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Abstract. We prove that the difference between the two-variable zeta function
of a graph and a certain rational function defined using the Tutte polynomial is
always a polynomial. We also proposed a conjecture specifying concrete condi-
tions under which the two-variable zeta function can be determined solely by the
Tutte polynomial.

1. Introduction
There are various invariants associated with finite undirected (connected) graphs.

Among the invariants related to the chip-firing game on graphs or the theory of
divisors on graphs are the Tutte polynomial, the sandpile group (Jacobian group),
and the two-variable zeta function. The Tutte polynomial is a two-variable polynomial
that satisfies the so-called deletion-contraction relation and includes specializations
such as the chromatic polynomial and the level polynomial of critical configurations.
The sandpile group is a finite abelian group formed by the critical configurations on
a graph. The two-variable zeta function of a graph, introduced by Lorenzini [6], is a
generating function for the ranks of divisors on the graph and can also be regarded
as an analog of the local zeta function for algebraic curves over finite fields.

These three invariants are, to some extent, independent of each other in the sense
that no pair among them uniquely determines the third. For instance, there exist
graphs with the same Tutte polynomial and the same two-variable zeta function but
non-isomorphic Jacobian groups (see [2]). On the other hand, certain relationships
exist among these invariants: for example, a specialization of the numerator of the
two-variable zeta function can be expressed in terms of the Tutte polynomial, and the
total number of spanning trees of a graph is equal to the order of the Jacobian group
or a special value of the Tutte polynomial.

In our previous paper [4], we provided concrete examples of infinite sequences of
graphs with increasing genus, for which the two-variable zeta function can be explicitly
determined. Notably, we observed a remarkable phenomenon: in all such examples,
the two-variable zeta function could be uniformly represented by a certain rational
function defined using the Tutte polynomial. Unfortunately, the reason why such a
representation holds remains unclear at this time.

In this paper, for a given finite connected loopless graph G, we prove that the
difference between the two-variable zeta function of G and a certain rational function
defined using the Tutte polynomial of G is always a polynomial. This polynomial
satisfies the same functional equation as the two-variable zeta function and has a
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degree at most 2g − 4, where g denotes the genus of the graph G. Furthermore, we
propose a conDecture outlining specific conditions under which the two-variable zeta
function coincides with the rational function defined using the Tutte polynomial.

2. .ipisors and Hin2ar r2Hations on ;raT?s
qe quickly review the definition and basic properties of divisors on graphs and

related notions. qe refer to the textbooks [8] and [j] for detailed information.

2.1. D2}MBiBQMb �M/ #�bB+ 7�+ibX Let G = (V,E) be an undirected connected finite
(multi)graph without loops. The genus g of G is defined by g := |E|− |V |+1. qhen
G is connected, we have g ≥ 0, and g = 0 if and only if G is a tree. For an edge e ∈ E,
G−e is the graph obtained from G by deleting e, and G/e is the graph obtained from
G by contracting e. The degree of v ∈ V is denoted by d(v), and the number of edges
between v and w (v, w ∈ V ) is denoted by ν(v, w). An edge e ∈ E is called a bridge
of G if G− e is not connected. T (G, x, y) denotes the Tutte polynomial of a G. It is
known that T (G, 1, 1) is the number of spanning trees of G. For later use, we define
ci(G) for i = 0, 1, . . . , g by

(2.1) T (G, 1, y) =
g∑

i=0

ci(G)yi.

Notice that cg(G) = 1.
qe denote by Div(G) the divisor group on G. qe often express the coe{cient of

v in D ∈ Div(G) by D(v) as
D =

∑

v∈V

D(v)v.

qe say that E ∈ Div(G) is effective and write E ≥ 0 if E(v) ≥ 0 for all v ∈ V .
The sum of all the coe{cients D(v) of D ∈ Div(G) is called the degree of D, and is
denoted by degD. For convenience, we put

Divk(G) :=
{
D ∈ Div(G)

∣∣ degD = k
}
.

Let Prin(G) be a subgroup of Div0(G) generated by the elements of the form
∑

w∈V

ν(v, w)(v − w) (v ∈ V ).

Two divisors D,D′ ∈ Div(G) are called linearly equivalent if and only if D − D′ ∈
Prin(G). qe write D ∼ D′ to mean that D and D′ are linearly equivalent. .efine

L(D) :=
{
E ∈ Div(G)

∣∣E ≥ 0, D ∼ E
}
.

qe define the rank function r : Div(G) → Z≥−1 by the following conditions:
(i) If L(D) = ∅, then r(D) := −1.
(ii) For any s ∈ Z≥0,

r(D) ≥ s ⇐⇒ L(D − E) ̸= ∅, ∀E ∈ Divs(G) s.t. E ≥ 0.

The following graph-analog of the Riemann-Roch theorem is known.
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T?2Q`2K kXR ("aker-Norine [1])X 6or any D ∈ Div(G)- re have
r(D)− r(K −D) = degD − g + 1.

>ere K is given by
K :=

∑

v∈V

(d(v)− 2)v.

qe further define the Sicard group and Cacobian group of G by
Pic(G) := Div(G)/Prin(G),

Jac(G) := Div0(G)/Prin(G).

|Jac(G)| is equal to the number of spanning trees of G. qe put [D] := D+Prin(G) ∈
Pic(G) for D ∈ Div(G).

For q ∈ V , a divisor D ∈ Div(G) is called q-reduced if
(1) D(v) ≥ 0 for all v ∈ V \ {q},
(2) for any S ⊂ V \{q}, there exists a vertex v ∈ S such that D(v)−exdegS(v) < 0,

where exdegS(v) is the number of edges between v and vertices outside S. qe denote
by Div(G)q the set of all q-reduced divisors on G, and put

Divi(G)q := Div(G)q ∩Divi(G).

The following fact is useful (see Theorem j.6 and *orollary j.d in [j]).
T?2Q`2K kXkX Get q ∈ V be an arbitrary vertetX Div(G)q is a complete system o7
representatives rith respect to the linear equivalenceX 6urther- i7 D ∈ Div(G)q- then

r(D) ≥ 0 ⇐⇒ D(q) ≥ 0.

j. hro@pariabH2 x2ta 7unctions o7 ;raT?s
j.1. D2}MBiBQM �M/ #�bB+ 7�+ibX For D ∈ Div(G), we put

h(D) := r(D) + 1.

Lorenzini [6] introduced the two-variable zeta function Z(G, t, u) of G by

(j.1) Z(G, t, u) :=
∑

[D]∈Pic(G)

uh(D) − 1

u− 1
tdegD =

∞∑

i=0

bi(G, u)ti,

where we put

bi(G, u) :=
∑

[D]∈Pic(G)
deg(D)=i

uh(D) − 1

u− 1

for brevity. The following is the basic facts on the zeta functions.
T?2Q`2K jXR (Lorenzini [6])X (1) There etists a polynomial L(G, t, u) ∈ Z[t, u]

such that

(j.2) Z(G, t, u) =
L(G, t, u)

(1− t)(1− ut)
.

(2) Z(G, t, u) satis}es the 7unctional equation
(j.j) Z(G, 1/ut, u) = (ut2)1−gZ(G, t, u).
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(3) L(G, 0, u) = 1- L(G, 1, u) = |Jac(G)|X
(4) L(G, t, 0) = tgT (G, 1, 1/t)X

L2KK� jXk ([4, Lemma j.8])X A7 e is a bridge o7 G- then Z(G, t, u) = Z(G/e, t, u)X
"ased on this lemma, in what follows, we always assume that G is a 2-edge-

connected graph (i.e. a graph which has no bridges).
j.2. A 7Q`KmH� 7Q` irQ-p�`B�#H2 x2i� 7mM+iBQMbX >ere we recall a formula for
two-variable zeta functions obtained in [4]. For a divisor D ∈ Div(G), we denote by
Redq(D) the unique q-reduced divisor which is linearly equivalent to D. .efine

µk(D) := max
{
−Redq(D −D′)(q)

∣∣D′ ∈ Div0(G)q,−D′(q) ≤ k
}

for k ≥ 0 and D ∈ Div0(G). "y definition, we have
0 ≤ −D(q) = µ0(D) ≤ µ1(D) ≤ µ2(D) ≤ . . . ≤ µg(D) = µg+1(D) = . . . = g

and
(j.4) µk(D) = l ⇐⇒ r(D + (k + l)q) = k.

The two-variable zeta function Z(G, t, u) is then written as

(j.8) Z(G, t, u) =
1

1− t

∞∑

k=0

(ut)kLk(G, t)

with
(j.6) Lk(G, t) :=

∑

D∈Div0(G)q

tµk(D).

qe notice that

L0(G, t) = tgT (G, 1, 1/t) =
g∑

i=0

ci(G)tg−i,

Lk(G, 1) = |Jac(G)| (k ≥ 0),

Lk(G, t) = |Jac(G)|tg (k ≥ g).

The polynomial L(G, t, u) in Theorem j.1 is given by

L(G, t, u) = L0(G, t) +
g∑

k=1

(ut)k
(
Lk(G, t)− Lk−1(G, t)

)
.(j.d)

4. hro@pariabH2 x2ta 7unctions and hutt2 ToHvnoKiaHs
4.1. A 7mM+iBQM /2}M2/ #v Tmii2 TQHvMQKB�HbX qe put

Z̃(G, t, u) :=
L0(G, t)

(1− t)(1− ut2)
+

utg+1T (G, 1, ut)

(1− ut)(1− ut2)
,

L̃(G, t, u) := (1− t)(1− ut)Z̃(G, t, u).

It is straightforward to verify that Z̃(G, t, u) satisfies the functional equation
(4.1) Z̃(G, t, u) = (ut2)g−1Z̃(G, 1/ut, u).

L2KK� 9XRX L̃(G, t, u) ∈ Z[t, u]X
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Sroo7X Sut ci = ci(G) for simplicity. qe show that

(4.2) L̃(G, t, u) = L̃0(G, t) +
g∑

k=1

(ut)k
(
L̃k(G, t)− L̃k−1(G, t)

)
,

where

(4.j) L̃k(G, t) :=
g∑

i=0

cit
g−i+min{i,k} =

k∑

i=0

cit
g +

g−k∑

i=1

ck+it
g−i.

Let us calculate L̃(G, t, u):

L̃(G, t, u) =
1− ut

1− ut2
L0(G, t) +

1− t

1− ut2
utg+1

g∑

i=0

ci(ut)
i

= (1− ut)
∞∑

j=0

(ut2)jL0(G, t) + utg+1(1− t)
∞∑

j=0

(ut2)j
g∑

i=0

ci(ut)
i

=
∞∑

k=0

ukt2kL0(G, t)−
∞∑

k=0

uk+1t2k+1L0(G, t)

+
g∑

i=0

∞∑

j=0

ciu
j+1+itg+1+2j+i −

g∑

i=0

∞∑

j=0

ciu
j+1+itg+2+2j+i

= L0(G, t) +
∞∑

k=1

ukt2kL0(G, t)−
∞∑

k=1

ukt2k−1L0(G, t)

+
∞∑

k=1

uk
∑

0≤i≤g
0≤j

k=i+j+1

cit
g+2j+i+1 −

∞∑

k=1

uk
∑

0≤i≤g
0≤j

k=i+j+1

cit
g+2j+i+2

= L0(G, t) +
∞∑

k=1

(ut)k(tk − tk−1)

{
L0(G, t)−

∑

0≤i≤g
i≤k−1

cit
g−i

}

= L̃0(G, t) +
g∑

k=1

(ut)k(tk − tk−1)
g∑

i=k

cit
g−i.

It is immediate to see that

(tk − tk−1)
g∑

i=k

cit
g−i = L̃k(G, t)− L̃k−1(G, t). !

qe have observed in [4] that Z(G, t, u) = Z̃(G, t, u), that is, the zeta function
Z(G, t, u) is completely determined by the Tutte polynomial T (G, x, y), when (i) the
genus g of G is at most 2, (ii) G is either a dipole graph, a doubled tree or a friendship
graph.

In what follows, we assume that g ≥ 3. Let us look at the difference

f(G, t, u) := Z̃(G, t, u)− Z(G, t, u).
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T?2Q`2K 9XkX f(G, t, u) ∈ Z[t, u]- and
(4.4) f(G, t, u) = (ut2)g−1f(G, 1/ut, u).

Sroo7X It is elementary to verify that
L(G, 1, u) = L̃(G, 1, u) = |Jac(G)|, L(G, t, 1/t) = L̃(G, t, 1/t) = Lg(G, t).

This implies that L̃(G, t, u) − L(G, t, u) is divisible by (1 − t)(1 − ut), and hence
f(G, t, u) ∈ Z[t, u]. aince Z(G, t, u) and Z̃(G, t, u) satisfy the same functional equation
((4.1) and (j.j)), f(G, t, u) also satisfies the functional equation of the same form. !

L2KK� 9XjX L1(G, 0) = L̃1(G, 0) = 0X

Sroo7X L̃1(G, 0) = 0 is trivial by the definition (4.j). To prove L1(G, 0) = 0, it su{ces
to see that µ1(D) ≥ 1 (or r(D + q) ≤ 0) for any D ∈ Div0(G)q. Let D ∈ Div0(G)q.
D+ q is q-reduced and (D+ q)(q) = D(q) + 1. If D(q) < −1, then r(D+ q) = −1. If
D(q) = −1, then D = v − q for some v ∈ V \ {q}. In this case, we have r(D + q) = 0
since L((D + q) − q) = L(D) = ∅. If D(q) = 0, then D = 0. For any v ∈ V \ {q},
(D+ q)− v = −v+ q is v-reduced and (D+ q)(v) = −1 < 0. >ence r(D+ q) = 0. !

Thus L̃(G, t, u)−L(G, t, u) is divisible by ut2, and so is f(G, t, u). "y this fact and
(4.4), the degree of f(G, t, u) in t is at most 2g − 4. Thus f(G, t, u) is of the form

(4.8) f(G, t, u) = ut2
2g−6∑

i=0

ai(G, u)ti

and its coe{cients satisfy the relation
a2g−6−i(G, u) = ug−3−iai(G, u) (0 ≤ i ≤ g − 3).

4.2. T?2 HQr2bi +Q2{+B2Mi a0(G, u)X aince

L̃(G, t, u)− L(G, t, u) = (1− t)(1− ut)ut2
2g−6∑

i=0

ai(G, u)ti

= ut
(
L̃1(G, t)− L1(G, t)

)

+ (ut)2
(
L̃2(G, t)− L2(G, t)− L̃1(G, t) + L1(G, t)

)
+ . . . ,

it follows that a0(G, u) is the coe{cient of t in L̃1(G, t)− L1(G, t), which is equal to
1−

∣∣{D ∈ Div0(G)q
∣∣µ1(D) = 1

}∣∣ = 1−
∣∣{D ∈ Div0(G)q

∣∣ r(D + 2q) = 1
}∣∣ .

Let us count
∣∣{D ∈ Div0(G)q

∣∣ r(D + 2q) = 1
}∣∣. auppose that D ∈ Div0(G)q and

r(D + 2q) = 1. Then we should have r(D + q) = 0, so that we have D = v − q for
some v ∈ V (possibly equal to q). Thus we have

∣∣{D ∈ Div0(G)q
∣∣ r(D + 2q) = 1

}∣∣ =
∣∣{v ∈ V

∣∣ r(v + q) = 1
}∣∣ .

If r(v+q) = 1, then r(v+q−w) = 0 for any w ∈ V . This implies that v+q−w is not
w-reduced for any w ∈ V \ {v, q}. "y an argument using .harǶs burning algorithm
(see, for example, Ȝ2.6.d of [8]), there can be at most one such v. >ence we have
(4.6) a0(G, u) = 0 or 1.

－ 98 － － 99 －



qhen G is of the form as in (4.d) below, we have a0(G, u) = 0. Indeed, for any fixed
sink vertex q, if we take v to be a vertex located ǵsymmetrically oppositeǶ to q, then
r(v + q) = 1.

4.j. Et�KTH2b �M/ +QMD2+im`2bX

Et�KTH2 9X9 (genus 3 case)X Let G be a connected graph of genus 3 which does not
have loops and bridges. auch a graph G is obtained as a refinement of one of the
following eight graphs:

If G is a graph of the form shown below, or any degenerate form thereof, then
f(G, t, u) = 0:

G =

r

r

Otherwise, f(G, t, u) = ut2. aee [d].

CQMD2+im`2 9X8X A7 G is o7 the 7orm shorn belor- or any degenerate 7orm thereo7-
then f(G, t, u) = 0,

(4.d) G =

r1 r2 rk

r1 r2 rk

CQMD2+im`2 9XeX A7 f(G, t, u) ̸= 0- then every nonxero coe{cient o7 f(G, t, u) is
positiveX

Et�KTH2 9Xd (genus 4 case)X Let G be a connected graph of genus 4 which does not
have loops and bridges. Then we have

f(G, t, u) = ut2(a0(G, u) + a1(G, u)t+ ua0(G, u)t2)

in general. For

X1 = , X2 = , X3 = ,

we have
f(X1, t, u) = f(X2, t, u) = f(X3, t, u) = 0.
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For

Y1 = , Y2 = ,

Y3 = , Y4 = , Y5 = ,

we have
f(Y1, t, u) = ut2(1 + 3t+ ut2),

f(Y2, t, u) = ut2(1 + 5t+ ut2).

f(Y3, t, u) = ut2(1 + 5t+ ut2),

f(Y4, t, u) = ut2(1 + 4t+ ut2),

f(Y5, t, u) = ut2(1 + 3t+ ut2).
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