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TWO-VARIABLE ZETA FUNCTIONS FOR GRAPHS
AND TUTTE POLYNOMIALS

KAZUFUMI KIMOTO

ABSTRACT. We prove that the difference between the two-variable zeta function
of a graph and a certain rational function defined using the Tutte polynomial is
always a polynomial. We also proposed a conjecture specifying concrete condi-
tions under which the two-variable zeta function can be determined solely by the
Tutte polynomial.

1. INTRODUCTION

There are various invariants associated with finite undirected (connected) graphs.
Among the invariants related to the chip-firing game on graphs or the theory of
divisors on graphs are the Tutte polynomial, the sandpile group (Jacobian group),
and the two-variable zeta function. The Tutte polynomial is a two-variable polynomial
that satisfies the so-called deletion-contraction relation and includes specializations
such as the chromatic polynomial and the level polynomial of critical configurations.
The sandpile group is a finite abelian group formed by the critical configurations on
a graph. The two-variable zeta function of a graph, introduced by Lorenzini [6], is a
generating function for the ranks of divisors on the graph and can also be regarded
as an analog of the local zeta function for algebraic curves over finite fields.

These three invariants are, to some extent, independent of each other in the sense
that no pair among them uniquely determines the third. For instance, there exist
graphs with the same Tutte polynomial and the same two-variable zeta function but
non-isomorphic Jacobian groups (see [2]). On the other hand, certain relationships
exist among these invariants: for example, a specialization of the numerator of the
two-variable zeta function can be expressed in terms of the Tutte polynomial, and the
total number of spanning trees of a graph is equal to the order of the Jacobian group
or a special value of the Tutte polynomial.

In our previous paper [4], we provided concrete examples of infinite sequences of
graphs with increasing genus, for which the two-variable zeta function can be explicitly
determined. Notably, we observed a remarkable phenomenon: in all such examples,
the two-variable zeta function could be uniformly represented by a certain rational
function defined using the Tutte polynomial. Unfortunately, the reason why such a
representation holds remains unclear at this time.

In this paper, for a given finite connected loopless graph G, we prove that the
difference between the two-variable zeta function of G and a certain rational function
defined using the Tutte polynomial of G is always a polynomial. This polynomial
satisfies the same functional equation as the two-variable zeta function and has a
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degree at most 2g — 4, where g denotes the genus of the graph G. Furthermore, we
propose a conjecture outlining specific conditions under which the two-variable zeta
function coincides with the rational function defined using the Tutte polynomial.

2. DIVISORS AND LINEAR RELATIONS ON GRAPHS

We quickly review the definition and basic properties of divisors on graphs and
related notions. We refer to the textbooks [5] and [3] for detailed information.

2.1. Definitions and basic facts. Let G = (V, E)) be an undirected connected finite
(multi)graph without loops. The genus g of G is defined by g := |E| — |V|+ 1. When
G is connected, we have g > 0, and g = 0 if and only if G is a tree. For an edge e € F,
G — e is the graph obtained from G by deleting e, and G/e is the graph obtained from
G by contracting e. The degree of v € V is denoted by d(v), and the number of edges
between v and w (v,w € V) is denoted by v(v,w). An edge e € E is called a bridge
of G if G — e is not connected. T (G, x,y) denotes the Tutte polynomial of a G. Tt is
known that T(G, 1,1) is the number of spanning trees of G. For later use, we define
¢i(G) fori=0,1,...,g by

g
(2.1) T(G.1,y) =) a(G)
=0

Notice that ¢,(G) =1
We denote by Div(G) the divisor group on G. We often express the coefficient of

vin D € Div(G) by D(v) as
D= Z D(v)v

veV

We say that E € Div(G) is effective and write E > 0 if E(v) > 0 for all v € V.
The sum of all the coefficients D(v) of D € Div(G) is called the degree of D, and is
denoted by deg D. For convenience, we put

Div¥(G) = {D € Div(G) | deg D = k}.
Let Prin(G) be a subgroup of Div’(G) generated by the elements of the form

Z v(v,w)(lv—w) (vevV).

weV

Two divisors D, D’ € Div(G) are called linearly equivalent if and only if D — D’ €
Prin(G@). We write D ~ D’ to mean that D and D’ are linearly equivalent. Define

L(D)={E €Div(G) |E>0, D~ E}.
We define the rank function r: Div(G) — Z>_; by the following conditions:

(i) If L(D) = @, then (D) == —1.
(ii) For any s € Z>o,

r(D)>s < L(D—E)+#@, VEE&cDiv'(G)st. E>0.

The following graph-analog of the Riemann-Roch theorem is known.



Theorem 2.1 (Baker-Norine [1]). For any D € Div(G), we have
r(D)—r(K—D)=degD —g+1.

K = Z(d(v) -

veV

Here K is given by

We further define the Picard group and Jacobian group of G by
Pic(G) := Div(G)/ Prin(G),
Jac(G) == Div®(@)/ Prin(Q).

|[Jac(G)] is equal to the number of spanning trees of G. We put [D] := D + Prin(G) €
Pic(G) for D € Div(G).
For ¢ € V, a divisor D € Div(G) is called g-reduced if

(1) D(v) >0 for all v € V' \ {q},
(2) forany S C V\{q}, there exists a vertex v € S such that D(v)—exdegg(v) < 0,

where exdegg(v) is the number of edges between v and vertices outside S. We denote
by Div(G), the set of all g-reduced divisors on G, and put

Div'(G), = Div(G), N Div'(Q).
The following fact is useful (see Theorem 3.6 and Corollary 3.7 in [3]).

Theorem 2.2. Let g € V be an arbitrary vertex. Div(G), is a complete system of
representatives with respect to the linear equivalence. Further, if D € Div(G)y, then

r(D) >0 <= D(q) > 0.
3. TWO-VARIABLE ZETA FUNCTIONS OF GRAPHS
3.1. Definition and basic facts. For D € Div(G), we put
WD) :=r(D)+1.
Lorenzini [6] introduced the two-variable zeta function Z(G,t,u) of G by

uh

(3.1) 26w = Y Lo Zb (Gt
[D]€Pic(G)
where we put
h(D
bi(G,u) = &
[D]ePic(G) -1
deg(D)=1

for brevity. The following is the basic facts on the zeta functions.

Theorem 3.1 (Lorenzini [6]). (1) There exists a polynomial L(G,t,u) € Z[t,u]

such that
L(G,t,u)
. Z =
(2) Z(G,t,u) satisfies the functional equation
(3.3) Z(G, 1 ut,u) = (ut*)' 79 Z(G,t,u).



(3) L(G,0,u) =1, L(G, 1,u) = |Jac(G)|.
(4) L(G,t,0) =t9T(G,1,1/t).

Lemma 3.2 ([4, Lemma 3.5]). Ife is a bridge of G, then Z(G,t,u) = Z(G/e,t,u).

Based on this lemma, in what follows, we always assume that G is a 2-edge-
connected graph (i.e. a graph which has no bridges).

3.2. A formula for two-variable zeta functions. Here we recall a formula for
two-variable zeta functions obtained in [4]. For a divisor D € Div(G), we denote by
Redy(D) the unique g-reduced divisor which is linearly equivalent to D. Define

p1(D) == max{—Red,(D — D')(q) | D’ € Div’(G),, —D'(q) < k}
for k > 0 and D € Div’(G). By definition, we have

0<—=D(q) = po(D) < pa(D) < p2(D) < ... < pg(D) = pg41(D) = ... =g
and
(3.4) pe(D) =1 <= r(D+ (k+1)q) = k.
The two-variable zeta function Z(G,t,u) is then written as
1 o0
(3.5) Z(G,t,u) = T3 (ut)* L1, (G,t)
- k=0
with
(3.6) LGty = > )
DeDivO (@),

‘We notice that

Lo(G,t) = t9T(G,1,1/t) = z:cz )9

Ly(G,1) = [Jac(G)| (k= 0),

Li(G,t) = |Jac(G)|t? (k> g).
The polynomial L(G, ¢, u) in Theorem 3.1 is given by

g
(3.7) L(G,t,u) = Lo(G, 1) + > (ut)*(Li(G,t) = Li—1(G, 1)).
k=1
4. TWO-VARIABLE ZETA FUNCTIONS AND TUTTE POLYNOMIALS

4.1. A function defined by Tutte polynomials. We put

~ _ Lo(G,t) wtd T (G, 1, ut)
2(Gitu) = tO (1—wt?) (1 —wut)(1l—ut?)’
L(G, t,u) = (1 —t)(1 — ut) Z(G, t, ).

It is straightforward to verify that Z (G, t,u) satisfies the functional equation
(4.1) Z(G,t,u) = (ut?)I ' Z(G, 1/ ut, ).
Lemma 4.1. L(G,t,u) € Z[t,u].



Proof. Put ¢; = ¢;(G) for simplicity. We show that

g
(4.2) L(G,t,u) = Lo(G.t) + Y _ (ut)* (Li(G,t) — Li—1(G. 1)),
k=1
where
(43) Lk(G'7 t) — Zcitg—z-hmn{z,k} _ Z citd + Z Clc+itg_l~
i=0 i=0 i=1

Let us calculate L(G, t, w):

~ 1— ut 1—t 6
L(G,t,u) = mLO(G,t) + 1 — ut? Utg+1 ch(ut v

I

<
I
o

= (1 — ut)

o0 oo
= > uMFLo(G.t) = Y uFTHTLL(GL )
k=0 k=0

g oo g oo
Z Z syttt 2ii Z Z cjud TIipg 22
i=0 j=0 i=0 j=0
= Lo( +Zu ¢ Lo (G, t) — Zu =1L (GL )

k=1 k=1

o0 o

k=1 0<i<g k=1 0<i<g

0<j 0<j
k=itj+1 k=itj+1
o
= Lo(G,t) + Y _(ut)*(t* _tk_l){Lo(Ga - > citg—Z}
k=1 0<i<g
i<k—1
g g )
£)+ > (ut)F(F =)y et
k=1 i=k
It is immediate to see that
g
(" = 51> " et9 ™ = Li(G,t) — L1 (G, t).
i=k

o0 g
(ut?)? Lo (G, t) + ut™ (1= 1) > " (ut?)? Y~ e;(ut)
j=0 i=0

O

We have observed in [4] that Z(G,t,u) = Z(G,t,u), that is, the zeta function
Z(G,t,u) is completely determined by the Tutte polynomial T'(G, z,y), when (i) the
genus g of G is at most 2, (ii) G is either a dipole graph, a doubled tree or a friendship

graph.
In what follows, we assume that g > 3. Let us look at the difference

f(G,t,u) = Z(G,t,u) — Z(G,t,u).



Theorem 4.2. f(G,t,u) € Z[t,u], and
(4.4) (G t,u) = ()9 (G, 1/ ut, u).
Proof. 1t is elementary to verify that
L(G,1,u) = L(G, 1,u) = [Jac(G)|, L(G,t,1/t) = L(G,t,1/t) = Ly(G,1).
This implies that L(G,t,u) — L(G,t,u) is divisible by (1 — ¢)(1 — ut), and hence

f(G,t,u) € Z]t,u]. Since Z(G,t,u) and Z(G,t,u) satisfy the same functional equation
((4.1) and (3.3)), f(G,t,u) also satisfies the functional equation of the same form. [

Lemma 4.3. L,(G,0) = L;(G,0) = 0.

Proof. L1(G,0) = 0 is trivial by the definition (4.3). To prove L;(G,0) = 0, it suffices
to see that 1 (D) > 1 (or (D + q) < 0) for any D € Div’(G),. Let D € Div?(G),.
D + q is g-reduced and (D +q)(q) = D(q) + 1. If D(¢) < —1, then r(D +¢q) = —1. If
D(q) = —1, then D = v — g for some v € V' \ {¢}. In this case, we have r(D +¢) =0
since L((D 4+ ¢q) — q) = L(D) = @. If D(q) = 0, then D = 0. For any v € V' \ {¢},
(D+q)—v=—v+qisv-reduced and (D +q)(v) = —1 < 0. Hence r(D+q) =0. O

Thus E(G7 t,u) — L(G,t,u) is divisible by ut?, and so is f(G,t,u). By this fact and
(4.4), the degree of f(G,t,u) in t is at most 2g — 4. Thus f(G,t, u) is of the form

2g—6

(4.5) (G, t,u) = ut? Z ai(G,u)t!

i=0
and its coefficients satisfy the relation
azg—6-i(Gyu) =ud 3 a;(Gu) (0<i<g-3).
4.2. The lowest coefficient ay(G,u). Since
2g—6

L(G,t,u) — L(G, t,u) = (1 — £)(1 — ut)ut® Y ai(G,u)t!
1=0

- ut(L(G,t) - L1<G,t))
+ (ut)? (EQ(G, t) — Ly(G,t) — L1 (G, ) + L, (G, t)) T

it follows that ao(G,u) is the coefficient of ¢ in zl(G, t) — L1 (G, t), which is equal to
1— |{D e DiV)(G), | m1(D) =1}| =1 — |{D € Div’(G), | (D +2q) = 1}|.
Let us count |[{D € Div’(G), |7(D +2¢q) =1}|. Suppose that D € Div’(G), and

r(D + 2q) = 1. Then we should have r(D + ¢q) = 0, so that we have D = v — ¢ for
some v € V (possibly equal to ¢). Thus we have

{D e DivV*(G)q|r(D+2q) =1} =[{fv eV |r(v+q) =1}].

Ifr(v+¢q) =1, then r(v+¢g—w) = 0 for any w € V. This implies that v+ ¢—w is not
w-reduced for any w € V' \ {v,q}. By an argument using Dhar’s burning algorithm
(see, for example, §2.6.7 of [5]), there can be at most one such v. Hence we have

(4.6) ap(G,u) =0or 1.



When G is of the form as in (4.7) below, we have aog(G,u) = 0. Indeed, for any fixed
sink vertex ¢, if we take v to be a vertex located ‘symmetrically opposite’ to ¢, then

r(v+q) =1

4.3. Examples and conjectures.

Example 4.4 (genus 3 case). Let G be a connected graph of genus 3 which does not
have loops and bridges. Such a graph G is obtained as a refinement of one of the

following eight graphs:

N o=
<] /N

OO

0
A

If G is a graph of the form shown below, or any degenerate form thereof, then

f(G t,u) =0:

T

—_——

{

Otherwise, f(G,t,u) = ut®. See [7].

—
r

Conjecture 4.5. If G is of the form shown below, or any degenerate form thereof,

then f(G,t,u) =0:

(4.7) G =

1 T2 Tk
— " —
,,,,,,,,,,
T T2 Tk

Conjecture 4.6. If f(G,t,u) # 0, then every nonzero coefficient of f(G,t,u) is

positive.

Example 4.7 (genus 4 case). Let G be a connected graph of genus 4 which does not

have loops and bridges. Then we have

(Gt u) = ut*(ap(G,u) + a1 (G, u)t + uag(G, u)t?)

in general. For

X =

we have

Xy =

%7 X3 - 7

f(Xlatvu) = f(X27tvu) = f(X3at7u) =0.



For

}/3: ) YZL: ) Y5: ;

we have

(Y1, t,u) = ut?(1 + 3t 4 ut?),
(Yo, t,u) = ut?(1 + 5t + ut?).
f(Va,t,u) = ut?(1 + 5t 4 ut?),
( ) = ut?(1 + 4t + ut?),
F(Ys, t,u) = ut?(1 + 3t + ut?).
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