x1, -, z,, n € N make a Gaussian family
if the Wick (in physics 1950) or the Isserlis (in probability theory 1918) formula
holds as follows. For any 1 < iy, ,i,m < n with m € N even, we have

E[l'il e xim] - Z Hq:l_l{r,s}E[xiTxisL
qeP2(m)

where Po(m) denotes the set of pair-wise partitions of the set {1,---,m} of
numbers, with m = 2k € N even, like that

g: {12 u{3.4}u--uf{m—1Lm}=05_{2j— 1,25} = {1,--- ,m}.

This combinatorial formula says that all the (variable-wise) joint moments
of such a Gaussian family can be expressed in terms of the pair moments.

Example 3.1.4. Let x1,--- ,x, be Gaussian random variables which are mu-
tually independent. It then follows that with m odd, we have

BElxy, -, | =1L Elrg,] = 0™ = 0.



Without independence, the Wick formula for m = 2 is the trivial identity
Elz; x;,] = Elz;, xi,]. The Wick formula for m = 4 is the following
E[xilxiﬁigxu] = E[wilxiz]E[‘xisxiA
+ Elzi @iy Elwi, i) + Eli, v, Elwi, v,

With independence, we have E[z;z;] = d;j0° with 0* = E[z3] — Elx;]*.
Note also that for m € N, we have

E[z"] = ! /tmefztajdt
2ro Jr
B {O (m odd),

o™(m —1)I!  (m even).

Note that the function integrated is an odd function if m is odd. If m = 2, then
E[ac?] = 02 with (m — 1)!! = 1. For m = 4, the Wick formula implies that

E[x;l] = 30%0? = 3!lo*

with 3!l = 3.1 =3 = |Py(4)] the cardinal number of P5(4). For m = 2k general,
the Wick formula implies that E[z"] = [P2(m)[o™.
By induction, we suppose that |Py(m)| = (m — 1)!l. We then have

|Po(m +2)| = (m+ 1)|Po(m)| = (m+ 1)!! O

Example 3.1.5. Let A = (a;5) be an n xn GUE. Then the entries Re(a;;) and
Im(a;;) for 1 <1i,j < n make a Gaussian family.
Note that Re(a,;;) = a;; and Im(a;,;) = 0. As well, with ¢ # j,
aij + a3 ag; + aji

Re(aij) = 9 = B = Re(ajz-).

Also,

ai; —a;; 4% — aj
Im(a;j) = =5 = =5 = ~Tm(a).

By independence and being Gaussian, we have

1
Elajjan] = —6udjk, 1<14,j,k,1<n.
n
We can compute the even moments of A as with m even,
p(A™) = E[tr(A™)].
Suppose that m = 2. Then

2 2
A2 _ (@ a2 _ [ an+t a12a7, Q11012 + Q12022
= = 2
ajy a2 aja011 + G207y G012 + a3y



so that
p(A?%) = Eltr(A%)]

= L(Bla)] + Blanaty)] + Elafyara] + Blad,))

5 + F
1
= §(E[flf1] + Elaizan] + Elagia12] + Elaj,))
2
1 1 4
= 5 E[ailiza’izil] = 5 : 5 =1
i1 yia—=1

Moreover, we compute

4 9 2
At — (@1 a2} _ aiy +a2aly a11G12 + A12G22
= = 2
ai, az ajrai1 +agaly  ajaai2 + Ay

with the diagonal entries
(0%1 + alQQTQ)Q + (@11a12 + a12a22)(a11a12 + a12a22)"  and
(a11a12 + a12a22)" (ar1a12 + a12a22) + (aja12 + a§2)2

so that

p(A*) = Eltr(A)]

1
= —(Ela};] + E[a},a12a21] + Elai2a21a};] + Elai2a21a12a21])

+

(E[anamaman] + E[a11a12a22a21] + E[a12a22a21a11} + E[aua%gam])

+

(E[a21a%1a12] + E[a21a11a12a22] + E[a22a21a11a12} + E[a22a21a12a22])

+

(Elaz1a12a21012] + Elaz1a12a3,] + Ela3ya21a12] + Elas,))

1 1 1 1 1,1 1

— 4+ —4+ =4+2)+=(=4+0+0+ =

22+22+22+ 22)+2(22+ + +22)
1 1 1 1 1 1
— (22— 4+ — 4 — —_

+0+0+22)+2( 22+22+22+324)

2_9_2+1

22 7 4 92"

—
w

+
N o = NN =N - o

—~

N2l =

2~
_|_



As well, we have, with 1,79 mod 2,
(p(A4) = (E[aill] + E[algaglalgagl] + E[aglalgaglalz} + E[aéz])

(Elata12a21] + Elarsaziaiy] + Elata10a21] + Elaizazia1])

1

+
DO = NN - o =

AR
N =

8

S
-

M
Il
-

(Ela12a35a21] + Elaz1a,a12])

+

(E[a116l12a21&11] + E[a22a21a12a22]) +

|

2
E[ai1i2ai2i1ai1i2ai2il] 5 § E a2112a1211a1112+1a12+111]
11,7;2:1
2 2
1 1
+3 > Elaiyi, iyiy 4100, 410, Giyiy | + 5 E Elai, 116, @iyiy Qiyiy Giyig +1]-

i1=1

l\D

Is it possible to have such a formula for ¢(A™) in general? O

The limits of the moments p(A™) of an n x n GUE A = (a;;) as n — oo are
equal to the number of the set of non-crossing pair partitions of even m elements
set. The numbers are also equal to the Catalan numbers Ctm = L(g)

2 m+2 \ 75
Namely, with any integer m > 0,
lim p(A%™) = Ct,,.
n—oo

On the other hand, the Catalan numbers Ct,,, are the moments for the semi-

circle law in the sense that (for m even?)

Cty, = — tm\/4 t2dt.

2

Example 3.1.6. We compute
2 1 r2
V4 —12dt = 7/ V4 —1t2dt (t =2sin0)
-2 T Jo

1 (% 1 (%
7/ 2cos6(2cosbdh) = 7/ 2(1 + cos 20)dl
0 T Jo

s

2 1 =
= ;[94— 5811’129]62:0 =1= Cto.

We also compute

— t\/ —t2dt (t =2sin6)

27T

[ME]

= — QSlnH 2cos0)(2cosfdl) = 2i/ 8 cos” 0 sin 0d6
T

_x

— L-Seos gl

—0+#1=Ct,.
ot 3 7 !

_T
2



Moreover,

2
i/ t2\/4 —t2dt  (t = 2sin6)

2w —92

1 (2 1 (2
— / 4sin? (2 cos 0)(2 cos Adh) = — / 4 sin® 20d6
T Jo T Jo

= 1/2 2(1 — cos46)df =1 = Ct;.
T Jo

Is the above formula correct?

Furthermore,
1 /2
— [ "4 —t2dt (t=2sin0)
27T _92
R DR 1 (% 6 .6
=— 2%sin® 0(2 cos0)(2 cos0dh) = — 2°(sin® 0 — sin® 0)d0
T Jo T Jo
207 3.1 5-3-1 3
= —-(+— - =2° =2 = Cty.
242 622 2642 Ct

The corrected formula is the following. For any integer m > 0,

1 2
Ctm — 27 / t2m \Y4 4 — tzdt.
™ J—-2

Check that
1 2
2—/ t\/4 —t2dt (t = 2sin0)
T J-2

1 [z 1 (2
=— / 26 5in° 0(2 cos 0)(2 cos Bdf) = — / 28(sin® § — sin® ) d6
0 0

v iy
_21(53-1_7.5-3-1)_ . 5-3
T 7 26-4-2 8:-6-4-277 7 8.6-4-2

=5=Cts. O

Theorem 3.1.7. The asymptotic eigenvalue distribution of an n x n GUE A
is given by the Wigner semi-circle law. Namely, the measures pa as n — oo

converge weakly to pg (or as moments), where dus(t) = i\/él —t2dt fort €
[—2,2]. It says that for any integer m > 0,

lim (tr ® E)(A?™) = lim [ *"dua(t)

n—0oo n—oo R

2
1
= / t2m2—\/4 — t2dt = Ct,,
92 Y

with pa = % Z?=1 Ox;. 4 with Xj 4 eigenvalues for A with multiplicity (if possible
as in the case of complex matrices).



3.2 The Central Limit Theorem analogues

We may refer to [16].

Let 2( be an operator probability space with ¢. Let (a,,) be a sequence of self-
adjoint elements of 2l as random variables which are either independent or freely
independent. Assume that the variables a,, are centered so that ¢(a,) = 0 for
n € N, and the common variance of the variables is 02 = (a2) > 0 for n € N.

A central limit theorem (CLT) says that the limit

1 n
lim — a;
n—oo \/ﬁ; J

is valued in some sense with certain convergence involved.

Let (A, ¢) and (2, ¢,) for n € N be operator probability spaces. We say
that random variables a,, € 2, converge in distribution to a € % as n — oo if
for any k € N, we have

lim p,(ak) = p(a*) € C.
n—oo

This convergence in distribution is weaker in general than the usual conver-
gence in the classical central limit theorems. So the classical CLT is stronger
than the quantum CLT. But the convergence in distribution is said to be the
weak convergence, so the classical convergence may be called the strong conver-
gence. Anyhow, we may distinguish these convergences.

The classical convergence in distribution (or convergence in law) for proba-
bility measures pu, on compact spaces X,, C R to u on a compact space X C R
means the weak convergence as the following limit

im [ F@dn(®) = [ fOdnt)
n—oo X
for any bounded continuous functions f on R. Also, the Stone-Weierstrass
theorem implies that f can be replaced with polynomials in ¢. It just looks like
that ¢ € C'(X,,) converge in distribution to ¢ € C(X) in the sense above as the
commutative case. Is this correct?
The classical CLT is the following.

Theorem 3.2.1. Let 2 be an operator probability space with ¢. Let (a,) be a
sequence of self-adjoint random variables of A which are independent. Assume
that the variables are centered so that p(a,) = 0 for n € N and the common
variance of the variables is 0* = p(a2). Then we have that there is a normally
distributed random variable x on R with variance o® in the sense that

Jm o= a)") = plat) = B2
j=1

1 ot 0 if k is odd,
= the 202t = X ) )
V2mo? Jr o"(k— 1)l if k is even



with (k — 1) = (k —1)(k —3)---3-1 = Pa(k) the number of partitions of the
set of even k elements by pairs.

The free or quantum CLT is the following.

Theorem 3.2.2. Let 2 be an operator probability space with p. Let (a,) be
a sequence of self-adjoint random variables of A which are freely independent.
Assume that the variables are centered so that ¢(a,) = 0 for n € N and the
common variance of the variables is 0® = ¢(a2). Then we have that there is a
semi-circlular self-adjoint element s with variance o2 in the sense that

0 if k£ is odd,
k_2 (f) =oFCt, if k is even
2 2

n—oo

)

1 n

lim o((—= Y a;)*) = ¢(s*) =
Vi

with Ct% the Catalan number defined so. With o = 1 we also have

2
o(s") i/ th/4 — t2dt

- 2T _92
for any k € N, and as well p(2k) = NCrs(2k) = Cty.

Note as well that the number (or family) of non-crossing partitions of the
set of even 2k elements by pairs, denoted as NCry(2k) by us is equal to the
Catalan number Ct. This is also equal to the number (or family) of non-crossing
partitions of the set of k elements, denoted as NCr(k) by us.

By the way, a partition of the set X,, of even or not n elements 1 to n by
pairs is said to be non-crossing if any two pairs {p1,p2} and {q1, g2} of elements
of X;, with 1 <p; <py <nand1<¢q < g <n dose not satisfy the inequality

P11 <q1 <p2<q2.

Example 3.2.3. We have NCrz(2) = 1.
We have NCry(4) = 2. The non-crossing partitions of X4 by pairs are given
by
X, ={1,2} u{3,4} ={1,4} L {2,3}.
There is only one crossing partition {1,3} LI {2,4}. O
Theorem 3.2.4. Let {(a, ;))|n € N,j € J} be a sequence of families (an ;)jer

indexed by an index set J of freely independent random variables a, ; € 2 for
j € J such that p(an ;) =0 and @(a? ;) = 1. Then we have

tim o(7= Y aiy)) = e(sh). keN

n—oo

where (s;)jer s a family of semi-circular elements of covariance (¢ij)i jes with
¢ij = @(an,ian, ;) so that

(P(Sil T Slm) = Z H{r,p}CPciTiP
PeNCra(m)

for any even m € N.



3.3 Operator cumulants and more

Definition 3.3.1. Let (2, ¢) be an operator probability space. Then the first
operator cumulant k£ : 2 — C is defined to be k1 = ¢ on 2.
The second operator cumulant ks : 2 X 21 — C is defined by the equation

p(aras) = ka(ar,a2) + ki(ar)ki(a2), a1,a2 €2

the terms of which correspond to non-crossing partitions of the set {1,2}.
Namely,

ka(ai,az) = plaraz) — p(ar)p(az) = ki(araz) — ki(a1)ka(az).

The third operator cumulant k3 : 4% — C is defined by

v(arazas) = kz(ai, az, a3) + ki(ar1)ka(az, az) + ki(az2)ka (a1, as)
+ k1(az)ka(ar, az) + ki(a1)ki(az)ki(as)

the terms of which correspond to non-crossing partitions of the set {1,2,3}.
Inductively, the n-th operator cumulant k,, : A" — C is defined by

L)O(Cbl"'an) = Z k}n(ajn’”' ’ajlpl)"'kpz(ajzlﬁ"' ’ajzm)
{p1,- ;P }ENCr(n)

where NCr(n) is the number as well as the set of non-crossing partitions of the
set {1,--+,n}, and {p1,--- ,pi} corresponds to the numbers of elements of parts
in a non-crossing partition. Namely, k,, corresponds to the trivial partition, and
the other terms are multiples of cummulants of lower degree, corresponding to
non-trivial non-crossing partitions.

Definition 3.3.2. Let NCr(n) denote the set of non-crossing partitions of the
set {1,---,n} of n elements. A partial order on this set is denoted as P; < P,
and is defined that if any part of the partition P; is contained in a part of Ps.

Example 3.3.3. As for NCr(3), we have the following (total) ordering.

{12y U{3}
{I}u{2tu{3} << {1}u{2,3} <{1,2,3}. O

{1,3} U {2}

There is a lattice structure of the ordered set NCr(n). Namely, for any two
partitions P, € NCr(n), there is a minimal partition (or sup or join) PV @
such that P,Q < PAQ, and there is a maximal partition (or inf or meet) P AQ
such that PAQ < P, Q.

Namely, decreasing in that order means being finer in separation. Also,
increasing means being non-finer.



Example 3.3.4. As for the ordered set NCr(4), we have

{1,2,3) {4} A {1} 0{2,3,4}] = {1} u{2,3} L {4}.
As well,
{1,2,3} U{4}] v {1} UA{2,4} U {3}] ={1,2,3,4}.
The lattice NCr(n) has the largest element {1,---,n} =9, and the small-
est element {1} U---U{n} =n,.
Note that for any partition P € NCr(n), we have PV, =N,, and PAN,, =
P. Also, P An,, =n, and PV n, = P. That’s it!

Example 3.3.5. With multiples by = ajas and by = as such that b1by = ajasas
with 2 < 3, we compute that

ka(b1,b2) = ka(araz, a3) = p((a1az)as) — p(araz)p(as)
= p(ar1az2a3) — (k2(a1,az2) + ki(a1)ki(az))ki(as)
= kg(al,az,ag) + kl(al)kg(ag,a;g) + ]{11 (ag)kg(al,a;g).

The terms correspond to

{Pl ={1}u{2,3}

Py = {2} U {1.3} <{1,2,3} =

with

{1y u{2,3} v [{1,2} U {3} = Ps] = {1,2,3},
{2y {131 v [{1,2} U {3} = B3] = {1,2,3}.

Namely, the above summation X for ko (ajas, ag) just corresponds to the sum
¥ with respect to partitions P of NCr(n) such that PV Py = MNs.

By the way, the factors by = ajas and by = a3 of b1bs just correspond to
Ps. O

There is a formula as a theorem (of Speicher) that fully generalizes the exam-
ple above to operator cumulants involving multiples by, - - - , b, of a1, -+ ,a, € A
such that the product by ---b,, = ay - - - a,, with m < n, as the sum decomposi-
tions of operator cumulants with respect to partitions P of NCr(n) such that
PvQ =M, for some same partition @) (chan). The @ corresponds to the factors
b1, by of by - by

Recall that two unital subalgebras 2; and s of (2, ¢) are free if p(a; -+ - a,) =
0 for a; € A, with iy #ip # --- # i, in {1,2} and ¢(a;) =0for 1 < j <n.

In such a case, it implies that ko(ay,as) = ¢(aras) = 0 and ks(a1,aq,a3) =
p(ajazas) = 0. Inductively, k,(a1,- - ,a,) = @(a1---a,) = 0. Namely, the
operator cumulants vanish for such elements.

There is a theorem (of Speicher) that the converse of the implication by
freeness holds under a suitably weakened condition on vanishing of operator
cumulants, where the two of two unital subalgebras can be taken to be an
arbitrary finite number. Moreover, subalgebras can be replaced with elements
or operators.



3.4 Operator operations by certain transformations

Let (2, ) be an operator probability space. Let a,b € 2 that are self-adjoint
and free.

The question is that how the distribution of a + b can be described in terms
of the distributions of a and b?

We may calculate the moments of @ + b in terms of the moments of a and b.
But this seems to be somewhat complicated as in the case of higher powers of
a +b. We may use cumulants instead.

Let denote the cumulant k,(a,---,a) = k,(a). Being free of a and b and
distributive like law for k,, implies that

kn(a +b) = kn(a) + En(b).

Because the cumulants for mixed elements of a and b such as (a,b,---,b,a)
vanish by freeness.

By the way, in such a case, it seems that the moments for a + b are also
computable.

Example 3.4.1. In general, we have
¢((a+b)*) = p(a® + ab + ba +b?)
= p(a”®) + p(ab) + p(ba) + p(b*).
As well,
ka(a+b,a+b) = ¢((a+b)?) — ¢(a+b)?
= p(a®) + @(ab) + p(ba) + (b*) — {p(a)* + 2p(a)p(b) + ¢ (b)*}.
On the other hand, we have
ko(a,a) + ko(a,b) + ka(b, a) + ka(b, b)
= @(a®) — p(a)® + p(ab) — p(a)p(d) + p(ba) — p(b)p(a) + ¢ (b?) — (b)*.
Therefore, we obtain that
ko(a+b,a+b) = ka(a,a) + ka(a,b) + ka(b, a) + ko(b, b).

This is a distributive law that we obtained. It seems to be interesting to consider
more general cases as a question. O

Let a be an element of (2, ). The series of moments of a € 2 is defined to
be a formal power series with respect to a variable z such that

sm(z) = 3 plam)en
n=0
where p(a")2? = (1) = 1. The series of cumulants of a € 2 is defined to be
(o)
se(z) = Z kpn(a)z"
n=0

where ko(a)z® = 1.



Theorem 3.4.2. The relation among moments p(a™) and cumulants k,(a) such
that p(a™) is equal to the sum of certain multiples Hllj-:lknj (a) for1 <mj; <n

with 2221 nj = n, with respect to non-crossing partitions of the set {1,--- ,n},
s equivalent to the equation

sm(z) = se(z - sm(z)).

Proof. (Sketch of the proof). We compute the series sm(z) of the moments by
inserting the moments as sums of the cumulants term-wise. We then convert the
series to those of the cumulants with z-sm(z) as a variable by manipulating sums
of multiples of the cumulants to the corresponding multiples of the moments,
with summations changed. 0

By the way, for the classical cumulants (¢, ) for a random variable f, there
is the formula among moments and cumulants so defined such that

(p(fn):E[fn]: Z Chky * " Chy
{ki,-,k;}eP(n)

where P(n) denotes the set of partitions p; LI - -- U p; of the set {1,--- ,n} with
|p1i| = k1, -+ -, |p;j| = k; cardinal numbers identified.
In particular, E[f] = ¢1(f). Also, E[f?] = calf, f) + c1(f)?. As well,

E[f°] = es(f. f, ) + 3er(f)ea(f, f) + e (f)®.

Is this correct?
We define the following two exponential like formal power series of moments
and cumulants

(oo}

Z E[f"]z" and ec(z)zz%cnz".

= n=0
We then have the following equation ec(z) = log em(z).

Proof. We may refer to [5]. Recall that we have the following cumulant formula.

=1
log Ele ’m Z—
n=1

We let z = it. Then we have

3

[l
f:i

by integration by terms. Therefore, the cumulant formula implies the desired
equation above. O]



That equation may be deduced from the formula among moments and cumu-
lants. How? Possibly, we insert the formula to em(z) term-wise, and then covert
to another series involving summations changed, and then take log operation to
become ec(z). Right?

The Cauchy transform with respect to a € (2, ) is a map Cu(z) defined to
be

o

1 1 "
CU(Z):SO(Z_Q)ZZ%F@(G )
where
1 11 1gsa"
zfa_zlf%_znzoz”

for |2]| < 1, s0 |z > [la]|. As well, [p(a™)| < |[a]|". It then follows that

sm(%) =zCu(z) or Cu(z)= ésm(%)

The Voiculescu R-transform with respect to a € (2, ¢) is a map R(z) defined
to be

R(z) = kni1(a)2".
n=0
It then follows that
sc(z) =14+ zR(z) or R(z)= 1(sc(z) —1).
z

If 2™ has the supremum norm, then we have |k,11(a)2"| < ||knsall|lalllz]™,
so that it is sufficient to have the series of ||k,+1]||z|™ convergent, to define R(z).

The relation sm(z) = sc¢(z - sm(z)) between sm and sc can be converted in
terms of Cu(z) and R(z) to

Lou(d) = smiz) = sez - smi(2)
=1+ (2 sm(2))R(z - sm(2))

1 1
Replacing % with z implies that
2Cu(z) =1+ Cu(2)R(Cu(z)).

Therefore, dividing the equation by Cu(z) implies

1
Cu(z)

+ R(Cu(2)).

z =



It then follows that the composition of the maps Cu(z) and 1 + R(z) is the
identity map with respect to z. Since the maps are inverses each other, we also
have

Cu(% + R(z)) = z.

Since we have

zZ—a z—t

Culz) = p(——) = / L du(e)

for some measure with respect to a = a*, we can define an analytic function
Cu(z) from C* to C~.
Note that the integration above can be viewed as the convolution + « dp(t)
at z.
The measure p can be recovered from Cu(z) by the Stieltjes inversion for-
mula. Namely, we have
1

du(t) = — Eiig}ro TIm(Cu(t + i€)).

Note that for z = a + ib € C with a,b € R with b > 0, we have
1 1 1

z—t a—t+ib (a —t)2 + b2

(a —t —1b).
Its imaginary part is negative!
We have that for s € R,

Cu(s +ic) = /R ﬁdu(t) = /RW(S —t —ie)du(t).

Thus, we have

Im(Cu(s + ie)) = —/R Hﬁdu(t) =_I.

The integral I. above is computed, as in the Lebesgue or Riemann measure
case, but not compactly supported,

£
IEZ/Rmdﬂ(x) (x=t-s)

-2 | EEm@ =9

e Jr (£)2+1
1 1 .
== A ﬁedu(y) = [arctany|2 = T.
In this case, we then have —%limsﬂoﬂ)(—fs) = 1. But for the formula in

general, involved as a weak limit is any bounded continuous function f on R as
a function multiplied to the measure in the integration. Namely, in that case,

| st = [ ey



Example 3.4.3. Suppose that we have the cumulant ks = 1 but &k, = 0 for
n # 2. In this case, we have

z) = Z knt1(a)z" = z.
n=0

It then follows that 1
=—+C .
= Gutgy T

The equation implies Cu(2)? — zCu(z) + 1 = 0. This is solved as

Cu(z) = 5
Since
I 1
ICu(z)| = =) —p(a™)

o
L llall\,, 1, lal
— e = |— [2]

<1 = e,

then Cu(z) is approximated closely to % as |z| large enough. It implies that

Cu(z)—z_ 22—4_ 4 B 1
- 2 2z 42 —4) Ll o4)

Then we compute

Cu(s +ie) = sties (28+i8)2_4 — S+Z‘€_\/52;52_4+Z‘286.

Note that for 2 € C with z = |z[e?’, we have f V/Jzle'%. Then the
imaginary part Im(y/2) is \/]z[sin &, with sin® § = (1 — cos9).
It then follows that the imaginary part

m(y/s2 — £2 — 4+ i2s¢)

—52 4

(2 _ 2 _ 4 s i
=((s* - —4)* +45° \f\/ Ve e
Z%\/\/(82—€2—4)2+48262 22—

Therefore, we obtain that

Im(Cu(s + ie) ; \/\/ —e2 —4)2 4 45%e2 — (s2 — 2 —4).



Taking the limit as € — 0 4+ 0 and multiplying f% implies that

0 (s* > 4)
273\/5\/4 — 52 (s? < 4).

This Stieltjes inversion formula form is corrected in part. O]

The free convolution of two distributions p1 and s is defined by the following
way by 4 steps.

(1) We make the Cauchy transforms C; and Cy and the R-transforms R;
and Ry for p1 and us respectively.

(2) The R-transform R3 of the free convolution is defined to be Ry + Ry by
additivity of the cumulants of free variables.

(3) We compute the Cauchy transform Cj5 of the free convolution from Rj
by using the composition Cu(R(z) + 1) = z.

(4) We obtain the free convolution measure p from Cj by the Stieltjes in-
version formula.

We may denote p by p1¢ *gr po or py B ps the additive (box) convolution.

Suppose that
[ tdusta) = otah), keNj=1.2
R

where 1; are compactly supported probability measures on R and a; are self-
adjoint operator random variables in relation free with respect to . Then we
have

[ Br)(a) = pl(ar + ), ke

Example 3.4.4. Suppose that
/xkddtj(ac) = t? = go(af), keN,j=1,2
R
It then follows that
Ey _ E_ k
Pl +a2)) = (0 + 12" = [ 2¥dbisa, ()
R

so that 5t1 H 5t2 = 5t1+t2~ O

Let p1 and ps be compactly supported probability measures on R that cor-
responds respectively to self-adjoint operators a; and as which are free with
respect to ¢ on a C*-algebra 2. The multiplicative (box) free convolution pu

1 1

of p1 and g is defined to be the (spectral) measure corresponding to afaza?,
where a; is assumed to be positive. We denote it by pq X ps.
Note that ajas is not self-adjoint in general. Also, if ¢ is a trace, then

o=
)
<
= o=
~—
3
|
—
—
<
Ll ¥
S
D
~
N

((ara2)") = p(a? (ata

L1
= ¢((af azaf)").



There is a theorem of Speicher that for {ay,--- ,a,} and {by,--- ,b,} two fi-
nite subsets of 21 which are free by ¢, the formulae such that the cumulants
of (aiby,--- ,apb,) can be written as the sum of products of cumulants of
(a1, ,a,) and (induced) cumulants (by,- - ,b,) over NCr(n) of non-crossing
partitions, and as well the moments of a1b; - - - a, b, can be written as the sum
of products of cumulants of (aj,- - ,a,) and (induced) moments of (by,--- ,by,)
over NCr(n).

The Voiculescu S-transform S for an operator a € 2 is defined to be

142
z

S(2) = Sa(2) =

sm~1(z)

where sm~!(z) means the inverse of the moment series function sm(z) for a by
o with respect to composition.
It then holds multiplicatively that

She(z) = Sp(2)Se(2)

for b, ¢ € A that are free with respect to ¢.

3.5 Asymptotic freeness of random matrices

Two sequences (A,,) and (B,,) of matrices of operator random variables are said
to be asymptotically free if they converge in distribution respectively to some
operators a, b in an operator probability space 2 by ¢, namely,

lim (A7) = p(a™), lim o(BJ) = o(b™),
m—00

m—00

where ¢ = Eotr (or E®tr) (E = ¢ on %), and a,b are free with respect to .
Equivalently, the convergence in distribution means that

lim <p(p(Am Bn)) = @(p(a" b))

n—oo

for any complex polynomial p(z,y) in non-commuting variables x, y.

There is a theorem (of Speicher) that elements of a semi-circular family

S1,- -+ ,Sp with diagonal covariance such that
e(sisi) = > Tgpepe(sisi,)
PeNCra(m)

and o(s;s;) = d;; for 4,5 = 1,--- ,n are free. It then follows that independent
Gaussian GUE random matrices are asymptotically free.

A sequence of complex matrices (Dy,)nen with D,, € M, (C) is said to be
deterministic if the limits of tr(D}") for m € N as n — oo exist.
Namely, the sequence (D,,) converges in distribution to some D € 2, U2, M, (),
or 2 ® K so that
©(D™) = lim tr(D]").

n—oo



4 Appendixes

4.1 Appendix to moments

We may refer to [12].
The moment generating function with respect to a density function f on a
space X is defined to be the integration function

M@=Afwmm—[hy

In particular, M(0) = [ f(z)dez = E[1] = 1.
The k-th moments as Wlth p = [y xf(x)dx are obtained by differentiating
in integration as

k
= [ flayds = M)l

We define as g(t) = M (it) with 0 = it for ¢ € R as a distribution character-
istic function.
We can have the function g Taylor expanded around zero as

m
Ck m
)+ 2 g +o(le™)
k=1
if and only if ¢, = py for £ < m the moments exist.
Note that

9 (t)]e=0 = / ize’™ f(x)dz|=o = i
X

The cumulant generating function associated to M (0) is defined to be K(6) =
log M ().
We have the Taylor expansion for K as

with coeflicients k; named as cumulants, each of which can be written as poly-
nomials of the moments p, for s < j.
* Note that
ko = K(0) =log M(0) =log1 = 0.

Also,
ki = K'(0)]p=0 = (log M(0))'|p=0

M'(9)

= W|O:O = MI(O) = K= p1.



Moreover,

ky = K"(6)[o—0 = (log M(0))" |60
_ MT(0)M(0) — (M'(9))2|
- M(6)? =
= M"(0) = (M'(0))* = p2 — pii- O

o2
For the normal distribution, M(6) is given as et so that K(6) =
no + %202 with the cumulants of degree more than two vanishing.

(x—p)2
* The normal distribution is defined to be f(z) = \/21—71_067 7 for z € R.
Then with 6 = it, the Fourier transform implies that
_mp? x—p
202 dx = —v
/ 27r0 ( V20 )
_ ez’t(—\/imz—&-p,) e—U2 \/QO‘dU
/R V2ro
wtp )
_ 6\/7? 67’”2671(\/§Gt)vd’0
1 it 2,2 1 292 1 2p2
_ = itp,—207t7 _ _© pf 20707 _ _© p0+2070
ﬁe e ﬁe e ﬁe
(corrected as so). O

4.2 Appendix to distributions

We may refer to [7]. As well we may refer to [8].
e The binomial distribution B(n,p) has density f(k) = ,Crp¥q"F at 0 <
E<nwithO<p<landp+q=1

Note that >_;_, f(k) = (p+¢)" = 1.
We have binomial expansion (g + pz)™ = > ;_, nCrp¥q" *a* with z € R.
Differentiating both sides with respect to x implies

np(q + pz)"~ Z Crp"q" k.
k=1

Evaluating both sides at z = 1 we obtain np = >,/ _, kf(k) = E[k].
Multiplying both sides by x and differentiating implies

np(q + pz)" "+ n(n — 1)p°z(q + pz)" >

n
= np(g +px)" (g + npr) = Y W Crptq" "kt
k=1

Evaluating both sides at 2 = 1 we obtain np(q + np) = >_;_, k*f(k) = E[k?].
It then follows that with k& = X,

0? =V (X) = E(X?) - E(X)? = npq.



The moment generating function is given by

Ze”“f = (g +pe)".

e The Poisson distribution Poi(\) with A > 0 is the limit distribution of
B(n,2) as n — oco. It has density f(k) = e’*% for integers k£ > 0.

Note that Y ;_onCi(2)F(1 - 2)”*’“ RA+a-2))n =1

We have Y"1 f(k) = e 377, 37 = 1. We compute

oo © k—1
=3 k0= 3G !
k=0 k=

We also have

=AME[]+1) =AA+1).

Therefore, 0% = V (k) = E(k?) — E(k)? = \.
The moment generating function is given by

. LAy 215 L
E[etk] — Zetk )\ﬁ —¢ )\Z ( o
k=0 ’ k=0 :

t t
_ e—Aee A _ eA(e —1).

By the way, the density limit is obtained as follows. With p = %,

n! A Ao
T kl(n— k:)!(ﬁ)k(l —3) '

MNenn—1)---(n—k+1) ALk A

=2 - (1= =)

Ck;pk n—k __

As n — oo we have the second fraction factor and the third factor (1 — 2)=F

going to 1. As well, we have
A 1 =
1 — O\ = 1 —_ —)\(_)\)
(== 0+ 5

going to e~ as n — co. Therefore the binomial density goes to the limit as the

Poisson density in the way as p = %

e What is the Bernoulli distribution? The Bernoulli (local) density is p¥q" "
(or ,,Crp¥q™~*) for n € N with p+¢ = 1. With 0 < p < 1 as a constant, we
have

1= lim (p+¢)" = hm Z Crptq" k.

n—oo



Is this the meaning?

e What is the Cauchy distribution? This is Cau(u, o) that is p + o3 with
o > 0, where Cau(0,1) is the distribution of % where X and Y are independent
under N(0,1). The Cauchy density is f(z) = %m In particular, f(u) =
?10' We have the derivative of f at x € R as

oy 0 2(x—p)
T = e e

It then follows that f(u) is the maximal value and the maximum. We compute
the integral

1 1 -
/f(x)dx: — | &= de (=5 =1)
R To Jr (TM)Q +1 7
1 1 1
_ 7/ ———odt = —[arctant]Z_ = 1.
mo Jgt2+1 ™

Note also that

/ - / LRI
()2 +1 241

1
= 025 log(t? 4 1) 4 po arctant + C.

It then follows that the Cauchy mean E[z] does not exist.
The Cauchy density for % under N(0, 1) is computed as follows.
We take the transformation u = % and v = y. Then x = uv and y = v. The

Jacobian for this transformation is

J = det <x“ x) -
Yo Yo

The vectors (1,s) and (0,1) in the uv-plane are mapped respectively to (s, s)
and (0,1) in the xzy-plane. The volume of the parallelogram in (u,v) is 1 and
that of (z,y) is |s|.

vou
0 1

= .

The density with respect to (u,v) is given by
1 1.2 1 12
9(@)gW)|J| = —=e"2" ——e"2V | J]|

e 2

V2T V2T
1 —L(uv)? —1o? ‘ ‘
—e vl.
2w

Note that we have, because of independence,

1
1= // g(2)g(y)dzdy :/ dv —e*%(““)2e*%”2|v|du.
R2 R\{0} R 27T



The density for u = % is given by the integral, by changing order of integra-
tions, with replacing R\ {0} to R up to measure zero sets,

iefé(“”)Q(f%“Q\v\dv = l/ e~ 2 (WY
R 2 ™ Jo

T

Tt w2+ 1

1 1

e—%(uZ—Q—l)vz]oo - -
=0T r 2 41

The density for p + O’% is given by

That’s it!

4.3 Appendix to the central limit

We may refer to [8].
The classical CLT with respect to binomial distribution is the following.

k—m,

Theorem 4.3.1. By the transformation t = , the binomial distribution
B(n,p) with respect to k as a variable converges to the normal distribution
N(0,1) with respect to t as n — oo.

Proof. Recall that for the binomial B(n, p), the mean m,, = np and the variance

2
ol = npq.

The variables ¢ and k are discrete, but they become continuous like in the
limit so that with n large enough,

dt = idk

o
Let f,(t) be the distribution transformed from B(n,p)(k) so that
fn(@)dt = B(n,p)(k)dk
as change of variables. It then follows that with p+ ¢ =1,

n n!

— k n—k _ k+i n—k+3
fn(t) = \/npq(k>p ¢t = \/ﬁk!(n— i a :

On the other hand, the Stirling limit formula implies that

|
lim ———— = 1.

n—oo \/2nmTnte”"

The Stirling limit formula is

lim I(z)

200 \/Irgt T2 e~

=1



where the Gamma function is defined to be

I'(x) :/ et tdt, x> 0.
0

Namely, n! is equivalent to 2" tie ™ as n — oco. The equivalence is
denoted as ~. Therefore, equivalently, we have

n! kL 1
)= /n——  phtagn-kts
fa(t) fk!(n_ DI
vn V2rnttien Bl mokgl
~ T — T p 2q 2
V2rkktae—k \2r(n — k)" Ftae—ntk
= = (CRyera (L gk
o k n—=k
Note that since t = % = ’f;n% then we have k = np + /npqt. Thus, if ¢ is

fixed and n is large, then k is large and positive. Indeed, if ¢ is positive, then
k > np > M any positive with some n > %. If negative, then for any positive
M, if

k= /n(vnp+ /pgt) > M,
there is some n > %(—t)2 such that p(v/n)? + (/pgt)y/n — M > 0 so that
Vi > YPCOI PP igh pgt? 4 4pM > 0.

It then follows that nip =1+, /nipt. Also,

n—k=n-—np—/npgt =nq — /npqt

so that "T_k =1— /2t Inserting these equalities into the limit equivalence
q \/ na

above we obtain

1
Fult) oo = (Lt [yl o JRgynakgmm),

It then follows that
1
—log(v2m £, (1)) ~ (np + /pat + 3) log(1 + \/gt)
1 P
+ (ng — /npgt + ) log(1 — \/»t)
2 ng
1 1 ,
= (np + V/npat + 2)[\/5t — L yom i)

2np
1 p 1p -3
—~ t+ =)~/ —t—=—t>+0(n"2
+(ng — vnpat + ) wg! ang T (n™2)]



where log(1+z) =z — %2 + O(23) for o small enough. Indeed,
z? z3
log(l4+a) =2 — — 4+ — 2
og(l+2) == 5433 77

with 0 < 6 = (z) < 1. Therefore, with 1 + 6z > % for = small enough,

|log(1+m)—x+’”—;‘_ 1 23
a3 C 31+ 06z)3
As well,
q g3 _3 p p3 _3
(L= Gint (/L) = Btn

It then follows by expanding and summing the right hand side in the limit
equivalence above converted to that

1, 3 1 g3 g, lg
t— —qt O(n=2 2 Bt —-22 40
Viapgt — 5qt" +npO(n~2) + gt — 5 = + 35l P Toelas (n=2)]

1 ps 1 1
— Vipgt — 5pt? +nqO(n” 2)+pt2+2 t3+ o[- ,/nq - Leioms

2 nq

1 _s 1p%+ ¢ 1pP—¢*> 3 1qg—p
=24+ (n+1)O0n2)+t>— 24+ = 34+ = t
2 ( JO( ) 4 npq 2 /npq 2 \/npq

1 1
§t2 + O(n_5)

for n large enough, where with some positive constant M,

(n+1)0(n"2)

n 2

| < (n+1)Mn~ ! <2M

as n — 0o, and as well, with \F <1,

1p? 42 1pP—¢® 4 1
_Llp ta", 1p qt Ll MW
4 npq 2 /np 21/np
PRV IRy q|||3 1|q pl‘|
ST > U 2

It then follows that

log(V27 f (1))
n—co —112 4 O(n~ %)

Moreover, taking exponential in the limit equivalence termwise if allowed,

then we obtain
] V27 ful®)
im

1
n— exp(—1t2 + O(n2))




By the way, O(n*%) looks like Mn~2 so that this function is vanishing as
n — oo.
Namely, obtained is that

1 142
lim f,(t) = e 2t
T () = =
Note that if f(x) and g(x) are differentiable, with both limits as z — oo
zero or +o0, and f(x) ~ g(x) as * — oo, then log f(x) ~ logg(x) as © — oco?
In fact, the I’'Hospital theorem implies that
log f(z) . f'(z) g(x)

im = lim = lim
z—oo logg(x) z—oo f(x) g'(w) oo g'(¥)

provided that lim,_. % exists, with respective limits of f’ and ¢’ indefinite

as x — oo. If so, and if the limit is equal to 1, then this can be applied for that
case above.

Similarly, the limit equivalence f(z) ~ g(x) as © — oo implies the limit
equivalence ef(*) ~ ¢9(#)? The ’Hospital theorem implies that

LD IO )
T —00 eQ(I) T—00 eg(m)g’(x)

_ =)
with ef@=9@) = 9@U=3G5)  brovided that the limit in the right hand side
exists. If so, and if the limit is equal to 1, with g(z) vanishing to 0 as  — oo,
then this cane be applied for that case.
But this is a general case. In that case, '8 /(*) = f(z), that’s enough. [

4.4 Appendix to covariance

We may refer to [7].
The variance of a (classical) random variable f is defined to be

u(f) = BI(f - BI)?.
It then follows that
v(f) = B[f* = 2B[f]f + E[f]’] = E[f*] - E[f]*.
The covariance of two (classical) random variables f and g is defined to be

c(f,9) = E[(f — E[f])(g — Elg])]-

It then follows that

c(f,9) = E[fg — Elglf — E[f]lg + E[f]E[g]]
= E[fg] — E[f]E|g] = c(g, )



In particular, if E[f] =0 or E[g] =0, then ¢(f,g) = E[fg] = ¢(g, f).
Moreover, we have

o(f+9)=E[(f+9)° - Elf + 9]
E[f?*+2fg + ¢°] — E[f]” — 2E[f]E[g] — E[g]?
=v(f) +vlg) +2¢(f, 9).

We may continue to investigate the next stage, but do not at this moment.
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