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1 Introduction

Following Connes [3] we as beginners, outsiders, fools or not would like to make
a personal locally commentative learning transformation by the entire cyclic
cohomology theory for Banach algebras, as a short story specialized, with some
considerable effort in time and space limited.

This is nothing but a review, added with some explicit computation or proofs,
as a back to the past for a return to the future, after [14] and [15].

Sections presented by us are as follows.
The sections

1. Introduction
2. Entire cyclic cohomology theory
3. Cycles of dimension infinite
4. Traces
5. Pairing with K-theory groups
6. The entire cyclic cohomology for the circle algebra
References

Let’s start with us and helpful ⋆ lines as hints added to explore the story,
together with a pencil mightier than an apple, remembering the dream.
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2 Entire cyclic cohomology theory

Let A be a unital Banach algebra over C of complex numbers. Let us recall the
construction of the (b,B) bicomplex of cyclic cohomology.

For a non-negative integer n ∈ N, let Cn(A,A∗) = Cn denote the space of
continuous (n+1)-linear forms ϕ : An+1 → A∗ on An+1, as n times differentials.

Set C−n(A,A∗) = {0} for n > 0.
Define two differentials b and B as in the following.
The differential b : Cn → Cn+1 is defined by

(bϕ)(a0, · · · , an+1) a0, · · · , an+1 ∈ A

=
n∑

j=0

(−1)jϕ(a0, · · · , ajaj+1, · · · , an+1) + (−1)n+1ϕ(an+1a0, · · · , an).

In particular, b : C0 → C1 is given by

(bϕ)(a0, a1) = ϕ(a0a1) − ϕ(a1a0).

If bϕ = 0, then ϕ : A → A∗ is a trace map.
As well, b : C1 → C2 is given by

(bϕ)(a0, a1, a2) = ϕ(a0a1, a2) − ϕ(a0, a1a2) + ϕ(a2a0, a1).

The differential B : Cn → Cn−1 is defined by B = A0 ◦ B0, where

(B0ϕ)(a0, · · · , an−1)
= ϕ(1, a0, · · · , an−1) − (−1)nϕ(a0, · · · , an−1, 1), ϕ ∈ Cn,

(A0ψ)(a0, · · · , an−1)

=
n−1∑

j=0

(−1)(n−1)jψ(aj , aj+1, · · · , aj−1), ψ ∈ Cn−1.

In particular, B : C1 → C0 is given by

(B0ϕ)(a0) = ϕ(1, a0) + ϕ(a0, 1),
(A0ψ)(a0) = ψ(a0)

so that B = B0 on C1.
As well, B : C2 → C1 is given by

(B0ϕ)(a0, a1) = ϕ(1, a0, a1) − ϕ(a0, a1, 1),
(A0ψ)(a0, a1) = ψ(a0, a1) − ψ(a1, a0).

We have the differential property that

b2 = b ◦ b = 0 = B2 = B ◦ B
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and b ◦ B = −B ◦ b as a non-commutativity.
We then have the bicomplex (Cn,m, d1, d2), where Cn,m is defined by Cn−m

for n,m ∈ Z, and the local graded commutative square:

Cn,m+1 d1=(n−(m+1)+1)b−−−−−−−−−−−−→ Cn+1,m+1

d2= 1
n−m B

!⏐⏐
!⏐⏐d2= 1

n+1−m B

Cn,m d1=(n−m+1)b−−−−−−−−−→ Cn+1,m

so that d2 ◦ d1 = B ◦ b and d1 ◦ d2 = b ◦ B as well.
⋆ The cohomology of the complex kerB/imB by b is zero.

Proof. Consider the exact sequence of complexes of cochains

0 → im(B) −−−−→ ker(B) −−−−→ ker(B)/im(B) → 0

where the coboundary is given by Hochschild differential b. The first long map
in the sequence above induces an isomorphism in cohomology. Then the coho-
mology of the quotient complex by b is zero (cf. [14]).

⋆ The spectral sequence associated to the first filtration FpC =
∑

n≥p Cn,m

in the first variable n by b has the initial E2 term equal to zero.

Proof. The initial term is given by ker(B)/im(B).
Note that Fp+1C is contained in FpC.

The bicomplex Cn,m = Cn−m has support in (n,m) with n − m ≥ 0 (not
n + m).

Thus m ≤ n on the (n,m) plane to make the lower triangle region.
The spectral sequence does not converge in general when we take cochains

with finite support.
The cohomology of the bicomplex C = C∗,∗ = C∗−∗, taken with supports

finite, is nothing but the periodic cyclic cohomology H∗(A).
Namely, H2n(C) = Hev(A) and H2n−1(C) = Hod(A).
As with, F qC =

∑
m≥q Cn,m the second filtration, then Hp(F qC) = cHn(A)

for n = p − 2q.
⋆ Note that if p is even, then so is n, and if p is odd, then so is n. As well,

when q varies, so does n.
Taking cochains with supports arbitrary, without controlling their growth,

the corresponding cohomology is trivial.
Provided that we control the growth of the norm in cochains of even or odd

degrees of the b and B bicomplex, we obtain the cohomology relevant to analyze
infinite dimensional spaces and cycles.

Because of the periodicity

Cn,m = Cn−m = Ck → Cn+1,m+1 = Cn−m = Ck

in the bicomplex b and B, it is convenient to work with Ck.
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Define

Cev = {(ϕ2n)n∈N |ϕ ∈ C2n, n ∈ N},
Cod = {(ϕ2n+1)n∈N |ϕ ∈ C2n+1, n ∈ N}

as the even and odd spaces of sequences of even and odd cochains, respectively.
And define the boundary operator ∂ = d1 + d2 which maps Cev to Cod and
maps Cod to Cev. Namely,

Cev ∂−−−−→ Cod −−−−→
∂

Cev.

⋆ Note that

∂(Ck) = d1(Ck) + d2(Ck) ⊂ Ck+1 ⊕ Ck−1.

As well,
∂2 = ∂ ◦ ∂ = d2

1 + (d1 ◦ d2) + (d2 ◦ d1) + d2
2 = 0

because of b ◦ B = −B ◦ b so that ∂ is a derivation!

Definition 2.1. Cochain sequences (ϕ2n) ∈ Cev and (ϕ2n+1) ∈ Cod of even
and odd degrees are said to be entire if the radius(es) of convergence of the
following series involving the supremum norm ∥ · ∥

∑

n∈N

∥ϕ2n∥
n!

zn and
∑

n∈N

∥ϕ2n+1∥
n!

zn

in C are infinity, respectively.

⋆ We may denote by rev and rod theose respective radiuses.
By definition, for z ∈ C with |z| < rev and |z| < rod, the respective series

converge absolutely, respectively, and for z ∈ C with |z| > rev and |z| > rod,
the respective series diverge, respectively.

The ratio formula in power series known well implies that

rev = lim
n→∞

∥ϕ2n∥(n + 1)
∥ϕ2(n+1)∥

and rod = lim
n→∞

∥ϕ2n+1∥(n + 1)
∥ϕ2(n+1)+1∥

if they exist in [0,∞) ∪ {∞}.
Entireness implies that the limits are infinity. Alternatively, the infinite

limits are replaced as

1
rev

= lim
n→∞

∥ϕ2(n+1)∥
∥ϕ2n∥

n + 1
= 0 and

1
rod

= lim
n→∞

∥ϕ2(n+1)+1∥
∥ϕ2n+1∥

n + 1
= 0.

Namely, ∥ϕ2n∥
∥ϕ2(n−1)∥ = o(n) (n → ∞) and ∥ϕ2n+1∥

∥ϕ2(n−1)+1∥ = o(n) (n → ∞)

In particular, if the limits of ∥ϕ2n∥
∥ϕ2(n+1)∥ and ∥ϕ2n+1∥

∥ϕ2(n+1)+1∥ are nonzero, then the
respective cochain sequences are entire.
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Moreover, the Cauchy-Hadamard formula implies that if

lev = lim sup
n→∞

n

√
∥ϕ2n∥

n!
and lod = lim sup

n→∞

n

√
∥ϕ2n+1∥

n!

exist in [0,∞) ∪ {∞}, then we have rev = 1
lev and rod = 1

lod .
The ratio formula existence is contained in the Cauchy-Hadamard formula
The norm ∥ϕ∥ for a cochain ϕ ∈ Cm = C(Am, A∗) for any degree m as a

continuous m-linear form on A to the dual A∗ is defined to be the Banach space
norm given by

∥ϕ∥ = sup{|ϕ(a0, · · · , am)| ∈ R | ∥aj∥ ≤ 1, j ∈ {0, · · · ,m}}.

⋆ Note that

|ϕ(a0, · · · , am)| = |ϕ(a1, · · · , am)(a0)| ≤ ∥ϕ(a1, · · · , am)∥∥a0∥.

Therefore,
∥ϕ∥ ≤ sup

∥aj∥≤1,j=1,··· ,m
∥ϕ(a1, · · · , am)∥.

We also have

∥ϕ(a1, · · · , am)∥ = sup
∥a0∥≤1

|ϕ(a1, · · · , am)(a0)| ≤ ∥ϕ∥.

It then follows that

∥ϕ∥ = sup
∥aj∥≤1,j=1,··· ,m

∥ϕ(a1, · · · , am)∥.

⋆ If ∥ϕ∥ = 0, then |ϕ(a0, · · · , am)| = 0 for ∥aj∥ ≤ 1, j = 0, · · · ,m. Thus, for
any nonzero aj ∈ A, we have

|ϕ(a0, · · · , am)| = ∥a0∥ · · · ∥am∥||ϕ(
a0

∥a0∥
, · · · ,

am

∥am∥ )| = 0.

Also, ϕ(0, a1, · · · , am) = 2ϕ(0, a1, · · · , am), hence ϕ(0, a1, · · · , am) = 0. It then
follows that ϕ = 0. The converse also holds.

By definition, ∥αϕ∥ = |α|∥ϕ∥ for α ∈ C with absolute value |α|.
By definition, ∥ϕ + ψ∥ ≤ ∥ϕ∥+ ∥ψ∥ by triangle inequality of absolute value

and by supremum.
For a Cauchy sequence (ϕk) of Cm by the norm, the completeness of C

implies that there exists ϕ = limϕk at any (a0, a1, · · · , am). By completeness
and linearity of A and A∗, we have ϕ ∈ Cm.

It follows in particular that any entire even cochain sequence (ϕ2n) ∈ Cev

defines an entire function fϕ = f ev
ϕ on the Banach space A given by

fϕ(x) =
∞∑

n=0

(−1)n

n!
ϕ2n(x, · · · , x), x ∈ A.
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⋆ Note that for any nonzero x ∈ A, with 0! = 1,

∞∑

n=0

∣∣∣∣
(−1)n

n!
ϕ2n(x, · · · , x)

∣∣∣∣ =
∞∑

n=0

1
n!

∣∣∣∣ϕ2n(
x

∥x∥ , · · · ,
x

∥x∥ )
∣∣∣∣ ∥x∥

2n+1

≤ ∥x∥
∞∑

n=0

∥ϕ2n∥
n!

(∥x∥2)n,

which converges by entireness.
As well, for odd entire (ϕ2n+1) ∈ Cod, similarly we have

∞∑

n=0

∣∣∣∣
(−1)n

n!
ϕ2n+1(x, · · · , x)

∣∣∣∣ =
∞∑

n=0

1
n!

∣∣∣∣ϕ2n+1(
x

∥x∥ , · · · ,
x

∥x∥ )
∣∣∣∣ ∥x∥

2n+2

≤ ∥x∥2
∞∑

n=0

∥ϕ2n+1∥
n!

(∥x∥2)n,

which converges by entireness so that
∑∞

n=0
(−1)n

n! ϕ2n+1(x, · · · , x) is certainly
defined to be fod

ϕ (x) .

Lemma 2.2. If ϕ∗ is an even or odd entire cochain sequence (ϕ2n) or (ϕ2n+1)
respectively, then so is ∂ϕ∗ = (d1 + d2)ϕ∗, where ϕ∗ may be denoted as ϕev or
ϕod respectively.

Proof. For ϕm ∈ Cm, we have ∥bϕm∥ ≤ (m + 2)∥ϕm∥ and ∥B0ϕm∥ ≤ 2∥ϕm∥,
and ∥A0B0ϕm∥ ≤ 2m∥ϕm∥.

⋆ Indeed, for a0, · · · , am+1 ∈ A with norm less than or equal to 1,

|(bϕm)(a0, · · · , am+1)| ≤
m∑

j=0

|ϕm(a0, · · · , ajaj+1, · · · , am+1)| + |ϕm(am+1a0, · · · , am)|

≤ (m + 2)∥ϕm∥.

As well,

|(B0ϕm)(a0, · · · , am−1)| ≤ |ϕm(1, a0, · · · , am−1)|+|ϕm(a0, · · · , am−1, 1)| ≤ 2∥ϕm∥.

Moreover,

|(A0ϕm−1)(a0, · · · , am−1)| ≤
m−1∑

j=0

|ϕm−1(aj , aj+1, · · · , aj−1)| ≤ m∥ϕm−1∥.

Note also that

(d1 + d2)ϕm = (m + 1)bϕm +
1
m

Bϕm.

－ 74 － － 75 －



Thus,

∥∂ϕm∥ ≤ (m + 1)∥bϕm∥ +
1
m
∥A0B0ϕm∥

≤ (m + 1)(m + 2)∥ϕm∥ +
1
m

2m∥ϕm∥.

Therefore,

∞∑

n=0

∥∂ϕ2n∥
n!

zn ≤
∞∑

n=0

(2n + 1)(2n + 2)∥ϕ2n∥
n!

zn +
∞∑

n=0

2∥ϕ2n∥
n!

zn,

∞∑

n=0

∥∂ϕ2n+1∥
n!

zn ≤
∞∑

n=0

(2n + 2)(2n + 3)∥ϕ2n+1∥
n!

zn +
∞∑

n=0

2∥ϕ2n+1∥
n!

zn.

Entireness for ∂ϕ∗ would follow from the convergence of the right hand sides.
By the way, the convergence for the first terms may not follow from entireness

for ϕ∗ in general?
If either the ratio formula or the Cauchy-Hadamard formula imply the radius

of convergence infinity, then there are no problem in convergence.
Anyhow, such a convergence may be involved in the definition for entireness

from the first stage. Or assumed should be that infinite radius of convergence
is given by the ratio formula or the Cauchy-Hadamard formula.

Definition 2.3. Let A be a unital Banach algebra. The entire cyclic cohomol-
ogy of A is defined to be the cohomology of the following short complex

Cev
et (A) ∂=∂ev−−−−→ Cod

et (A) −−−−→
∂=∂od

Cev
et (A) ∂ev−−−−→ Cod

et (A)

of entire cochain sequences of A with even and odd degrees respectively.

By definition, we have the two entire cyclic cohomology groups as

Hev
et (A) = ker(∂ev)/im(∂od) and Hod

et (A) = ker(∂od)/im(∂ev).

There is an obvious map from H(A) to Het(A), where H(A) = Hev(A) ⊕
Hod(A) is the periodic cyclic cohomology of A, and Het(A) = Hev

et (A)⊕Hod
et (A).

⋆ Certainly, an entire even or odd cochain sequence is an even or odd cochain
sequence respectively. But the reason is that finite supportness implies entire-
ness. Namely, constantness implies entireness.

There is a natural filtration of Het(A) by dimensions of cochains.
An even cochain sequence (ϕ2n) is said to be of dimension ≤ k if ϕ2n = 0

for 2n > k.
Unlike what happens for H(A), that filtration does not exhaust all of Het(A)

in general. Only the image of H(A) in Het(A) is exhausted.

Example 2.4. Let A = C the trivial Banach algebra as the simplest case with
dimension 1.
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⋆ By the way, the space (Cn+1)∗ of continuous linear forms ψn on Cn+1 is
given by Cn+1 via the inner product as

ψn((zj)) =
n∑

j=0

wjzj , (zj) ∈ Cn+1

with ψn identified with (wj) ∈ Cn+1.
This ψn is certainly linear because

ψn((zj) + (z′j)) =
n∑

j=0

wj(zj + z′j) (zj), (z′j) ∈ Cn+1

=
n∑

j=0

wjzj +
n∑

j=0

wjz
′
j = ψn((zj)) + ψn((z′j)).

Then we have

|ψn((zj))| ≤
n∑

j=0

|wjzj | ≤
n∑

j=0

|wj |

for |zj | ≤ 1, j = 0, · · · , n. Thus, ∥ψn∥ ≤
∑n

j=0 |wj |. Conversely, with zj = wj

|wj |
for wj nonzero, we have

ψn((zj)) =
n∑

j=0

|wj |.

Therefore, we obtain ∥ψn∥ =
∑n

j=0 |wj | ≡ ∥(wj)∥1.
Namely, the dual space (Cn+1)∗ is identified with the Banach space Cn+1

with the 1-norm.
⋆ On the other hand, the space Cn(C,C∗) of continuous (n+1)-(multi-)linear

forms ϕn on C is given by C. Indeed,

ϕn(z0, · · · , zn) = λnz0 · · · zn, z0, · · · , zn ∈ C

for some λn ∈ C.
Then we have

|ϕn(z0, · · · , zn)| = |λn||z0| · · · |zn| ≤ |λn|

for z0, · · · , zn ∈ C with |z0| ≤ 1, · · · , |zn| ≤ 1. Thus, ∥ϕn∥ ≤ |λn|. Conversely,
we have ϕn(1, · · · , 1) = λn. Hence |λn| ≤ ∥ϕn∥. Therefore, ∥ϕn∥ = |λn|.

Note also that λn = ϕn(1, · · · , 1).
An element of Cev

et (C) is given by an infinite sequence (λ2n) with λ2n ∈ C
such that

∞∑

n=0

|λ2n|
n!

zn < ∞, z ∈ C.

Similarly, an element of Cod
et (C) is given by replacing 2n with 2n + 1 in the

power series.
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The boundary ∂ = d1 + d2 of (λ2n) is zero since both b and B are zero on
even cochains.

⋆ Let ϕ0(z0) = λ0z0 for some λ0 ∈ C.

(bϕ0)(z0, z1) = ϕ0(z0z1) − ϕ0(z1z0) = λ0z0z1 − λ0z1z0 = 0.

B0ϕ0 = ϕ0(1) − ϕ0(1) = 0. Bϕ0 = A0B0ϕ = 0.

Let ϕ2(z0, z1, z2) = λ2z0z1z2 for some λ2 ∈ C.

(bϕ2)(z0, z1, z2, z3)
= ϕ2(z0z1, z2, z3) − ϕ2(z0, z1z2, z3) + ϕ2(z0, z1, z2z3) − ϕ2(z3z0, z1, z2) = 0.

B0ϕ2(z0, z1) = ϕ2(1, z0, z1) − ϕ2(z0, z1, 1) = 0. Bϕ0 = A0B0ϕ = 0.

Namely, the image of the boundary map ∂e is zero.
For m odd, let ϕ(z0, · · · , zm) = λz0 · · · zm with ϕ = ϕm ∈ Cm(C), we have

(bϕ)(z0, · · · , zm+1) = λz0 · · · zm+1,

(Bϕ)(z0, · · · , zm−1) = 2mλz0 · · · zm−1.

⋆ Let ϕ1(z0, z1) = λz0z1. Then

(bϕ1)(z0, z1, z2) = ϕ1(z0z1, z2) − ϕ1(z0, z1z2) + ϕ1(z2z0, z1) = λz0z1z2,

(B0ϕ1)(z0) = ϕ1(1, z0) + ϕ1(z0, 1) = 2λz0.

(Bϕ1)(z0) = (B0ϕ)(z0) = 2λz0.

It thus follows that

(d1ϕ)(z0, · · · , zm+1) = (m + 1)λz0 · · · zm+1,

(d2ϕ)(z0, · · · , zm−1) = 2λz0 · · · zm−1

since d1 = (m + 1)b and d2 = 1
mB.

⋆ Note that d1 is essentially multiplication by degree m + 1 and d2 is also
by only 2.

Therefore, the boundary ∂((ϕ2n+1)) of an odd cochain sequence (ϕ2n+1) at
2n is given by

d1ϕ2n−1 + d2ϕ2n+1 = (2n)ϕ2n−1 + 2ϕ2n+1 = ∂((ϕ2n+1))2n.

If the boundary ∂((ϕ2n+1)) is zero, then

ϕ2n+1 = −nϕ2n−1 = · · · = (−1)nn!ϕ1

and d2ϕ1 = 0. Hence, if so, the sequence is zero. This is the same for Cod
et (C).

Namely, the kernel of the boundary map ∂od is zero.
It then follows that

Hod
et (C)) = ker(∂od)/im(∂ev) = ker(∂od) = {0}.
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Since the kernel ker(∂od) is zero, then the map ∂od is injective.
Since the image im(∂ev) is zero, then the kernel ker(∂ev) is Cev

et (C).
Moreover, for (ϕ2n) ∈ Cev

et (C), in particular, the series

σ((ϕ2n)) =
∞∑

n=0

(−1)n λ2n

n!

is absolutely convergent and convergent.
There is a linear map h from Cev

et (C) to the space of holomorphic functions
defined on C, denoted as Het(C), defined as

h((ϕ2n))(z) =
∞∑

n=0

(−1)n λ2n

n!
zn, z ∈ C.

There is also a linear quotient map from Cev
et (C) to C defined by ev1 ◦ h,

where the linear map ev1 on Het(C) means the evaluation map at 1 ∈ C.
Note that ev1 ◦h = σ. Namely, we have the following commutative diagram:

Cev
et

σ−−−−→ C −−−−→ 0

h

⏐⏐#
∥∥∥

∥∥∥

Het(C) ev1−−−−→ C −−−−→ 0.

Note also that the map h is injective, but not surjective.
Indeed, if the function h((ϕ2n)) is zero, then in particular, h(ϕ2n)(0) = λ0 =

0. As well, differentiating the function term-wise and evaluating the derivative
at zero implies λ2n = 0. Continuing this process inductively implies that the
sequence (ϕ2n) is zero.

Furthermore, σ((ϕ2n)) is zero if and only if (ϕ2n) is in the boundary of
Cod

et (C).
⋆ If (ϕ2n) is in the boundary, then ϕ2n = 2nϕ2n−1 + 2ϕ2n+1. Thus,

∞∑

n=0

(−1)n λ2n

n!
=

∞∑

n=1

(−1)n 2λ2n−1

(n − 1)!
+

∞∑

n=0

(−1)n 2λ2n+1

n!
(k = n − 1)

=
∞∑

k=0

(−1)k+1 2λ2k+1

k!
+

∞∑

n=0

(−1)n 2λ2n+1

n!
= 0.

Conversely, if the series σ((ϕ2n)) is zero, then we can define λ1 = 1
2λ0, λ3 =

1
2λ2 − 1

2λ0, λ5 = 1
2λ4 − (3+1)

2 λ3, and inductively, thus

λ2n+1 =
1
2
λ2n − (2n − 1) + 1)

2
λ2n−1 =

1
2
λ2n − nλ2n−1.
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By the construction, we obtain ∂((λ2n+1)) = (λ2n). As well,

∞∑

n=0

λ2n+1

n!
zn =

1
2
λ0 + (

1
2
λ2 −

1
2
λ0)z +

1
2!

(
1
2
λ4 − 2λ3)z3 + · · ·

+
1
n!

(
1
2
λ2n − nλ2n−1)zn + · · ·

=
1
2

∞∑

n=0

λ2n

n!
zn −

∞∑

n=1

λ2n−1

(n − 1)!
zn−1z,

Therefore,

(1 + z)
∞∑

n=0

λ2n+1

n!
zn =

1
2

∞∑

n=0

λ2n

n!
zn.

Hence (λ2n+1) ∈ Cod
et (C).

It then follows that

Hev
et (C)) = ker(∂ev)/im(∂od) = Cev

et (C)/ker(σ) ∼= C.

Proposition 2.5. We have Hod
et (C) = {0} and Hev

et (C) = C, with isomorphism
given by

σ((ϕ2n)) =
∞∑

n=0

(−1)n

n!
ϕ2n(1, · · · , 1) ∈ C.

Definition 2.6. A cocycle sequence (ϕ2n) or (ϕ2n+1) is said to be normalized
if we have

B0ϕm =
1
m

A0B0ϕm =
1
m

Bϕm

for any respective order m.

In other words, the cochain B0ϕm is cyclic. Namely, B0ϕm ∈ Cm−1
c . Then

1
mA0(B0ϕm) = B0ϕm.

Only the normalized cocycle sequences have a natural interpretation in terms
of the universal differential algebra ΩA.

Lemma 2.7. For any entire cocycle sequence, there is a normalized cohomolo-
gous entire cycle sequence.

Refer to [2]. Also refer to [8].

Remark 2.8. The entire cyclic cohomology defined above and its pairing with
K-theory given below is adapted to arbitrary locally convex algebras A over C
as well as in the following.

A cochain sequence (ϕ2n) (or (ϕ2n+1)) on A is said to be entire if for any
bounded subset B ⊂ A, there exists a constant C depending on B such that

|ϕ2n(a0, · · · , a2n)| ≤ Cn!, aj ∈ B,n ∈ N.
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⋆ In particular, it then follows that if we take B as the unit ball of A (by
the norm if any), then

∥ϕ2n∥ ≤ Cn!.

Therefore,

lim
n→∞

n

√
∥ϕ2n∥

n!
≤ 1.

Hence, given is the spectral radius as

1

limn→∞
n

√
∥ϕ2n∥

n!

≥ 1

for the series
∑∞

n=0
∥ϕ2n∥

n! zn. Is this radius infinite? Or so.
But, replacing B by λ−1B for λ > 0, we have that for any bounded subset

B of A and λ > 0, there exists a constant C depending on B and λ such that

|ϕ2n(a0, · · · , a2n)| ≤ Cλ2nn!, aj ∈ B,n ∈ N.

⋆ In the first definition above, replacing B by λ−1B for λ > 0 implies that

|ϕ2n(λ−1a0, · · · ,λ−1a2n)| ≤ Cn!, λ−1aj ∈ λ−1B,n ∈ N

with the left hand side equal to λ−(2n+1)|ϕ2n(a0, · · · , a2n)|. Hence, the power
2n of the multiple λ2n should be replaced with 2n + 1.

It then follows that

lim
n→∞

n

√
∥ϕ2n∥

n!
≤ λ2.

Taking λ > 0 to zero implies that the limit is zero. Infinite obtained is the
radius of convergence!

Let A be an algebra over C. Then A is a locally convex algebra with the
finest locally convex topology (by some semi-norms or norms). Its entire cyclic
cohomology theory is defined well as shown above.

Bounded subsets of A are given by convex hulls of finite subsets F .
A cochain sequence (ϕ2n) (or (ϕ2n+1)) of A is defined to be entire if for any

finite subset F of A, there exists a constant C such that

|ϕ2n(a0, · · · , a2n)| ≤ Cn!, aj ∈ F, n ∈ N.

In the (d1, d2) bicomplex with d1 = (n + 1)b at Cn and d2 = 1
nB at Cn, we

have
d1d

−1
2 = S = n(n + 1)bB−1

at Cn−1.
⋆ If ϕ = d2ψ = 1

nBψ at Cn−1, then ψ = d−1
2 ϕ = nB−1ϕ.

The pairing of the K-theory group K0(A) with Hev
et (A) is given by the func-

tion fϕ by functional inserting of projections of matrix algebras over A up to
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K-theory class via the canonical trace of matrix algebras over C. Its existence
comes from the growth condition such as entireness.

⋆ We certainly have the pairing given as

⟨[p], [ϕ]⟩ = fϕ(p∼)

=
∞∑

n=0

(−1)n

n!
ϕ2n(tr(p′)p∼, · · · , tr(p′)p∼)

=
∞∑

n=0

(−1)ntr(p′)2n+1

n!
ϕ2n(p∼, · · · , p∼)

for [p] ∈ K0(A) and [ϕ] = [(ϕ2n)] ∈ Hev
et (A) with p ∈ Mk(A) for some k ≥

identified with p′ ⊗ p∼ ∈ Mn(C) ⊗ A.
⋆ We may consider ϕ2n = (n!)2ψ2n degree wise. Since ∥ϕ2n∥ ≤ Cλ2n+1n!

with C depending on λ, then we have ∥ψ2n∥ ≤ Cλ2n+1

n! .

3 Cycles of dimension infinite

The notion of a cycle of dimension n as a starting point of cyclic cohomology
theory is given by a graded differential algebra (Ω, d) with Ω = ⊕n

j=0Ωj , d :
Ωj → Ωj+1 of degree 1, and d2 = 0 and a homogeneous, linear, closed, graded
trace form

∫
: Ωn → C of degree n such that

∫
ω1ω2 = (−1)k1k2

∫
ω2ω1, ωj ∈ Ωkj , j = 1, 2

with (differential forms) ωjωl = ωj ⊗ ωl ∈ Ωkj ⊗ Ωkl of dimension or degree
kj + kl = n, and

∫
dω = 0 for any ω ∈ Ωn−1.

In order to handle the infinite dimensional case, the conditions above is
replaced by the inhomogeneous condition as

∫
(ω1ω2 − (−1)k1k2ω2ω1) = (−1)k1

∫
dω1dω2

on forms of degrees k1 + k2 and (k1 + 1) + (k2 + 1) respectively, which may not
be zero.

A linear form µ on a differential graded algebra (Ω, d) with Ω = ⊕∞
j=0Ωj is

said to be even (or odd) if µ(ω) = 0 for any ω ∈ Ωk with degree k odd (or even,
respectively).

Proposition 3.1. ([2]). Let A be an algebra over C, (Ω, d) a graded differential
algebra such that A = Ω0, and µ an even linear, closed cycle form on Ω (over
A) satisfying the inhomogeneous condition given above.

Then a normalized cocycle sequence (ϕ2n) in the (d1, d2) bicomplex Cn,m =
Cn−m(A,A∗) is defined by

ϕ2n(a0, a1, · · · , a2n) = (−1)n(2n − 1)!!µ(a0da1 · · · da2n)
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for aj ∈ A, 0 ≤ j ≤ 2n, with (2n − 1)!! = Πn
j=1(2n + 1 − 2j).

If µ is odd, then a normalized cocycle sequence (ϕ2n+1) in the (d1, d2) bi-
complex is defined by

ϕ2n+1(a0, a1, · · · , a2n+1) = (−1)n(2n)!!µ(a0da1 · · · da2n+1)

for aj ∈ A, 0 ≤ j ≤ 2n + 1, with (2n)!! = Πn
j=1(2n + 2 − 2j).

Conversely, for a normalized cocycle sequence (ϕ2n) and (ϕ2n+1) in the
(d1, d2) bicomplex, even and odd, linear closed, inhomogeneous cycle forms µ
on the universal differential algebra Ω∗A are defined respectively by

µ((a0 + λ1)da1 · · · da2n)

=
(−1)n

(2n − 1)!!
{ϕ2n(a0, · · · , a2n) + λ(B0ϕ2n)(a1, · · · , a2n)},

µ((a0 + λ1)da1 · · · da2n+1)

=
(−1)n

(2n)!!
{ϕ2n+1(a0, · · · , a2n+1) + λ(B0ϕ2n+1)(a1, · · · , a2n+1)}

respectively, with λ ∈ C.

Proof. ⋆ As for the first half, we have

(B0ϕ2n)(a0, · · · , a2n−1)
= ϕ2n(1, a0, · · · , a2n−1) − ϕ2n(a0, · · · , a2n−1, 1)
= (−1)n(2n − 1)!!{µ(da0 · · · da2n−1) − µ(a0da1 · · · da2n−1d1)}
= (−1)n(2n − 1)!!µ(da0 · · · da2n−1) = ϕ2n(1, a0, · · · , a2n−1).

Hence, we have

A0(B0ϕ2n)(a0, · · · , a2n−1)

=
2n−1∑

j=0

(−1)(2n−2)jϕ2n(1, aj , aj+1, · · · , aj−1)

=
2n−1∑

j=0

(−1)(2n−2)j(−1)(2n)jϕ2n(1, a0, · · · , a2n−1)

= 2nϕ2n(1, a0, · · · , a2n−1) = 2n(B0ϕ2n)(a0, · · · , a2n−1).

This means that B0ϕ2n is cyclic, so that (ϕ2n) is normalized by definition.
As for the converse, we check the even case. Let ψ2n = (−1)n

(2n−1)!!ϕ2n. Then
B0ψ2n is cyclic and we have B0ψ2n = bψ2n−2 (why?) for any n.

⋆ Since (ϕ2n) is normalized, B0ϕ2n is cyclic. Then so is B0ψ2n.
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(B0ϕ2n)(a0, · · · , a2n−1)
= ϕ2n(1, a0, · · · , a2n−1) − ϕ2n(a0, · · · , a2n−1, 1).
(bϕ2n−2)(a0, · · · , a2n−1)

=
2n−2∑

j=0

(−1)jϕ2n−2(a0, · · · , ajaj+1, · · · , a2n−1)

+ (−1)2n−1ϕ2n−2(a2n−1a0, · · · , a2n−2).

We have B0ψ2n = bψ2n−2 for any n.
⋆ The reason certainly comes from b(B0ψ2n) = 0 and cohomology triviality

as checked before. Or it may be included in the definition from the first.
It is shown that da for any a ∈ A belongs to the centralizer of the functional

µ defined so above.
It follows from the cyclic of B0ψ2n that

µ(da(da1 · · · da2n−1)) = (−1)2n−1µ((da1 · · · da2n−1)da).

⋆ Note that in this case, we have a0 = 0 so that ϕ2n(0, a, a1, · · · , a2n−1) = 0.
Since we have B0ψ2n = bψ2n−2, then bB0ψ2n = 0. Also, B0bψ2n = 0 since

bψ2n is cyclic.
⋆ We have 0 = bB0ψ2n = bBψ2n = −Bbψ2n = −B0bψ2n.
Let D = B0b + b′B0. It then follows that

ψ2n(a0, · · · , a2n−1, a) − (−1)2nψ2n(a, a0, · · · , a2n−1)

+ (−1)2nB0ψ2n(aa0, a1, · · · , a2n−1) = 0.

That is

µ(da(a0da1 · · · da2n−1)) = (−1)2n−1µ((a0da1 · · · da2n−1)da).

⋆ Note that since bB0ψ2n = 0, we have

b′B0ψ2n(a0, · · · , a2n−1, a) = (−1)2n−1(B0ψ2n)(aa0, · · · , a2n−1).

Also,

µ((a0da1 · · · da2n−1)da) =
(−1)n

(2n − 1)!!
ϕ2n(a0, a1, · · · , a2n−1, a)

= ψ2n(a0, a1, · · · , a2n−1, a).

As well, d(aa0) = da(a0) + ada0. We then obtain

µ(d(aa0)da1 · · · da2n−1) = (B0ψ2n)(aa0, a1, · · · , a2n)
= µ(da(a0)da1 · · · da2n−1) + ψ2n(a, a0, · · · , a2n−1).
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Namely, da commutes with a0da1 · · · ad2n−1 with respect to µ up to sign
(−1)2n−1.

It follows that dω such as db1db2 · · · dbk belongs to the centralizer with re-
spect to µ, inductively.

It is shown that µ(aω − ωa) = µ(dadω) for any a ∈ A.
With ω = a0da1 · · · da2n, we have

µ(ωa) = µ(a0(da1 · · · da2n)a)
= ψ2n(a0, a1, · · · , a2n−1, a2na) − ψ2n(a0, a1, · · · , a2n−1a2n, a) + · · ·
+ (−1)jψ2n(a0, · · · , a2n−ja2n−j+1, · · · , a) + · · · + (−1)2nψ2n(a0a1, · · · , a).

Thus,

µ(ωa − aω) = µ(ωa) − µ(aω) = bψ2n(a0, a1, · · · , a2n, a)
= B0ψ2n+2(a0, · · · , a2n, a) = µ(dωda) = −µ(dadω).

⋆ Note that d(a2na) = (da2n)a + a2nda. It then follows that

µ(a0(da1 · · · da2n)a) = µ((a0da1 · · · da2n−1)(da2n)a)
= µ(a0da1 · · · da2n−1d(a2na)) − µ(a0da1 · · · (da2n−1)a2nda)
= ψ2n(a0, a1, · · · , a2n−1, a2na) − µ(a0da1 · · · (da2n−1)a2nda).

Next consider that d(a2n−1a2n) = (da2n−1)a2n + a2n−1da2n. Hence

µ(a0da1 · · · (da2n−1)a2nda)
= µ(a0da1 · · · d(a2n−1a2n)da) − µ(a0da1 · · · a2n−1(da2n)da)
= ψ2n(a0, a1, · · · , a2n−1a2n, a) − µ(a0da1 · · · a2n−1(da2n)da).

Inductively, we need to consider the derivation equations to obtain the equality
for µ(ωa).

Note also that

B0ψ2n+2(a0, · · · , a2n, a) = 0 + 1B0ψ2n+2(a0, · · · , a2n, a)
= ψ2n(0, a0, · · · , a2n, a) + 1B0ψ2n+2(a0, · · · , a2n, a)
= µ(da0 · · · da2nda) = µ(dωda).

That’s it!
Finally, we need to check the following for ω1 = adω of degree k1 with a ∈ A

and ω2 of degree k2.
Since dω belongs to the centralizer with respect to µ, we have

µ(ω1ω2 − (−1)k1k2ω2ω1) = µ(a(dω)ω2 − (−1)k1k2ω2adω)

= µ(a(dω)ω2 − (−1)k1k2
2(k1+k2−1)a(dω)ω2)

= µ(a(dω)ω2 − (−1)k1(k2−1)a(dω)ω2)

= µ(a(dω)ω2 − (−1)k1(k2−1)(k1+k2)(dω)ω2)a)

= µ(a(dω)ω2 − (−1)k2+k1−k1k2(dω)ω2)a).
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Is this correct?
It follows that

µ(ω1ω2 − (−1)k1k2ω2ω1) = µ(dad(dωω2)) = (−1)k1µ(dω1dω2).

⋆ Note that

µ(a(dω)ω2 − (dω)ω2)a) = µ(dad((dω)ω2))

with
µ(dad((dω)ω2)) = µ(dadωdω2) = µ(dω1dω2).

Note as well that k1 + k2 as well as k1k2 may be even because µ is even.
It seems that the factor (−1)k1 may be removed from the formula in the even
case. The factor may represent the odd case degree if involved.

Conversely, as for the first half, the proof above implies that any functional µ
on Ω∗A of even or add, satisfying the inhomogeneous condition given like above
defines even or odd, normalized cochain sequences (ψ2n) and (ψ2n+1) such that
bψm = B0ψm+2 for any m, given by

ψm(a0, · · · , am) = µ(a0da1 · · · dam).

By universality of the differential graded algebra Ω∗A over A we obtain the
first half.

Let A be a Banach algebra. Consider the norms for the universal differential
algebra Ω∗A defined by, with r > 0,

∥ ⊕∞
k=0 ωk∥r =

∞∑

k=0

rk∥ωk∥pr

where ∥ωk∥pr is the projective tensor product norm on

Ωk = Ωk(A) = ⊗k
A(A∼ ⊗C A) ∼= A∼ ⊗ (⊗nA)

with A∼ = A ⊕ C1 the unitization of A by 1 (cf. [1]).

Theorem 3.2. There is a canonical bijection between normalized entire cocycle
sequences on A and linear forms on Ω∗A, of even and odd respectively, satisfying
the inhomogeneous condition, given above, and continuous for all the norms
∥ · ∥r.

The natural topology on Ω∗A provided by the statement above is not the
projective limit lim←−(Ω∗A, ∥ · ∥r) of the normed spaces (Ω∗A, ∥ · ∥r) given by the
normes ∥ · ∥r as r → ∞.

That is the inductive limit for r → 0. Namely,

Ω∗A = lim−→(Ω∗A, ∥ · ∥r).
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⋆ For 0 < r1 < r2, we have ∥ω∥r1 ≤ ∥ω∥r2 for ω ∈ Ω∗A. There is a
continuous identity map from the normed space (Ω∗A, ∥ · ∥r2) to (Ω∗A, ∥ · ∥r1).
Namely,

lim←−(Ω∗A, ∥ · ∥r)
qr2−−−−→ (Ω∗A, ∥ · ∥r2) → (Ω∗A, ∥ · ∥r1)

ir1−−−−→ lim−→(Ω∗A, ∥ · ∥r)

with qr2 the quotient map by projectiveness and ir1 the injective map by induc-
tiveness.

For each r > 0, the completion of Ω∗A by the norm ∥·∥r is a Banach algebra,
denoted by Ωr(A)

There is a natural homomorphism from Ωr(A) to Ωr′(A) for 0 < r′ < r,
which is the identity on Ω∗A and is norm decreasing.

Let Ωε(A) = lim−→Ωr(A) for r > 0.
Then Ωε(A) is a locally convex algebra with the continuous homomorphism

from Ωε(A) to A∼ given by the augmentation as sending ⊕∞
k=0ωk to ω0 of Ω∗A.

Proposition 3.3. A linear form µ on Ω∗A is continuous for all the norms ∥ ·∥r

for r > 0 if and only if that on Ωε(A) is continuous.
There is the following short exact sequence of Banach algebras

0 → J = ker(aug) −−−−→ Ωε(A) aug−−−−→ A∼ → 0

by augmentation aug. Then any element ω ∈ J the kernel is quasi-nilpotent,
i.e. λ1 − ω is invertible in Ωε(A) for any λ nonzero.

Proof. ⋆ Note that
Ωr

µ−−−−→ C

ir

⏐⏐"
∥∥∥

Ωε(A) µ−−−−→ C.

Let ω ∈ Ωr for some r > 0. If ω ∈ J , then ω =
∑∞

k=1 ωk with ωk ∈ ΩkA and
∥ω∥r =

∑∞
n=1 rn∥ωn∥pr < ∞.

Replacing r by a smaller 0 < r′ < r implies that ∥λ−1ω∥r′ < 1. It then
follows that 1 − λ−1ω is invertible in Ωr′ .

⋆ Let A be a unital Banach algebra and a ∈ A with ∥a∥ < 1. Then 1 − a is
invertible in A with inverse given by

∑∞
n=0 an (cf. [13]).

Indeed, we have

∥
∞∑

n=0

an∥ ≤
∞∑

n=0

∥an∥ ≤
∞∑

n=0

∥a∥n =
1

1 − ∥a∥ .

We also have

(1 − a)
n∑

k=0

ak =
n∑

k=0

ak(1 − a) = 1 − an+1

Taking the limit as n → ∞ implies the statement (⋆) above.
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⋆ Certainly, it looks like that those inductive limits are just A∼. Then J is
trivial zero. Is this right?

Ωε(A) is a Z2-graded differential algebra, since the differential d of Ω∗A is
continuous for all the norms ∥ · ∥r. The range of d is contained in the ideal J .

4 Traces

Lemma 4.1. ([4], cf. [9]). Let (Ω, d) be a differential Z2-graded algebra and
λ ∈ C. An associative bilinear product on Ω = Ωev ⊕ Ωod is defined as

ω1 ·λ ω2 = ω1ω2 + λω1dω2, ω1 ∈ Ωod, ω2 ∈ Ω,

ω1 ·λ ω2 = ω1ω2, ω1 ∈ Ωev,ω2 ∈ Ω.

Proof. For ω1,ω2 ∈ Ωod and ω3 ∈ Ω, we compute

ω1 ·λ (ω2 ·λ ω3) = ω1 ·λ (ω2ω3 + λω2dω3)

= ω1(ω2ω3) + λω1ω2dω3 + λω1d(ω2ω3) + λ2ω1d(ω2dω3)
(ω1 ·λ ω2) ·λ ω3 = (ω1ω2 + λω1dω2) ·λ ω3

= (ω1ω2)ω3 + λω1dω2(ω3) + λ(ω1ω2 + λω1dω2)dω3.

But it seems to have both lines above not equal in general.

The algebra corresponding to λ = 0 is Ω.
The algebras for λ ̸= 0 are independent.
Possibly, we may consider non-associative algebras like.
The Z2-grading of Ω is given by the involutive automorphism defined as

σ0(ω) = (−1)deg ωω. The grading is extended to a Z2-grading of the deformed
algebra given by

σλ(ω) = (−1)deg ω(ω − λdω)

which is an involutive automorphism of the deformed product.

Proof. We have

σ2
0(ω) = (−1)deg((−1)deg ωω)(−1)deg ωω = ω.

We also have

σ2
λ(ω) = σλ((−1)deg ω(ω − λdω))

= ω − λdω + σλ((−1)deg dωλdω)

= ω − λdω + λdω − λ2d2ω = ω!

－ 86 － － 87 －



Lemma 4.2. ([2]). Let (Ω, d, ·λ) be as above with the Z2-grading σλ.
Any odd linear form τ on (Ω, d) corresponds to τ∼ as its restriction to Ωod

extended to 0 on Ωev.
There is a canonical bijection between odd traces on (Ω, d, ·λ,σλ) as τ∼ and

odd linear forms τ on (Ω, d) such that

τ∼(ω1ω2 − (−1)k1k2ω2ω1) =
1
2
λ2(−1)k1τ∼(dω1dω2)

for ωj ∈ Ωkj .

Proof. Let τ be an odd trace on (Ω, ·λ), corresponding to the linear form on Ω.
Assume that ω1 ∈ Ωod, ω2 ∈ Ωev. Then we have τ(ω1 ·λ ω2) = τ(ω2 ·λ ω1). For
ω = ω1dω2 even, we have

τ(ω) =
1
2
τ(ω − σλ(ω)).

Indeed,

τ(ω1dω2 − σλ(ω1dω2))
= τ(ω1dω2 − ω1dω2 + λd(ω1dω2))
= λτ(dω)

because the degree of d(ω1dω2) is odd. It seems that the formula above is wrong
and is corrected so.

It then follows that

τ(ω1 ·λ ω2 − λω) − τ(ω2 ·λ ω1)
= τ(ω1ω2 + λω1dω2 − λω1dω2) − τ(ω2ω1)

= τ(ω1ω2 − (−1)k1k2ω2ω1)

and on the other hand

τ(ω1 ·λ ω2 − λω) − τ(ω2 ·λ ω1)
= −λτ(ω) = −λτ(λdω + σλ(ω))
= −λτ(λdω + ω − λdω) = −λτ(ω).

Hence the condition in the statement may be corrected so.
We may skip the second half left.

There is an analogue in the even case.
Let Eλ = (Ω, ·λ) !σλ Z2 denote the crossed product of (Ω, ·λ) by Z2 by the

Z2-grading autumorphism σλ.
There is the dual Z2-grading σ̂λ of Eλ defined by σ̂λ(ω) = ω for ω ∈ Ω and

σ̂λ(F ) = −F , where F is the element of Eλ associated to the generator of Z2

such that F 2 = 1 the identity.
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Lemma 4.3. ([2]). Any odd linear form τ on Eλ corresponds to τ∼ as the
restriction of τ(Fω) to ω ∈ Ωev extended by 0 on Ωod.

There is a canonical bijection between odd traces τ on Eλ and even linear
forms τ∼ on (Ω, d) satisfying the same condition in the lemma above.

Let Qε(A) denote the Z2-graded algebra obtained as (Ωε(A), d, ·λ)
Let Q∧

ε (A) denote the crossed product of Qε(A) by the Z2-grading σ such
that σ2 = 1 the identity.

Both Qε(A) and Q∧
ε (A) are locally convex algebras.

There is a canonical bijection between continuous odd traces on Qε(A) (and
Q∧

ε (A) respectively) and normalized odd (and even) entire cocycle sequences on
the Banach algebra A.

Let QA denote the Z2-graded algebra obtained as (ΩA, d, ·√2).
Let Q∧A denote the crossed product of QA by the Z2-grading σ.

Proposition 4.4. ([4]). Let A be an algebra over C.
(a) The pair (ρ1, ρ2) of homomorphisms from A∼ to QA are defined as

ρ1(a) = a ∈ Ω0A and ρ2(a) = a −
√

2da ∈ Ω0A ⊕ Ω1A

for a ∈ A∼, giving an isomorphism of the free product A∼ ∗C A∼ with QA. The
Z2-grading σ of QA is the automorphism exchanging ρ1(a) with ρ2(a) for a ∈ A.

(b) The pair (ρ∧1 , ρ∧2 ) of homomorphisms from A∼ and Z2 to Q∧A are defined
as

ρ∧1 (a) = a ∈ Ω0A and ρ∧2 (n) = Fn

for a ∈ A∼ and n ∈ Z2, giving an isomorphism of A∼ ∗C C[Z2] with Q∧(A).
The Z2-grading σ∧ of Q∧A satisfies σ∧ ◦ ρ∧1 = ρ∧1 and σ∧(F ) = −F .

Proof. For a, b ∈ A∼,

ρ2(ab) = ab −
√

2d(ab)

ρ2(a) ∗√2 ρ2(b) = ρ2(a)ρ2(b) +
√

2ρ2(a)dρ2(b)

= (a −
√

2da)(b −
√

2db) +
√

2(a −
√

2da)d(b −
√

2db)

= ab −
√

2(adb + (da)b) + 2dadb +
√

2(adb −
√

2dadb)

= ab −
√

2(da)b.

It seems that ρ2 is not homo.

For a ∈ A∼, the difference qa is defined by

qa = ρ1(a) − ρ2(a) =
√

2da ∈ QA.

We may identify A∼ with ρ1(A∼) in QA.
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Proposition 4.5. Let τ be an odd trace on QA such that τ(qa) =
√

2τ(da) = 0
for any a ∈ A. Then a normalized odd cocycle sequece (ϕ2n+1) in the (d1, d2)
bicomplex is defined as

ϕ(a0, · · · , a2n+1) = (−1)nn!τ(a0qa1 · · · qa2n+1) aj ∈ A

= (−1)nn!2n
√

2τ(a0da1 · · · da2n+1).

Let τ be an odd trace on Q∧(A). Then a normalized even cocycle sequence
(ϕ2n) in the (d1, d2) bicomplex is defined as

ϕ2n(a0, · · · , a2n) = Γ(n +
1
2
)τ(Fa0[F, a1] · · · [F, a2n]).

Proof. Note that

Fa0[F, a1] = Fa0(Fa1 − a1F ) = Fa0Fa1 − Fa0a1F

= (Fa0F )a1 − Fa0a1F

which is viewed as belonging to A.
Also [F, a2] = Fa2 − a2F is in A ! Z2.

The crossed product Q∧(A)!σ′ Z2 of Q∧(A) by its Z2-grading σ′ such that
σ′(F ) = −F and σ′ is the identity on Q∧(A) is defined so and is then isomorphic
to Q(A) ⊗ M2(C) ∼= M2(Q(A)), denoted as (Q∧)∧(A).

This is generated by a copy of A∼ and a pair (F, γ) of elements such that

[γ, a] = γa − aγ = 0, a ∈ A, γF = −Fγ, and γ2 = F 2 = 1.

⋆ Note that σ′(F ) = γFγ = −F . Also, γaγ = a. As well, σ(a) = FaF ,
which may not be a.

Those relations represents (Q∧)∧(A).

Corollary 4.6. Let τ be a trace on (Q∧)∧(A) such that τ(γa) = 0 for a ∈ A.
A normalized cocycle sequence in the (d1, d2) bicomplex is defined by

ϕ2n+1(a0, · · · , a2n+1) = n!τ(γFa0[F, a1] · · · [F, a2n+1]), aj ∈ A.

Such an explicit construction of cocycle sequences of ([4]) by the traces is
viewed as the translation of the triviality of the first spectral sequence of the
(b,B) bicomplex.

Let A be a Banach algebra. The algebra QA defined as above has the locally
convex topology inherited from the inductive limit topology of ΩA.

Let Qε(A) correspond in the same way to Ωε(A).
Then QA is a subalgebra of QεA, and its topology is the restriction of that

of QεA.
There is a bijective correspondence between continuous odd traces on both

algebras QA and Qε(A) by restriction and extension by continuity.
As established in the proposition and the corollary above, we obtain
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Theorem 4.7. Let A be a Banach algebra. There is a canonical bijection
between continuous odd traces on Q∧

ε (A) and on (Q∧
ε )∧(A) vanishing on γA

and entire normalized even and odd cocycle sequences on A, respectively.
As well, QA or QεA and their dual crossed products can be used instead.

The structure of the locally convex algebra QεA is similar to that of ΩεA as
described by continuous linear forms with respect to the norms and the kernel
of the augmentation.

The augmentation morphism ε : QεA → A∼ is given as the morphism ε :
ΩεA → A∼. This homomorphism is insensitive to the deformation product.

We have ε ◦ d = 0. Also, ε ◦ q = 0.

Proposition 4.8. Let J = ker(ε), where ε : QεA → A∼. Any element x of J
is quasi-nilpotent in the sense that λ1 − x is invertible in QεA for any nonzero
λ ∈ C.

Namely, QεA is a quasi-nilpotent extension by A∼.

5 Pairing with K-theory groups

Lemma 5.1. Let (ϕ2n) be a normalized entire cocycle sequence even on a Ba-
nach algebra A. If the sequence belongs to the image under the boundary ∂
contained in Cev

et , then

∞∑

n=0

(−1)n

n!
ϕ2n(p, · · · , p) = 0

for any idempotent p ∈ A.

Proof. Let (ψ2n+1) ∈ Cod
et such that ∂(ψ2n+1) = (ϕ2n). For each n, we have

ϕ2n = 2nbψ2n−1 +
1

2n + 1
Bψ2n+1.

⋆ Recall that ∂ = d1 + d2 so that

∂(ψ2n−1,ψ2n+1) = ((2n − 1) + 1)bψ2n−1 +
1

2n + 1
Bψ2n+1.

Since (ϕ2n) is normalized, we have B0ϕ2n ∈ cC2n is cyclic, so that B0ϕ2n =
Bϕ2n, and

B0bψ2n−1 =
1
2n

B0ϕ2n

is cyclic for any n.
⋆ This follows from multiplying the equation above with B0 not B = A0B0

from the left, if B0 ◦B = 0. It seems that the last equation is not equivalent to
B2 = 0. That follows from multiplying with B. The reason is that

Bbψ2n−1 = −bBψ2n−1 = −bB0ψ2n−1
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but which should be equal to B0bψ2n−1. Or just Bbψ2n−1 = B0bψ2n−1 if nor-
malization is preserved by the boundary b.

⋆ Since (ψ2n+1) is also normalized, we let

αn = (B0ψ2n+1)(p, · · · , p) =
1

2n + 1
Bψ2n+1(p, · · · , p).

Since p2 = p, we have

αn = (b′B0ψ2n+1)(p, · · · , p)
= ((D − B0b)ψ2n+1)(p, · · · , p)
= (Dψ2n+1)(p, · · · , p) = 2ψ2n+1(p, · · · , p).

⋆ Note that for the ((2n + 1) + 1)-tuple (p, · · · , p),

(b′B0ψ2n+1)(p, · · · , p) =
2n∑

j=0

(−1)j(B0ψ2n+1)(p, · · · , p2, · · · , p)

= (B0ψ2n+1)(p, · · · , p, · · · , p).

Also, D = B0b + b′B0. As well, multiplying that equation with b implies that

0 = 0 +
1

2n + 1
bBψ2n+1

and hence Bbψ2n+1 = 0, so that B0bψ2n+1 = 0 by the reason mentioned above.
Since ψ2n+1 is cyclic and the signature of odds is −1, we obtain

Dψ2n+1 = ψ2n+1 − (−1)A0ψ2n+1 = 2ψ2n+1.

Also.
(bψ2n+1)(p, · · · , p) = ψ2n+1(p, · · · , p) =

1
2
αn.

⋆ Note that for the ((2n + 2) + 1)-tuple (p, · · · , p),

(bψ2n+1)(p, · · · , p) =
2n+1∑

j=0

(−1)jψ2n+1(p, · · · , p2, · · · , p)

+ (−1)2n+2ψ2n+1(p2, p, · · · , p) = ψ2n+1(p, · · · , p).

Thus,

ϕ2n(p, · · · , p) = 2n(bψ2n−1)(p, · · · , p) +
1

2n + 1
(Bψ2n+1)(p, · · · , p)

= 2n
1
2
αn−1 + αn.

－ 92 － － 93 －



Therefore,

∞∑

n=0

(−1)n

n!
ϕ2n(p, · · · , p) =

∞∑

n=0

(−1)n

n!
(nαn−1 + αn)

= −
∞∑

n=1

(−1)n−1

(n − 1)!
αn−1 +

∞∑

n=0

(−1)n

n!
αn = 0.

⋆ Note that ∥p∥ = ∥p2∥ ≤ ∥p∥2 so that 1 ≤ ∥p∥ if p ̸= 0.
Also, the spectral radius of p is computed by

r(p) = lim
n→∞

∥pn∥ 1
n = 1.

The Gelfand representation is only norm-decreasing (cf. [13]).
If A is a C∗-algeba, then ∥p∥ = ∥p2∥ = ∥p∥2, so that ∥p∥ = 1 if p ̸= 0.
In such a case, we have

|αn| = 2|ψ2n+1(p, · · · , p)| ≤ 2∥ψ2n+1∥.

Then entireness implies that the series
∑∞

n=0
∥ψ2n+1∥zn

n! converges at any
z ∈ C. In particular, the series converges at z = −1.

We next let Aq = Mq(C) ⊗ A = Mq(A) be the Banach algebra of q × q
matrices over a Banach algebra A, for q ∈ N.

For any ϕ ∈ Cm(A) as a multi-linear functional on Am+1, we denote by ϕq

the natural multi-linear extension of ϕ to Mq(C) ⊗ A defined as ϕq = tr#ϕ.
Namely,

ϕq(µ0 ⊗ a0, · · · , µm ⊗ am) = tr(µ0 · · ·µm)ϕ(a0, · · · , am)

for µj ∈ Mq(C) and aj ∈ A.

Lemma 5.2. For any entire even and odd cochain sequence (ϕ2n) and (ϕ2n+1)
on A, the extended even and odd cochain sequences (ϕq

2n) and (ϕq
2n+1) on Mq(A)

are also entire, respectively.
The map sending entire cochain sequences ϕ on A to ϕq on Mq(A) is a

morphism of the complexes of entire cochain sequences.

Proof. For ϕ ∈ Cm(A), we have ∥ϕq∥ ≤ qm∥ϕ∥.
⋆ It seems that we in fact have

∥ϕq∥ ≤ q∥ϕ∥

since tr(A) = tr(P−1AP ) on Mq(C), and upper trianglization as P−1AP by
an invertible P holds for any matrix A in Mq(C), as A = µ0 · · ·µm, and the
spectral radius r(P−1AP ) = r(A) ≤ ∥A∥ ≤ 1, where the norm of ϕq may be
defined only on such simple tensors µj ⊗ aj with their norms less than or equal
to 1 coordinatewise.
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It then follows that for instance,

∞∑

n=0

∥ϕq
2n∥|z|n

n!
≤ q

∞∑

n=0

∥ϕ2n∥|z|n

n!
z ∈ C

as desired.
We have the following even morphism

Φ : Cev
et (A) → Cev

et (Mq(C) ⊗ A)

where Φ((ϕ2n)) = (trMq(C)#ϕ2n). The odd case is defined similarly.

Theorem 5.3. Let ϕ = (ϕ2n) be an entire normalized cocycle sequence on a
Banach algebra A. Define

fϕ(x) =
∞∑

n=0

(−1)n

n!
ϕq

2n(x, · · · , x), x ∈ Mq(C) ⊗ A

as the corresponding entire function on M∞(A) = ∪q∈NMq(A). The the re-
striction of fϕ to the idempotents p = p2, p ∈ M∞(A) defines an additive map
fϕ : K0(A) → C defined as up to K-theory equivalence. The value ⟨ϕ, [p]⟩ as
fϕ(p) only depends on the entire cohomology class of ϕ in Hev

et (A).

Proof. We may replace A with A∼ and do ϕ2n with ϕ∼
2n.

We have that for xj + λj1 ∈ A∼,

ϕ∼
2n(x0 + λ01, · · · , x2n + λ2n1)

= ϕ2n(x0, · · · , x2n) + λ0B0ϕ2n(x1, · · · , x2n).

⋆ Note that

(B0ϕ2n)(x1, · · · , x2n)
= ϕ2n(1, x1, · · · , x2n) − ϕ2n(x1, · · · , x2n, 1).

This is zero if ϕ2n is cyclic. Being cyclic may be assumed from the beginning.
Then the second term in the formula for ϕ∼

2n above is zero.
It then follows that each ϕ2n vanishes if some xj , j ≥ 0 is equal to 1.
⋆ Namely, by definition,

ϕ∼
2n(x0, · · · , 0 + 1, · · · , x2n) = ϕ2n(x0, · · · , 0, · · · , x2n) = 0.

We need to show that the value fϕ(p) for p a projection of Mq(A) only
depends upon the connected component of p in the space Pq(A) of projections
of Mq(A).

Since the map from ϕ to ϕq is a morphism of complexes, we may assume
that q = 1.

Let p(t) be a C1-class map from the interval [0, 1] to the space P (A) of
projections of A.
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It is shown that
d

dt
fϕ(p(t)) = 0.

We have

d

dt
p(t) = [a(t), p(t)], a(t) = (1 − 2p(t))

d

dt
p(t).

⋆ Note that
d

dt
p(t) =

d

dt
p(t)2 = 2p(t)p′(t).

We then have (1−2p(t))p′(t) = 0. Multiplying p(t) from the left to the equation
implies that −p(t)p′(t) = 0. Therefore, we obtain p′(t) = 0 = a(t). By the way,
projection valued functions may not be differentiable at some points, in general,
as in the case of real valued functions such as characteristic functions.

We need to compute d
dtfϕ(p(t)) at t = 0.

Let p = p(0) and a = a(0) = 0.
⋆ We then compute in a way different from the original text that

d

dt
ϕ2n(p(t), · · · , p(t))|t=0 =

2n∑

j=0

ϕ2n(p(t), · · · , p′(t), · · · , p(t))|t=0

=
2n∑

j=0

ϕ2n(p, · · · , 0, · · · , p) = 0.

Being zero of the derivative implies that the value fϕ(p(t)) is a constant.
Hence it does depend only on the (C1-)connected component of p.

Does it hold that fϕ(p + q) = fϕ(p) + fϕ(q) as an additive sense?
But ϕ2n is multi-linear, and then

ϕ2n(p + q, · · · , p + q) = ϕ2n(p, · · · , p) + ϕ2n(q, · · · , q)?

Let n = 1.

ϕ2(p + q, p + q, p + q) = ϕ2(p, p + q, p + q) + ϕ2(q, p + q, p + q)
= ϕ2(p, p, p) + ϕ2(p, p, q) + ϕ2(p, q, p) + ϕ2(p, q, q)

+ ϕ2(q, p, p) + ϕ2(q, p, q) + ϕ2(q, q, p) + ϕ2(q, q, q).

But cycling implies

ϕ2(p, p, q) = ϕ2(q, p, p) = ϕ2(p, q, p),
ϕ2(p, q, q) = ϕ2(q, p, q) = ϕ2(q, q, p).
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Theorem 5.4. Let τ be a continuous odd trace on Q∧
ε A. Then the map fϕ of

K0(A) to C given above by the entire even cocycle sequence ϕ = (ϕ2n) associated
to τ is obtained by the formula

fϕ(p) = τ(Fp(1 − (qp)2)−
1
2 ), p ∈ P (A).

Proof. The entire cocycle sequence ϕ associated to τ has components given by

ϕ2n(a0, · · · , a2n) =
(−1)n(2n − 1)!!

2n
τ(Fa0q(a1) · · · q(a2n))

up to an overall normalization constant, where qa =
√

2da.
⋆ If so, then we have

ϕ2n(p, · · · , p) = (−1)n(2n − 1)!!τ(Fpdp · · · dp)

Then we have

fϕ(p) =
∞∑

n=0

(−1)n

n!
ϕ2n(p, · · · , p)

=
∞∑

n=0

(2n − 1)!!
n!

τ(Fpdp · · · dp).

Also, we have
dp = d(p2) = (dp)p + pdp.

Thus, p(dp)p = 0. Also, pdp = (dp)(1 − p).
On the other hand, we have 1− (qp)2 = 1− 2p. This is positive. Thus there

exists the positive
√

1 − 2p such that (
√

1 − 2p)2 = 1 − 2p. But
√

1 − 2p may
not be invertible.

There may be more reasons for the formula attained.

Remark 5.5. The normalization condition for the cocycle sequence can be
removed by the following minor modification

∞∑

n=0

(−1)n

n!
ϕ2n(p − 1

2
, p, · · · , p).

to be zero (cf. [11]).
When A is a C∗-algebra then EλA has a natural C∗-algebra norm (but not

complete) which defines a stronger topology than that used above. There are
continuous traces on EλA for the C∗-norm (cf. [5]).

The pairing above is applied to the case of arbitrary algebras over C by using
Remark given above to define entire cyclic cohomology in a generality.
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6 The entire cyclic cohomology for the circle al-
gebra

The periodic cyclic cohomology H∗(A) of an algebra A with Hochschild dimen-
sion finite n is given by the image of the cyclic cohomology groups cHq(A) with
q ≤ n in H∗(A) described by the diagram of I ◦ S ◦B maps. In order to obtain
such a result for entire cyclic cohomology assuming entireness for cochains or
that A is a Banach algebra, we need to construct a homotopy σk for k > n of
the bar resolution with controlling the size of σk for k large (cf. [12]). See also
[6] and [7].

Let us recall that the standard bar resolution of a unital algebra A as the
bimodule A over B = A ⊗ Aop is given by the acyclic chain complex (Mk, b)
defined as Mk = B ⊗ (⊗kA) and the B-module map bk : Mk → Mk−1,

bk((1 ⊗ 1) ⊗ a1 ⊗ · · ·⊗ ak) = (a1 ⊗ 1) ⊗ (a2 ⊗ · · ·⊗ ak)+
k−1∑

j=1

(−1)j(1 ⊗ 1) ⊗ a1 ⊗ · · ·⊗ ajaj+1 ⊗ · · ·⊗ ak + (−1)k(1 ⊗ a◦
k) ⊗ a1 ⊗ · · ·⊗ ak−1.

⋆ The map b1 : M1 → M0 = B is defined by

b1((1 ⊗ 1) ⊗ a) = (a ⊗ 1) − (1 ⊗ a◦) ∈ B, a ∈ A, a◦ ∈ Aop.

Also, we check the differentiability at M2 as b1 ◦ b2 = 0 as the following:

(b1 ◦ b2)((1 ⊗ 1) ⊗ a1 ⊗ a2) = b1((a1 ⊗ 1) ⊗ a2)
− b1((1 ⊗ 1) ⊗ a1a2) + b1((1 ⊗ a◦

2) ⊗ a1)
= (a1a2 ⊗ 1) − (a1 ⊗ a◦

2)
− (a1a2 ⊗ 1) + (1 ⊗ (a1a2)op) + (a1 ⊗ a◦

2) − 1 ⊗ (a◦
2a

◦
1) = 0

where the bimodule structure for B is given by right multiplication by elements
of A on each tensor factor A and Aop.

In the topological context, the above tensor products are (projective or) π-
tensor products of locally convex vector spaces, with topology given by some
continuous semi-norms on A or by continuous product A × A → A.

We now consider an algebra A of complex-valued-functions in one complex
variable z ∈ C.

Since A is commutative, we may assume that A = Aop so that B = A⊗Aop =
A ⊗ A.

Any element f ∈ Mk = B⊗(⊗kA) is viewed as a function f(z, z0, z1, · · · , zk)
of complex k + 2 variables.

The domain of the complex variables or the regularity of functions f may
not be specified.

In particular, we consider the case of A = C[z, z−1] of Laurent polynomials
in what follows. The algebra A with generators as variables z and z−1 = z with
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|z| = 1 (or nonzero) may be called as the circle (or torus or annulus) algebra by
us.

Define a B-module map σn : Mn → Mn+1 for n ≥ 1 by

(σnf)(z, z0, z1, · · · , zn+1) = (−1)n+1f(z, z0, z1, · · · , zn)

+ (−1)n zn+1 − z0

zn − z0
(f(z, z0, z1, · · · , zn) − f(z, z0, z1, · · · , zn−1, z0)).

Lemma 6.1. We have bn+1σn + σn−1bn = idn on Mn for n ≥ 2.

⋆ Namely, it holds as in the diagram.

Mn−1
σn−1−−−−→ Mn

σn−−−−→ Mn+1

idn−1

!⏐⏐
∥∥∥

⏐⏐$idn+1

Mn−1
bn←−−−− Mn

bn+1←−−−− Mn+1.

Proof. For g ∈ Mn we have

(bng)(z, z0, z1, · · · , zn−1) = g(z, z0, z, z1, · · · , zn−1)

+
n−1∑

j=1

(−1)jg(z, z0, z1, · · · , zj , zj , · · · , zn−1) + (−1)ng(z, z0, z1, · · · , zn−1, z0).

⋆ Assume that bn is defined so. We then compute

(b3σ2f)(z, z0, z1, z2) = (σ2f)(z, z0, z, z1, z2)
− (σ2f)(z, z0, z1, z1, z2) + (σ2f)(z, z0, z1, z2, z0)

= −f(z, z0, z, z1) +
z2 − z0

z1 − z0
(f(z, z0, z, z1) − f(z, z0, z, z0))

+ f(z, z0, z1, z1) −
z2 − z0

z1 − z0
(f(z, z0, z1, z1) − f(z, z0, z1, z0))

− f(z, z0, z1, z2) +
z0 − z0

z2 − z0
(f(z, z0, z1, z2) − f(z, z0, z1, z0))

= −f(z, z0, z, z1) +
z2 − z0

z1 − z0
(f(z, z0, z, z1) − f(z, z0, z, z0))

+ f(z, z0, z1, z1) −
z2 − z0

z1 − z0
(f(z, z0, z1, z1) − f(z, z0, z1, z0)) − f(z, z0, z1, z2)
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Also,

(σ1b2f)(z, z0, z1, z2) = (b2f)(z, z0, z1)

+
z2 − z0

z1 − z0
((b2f)(z, z0, z1) − (b2f)(z, z0, z0))

= f(z, z0, z, z1) − f(z, z0, z1, z1) + f(z, z0, z1, z0)

+
z2 − z0

z1 − z0
(f(z, z0, z, z1) − f(z, z0, z1, z1) + f(z, z0, z1, z0))

− z2 − z0

z1 − z0
(f(z, z0, z, z0) − f(z, z0, z0, z0) + f(z, z0, z0, z0))

= f(z, z0, z, z1) − f(z, z0, z1, z1) + f(z, z0, z1, z0)

+
z2 − z0

z1 − z0
(f(z, z0, z, z1) − f(z, z0, z1, z1) + f(z, z0, z1, z0) − f(z, z0, z, z0))

Therefore we obtain

(b3σ2 + σ1b2)f(z, z0, z1, z2) = −f(z, z0, z1, z2) + f(z, z0, z1, z0)+

2
z2 − z0

z1 − z0
(f(z, z0, z, z1) − f(z, z0, z1, z1) + f(z, z0, z1, z0) − f(z, z0, z, z0)).

On the other hand we obtain

(−b3σ2 + σ1b2)f(z, z0, z1, z2) = 2(f(z, z0, z, z1) − f(z, z0, z1, z1))
+ f(z, z0, z1, z2) + f(z, z0, z1, z0).

Possibly, something may be wrong in a way along.

Theorem 6.2. Let A = C[z, z−1] be the circle algebra of Laurent polynomials.
Then its entire cyclic cohomology is given by Hev

et (A) = C and Hod
et (A) = C.

Their generators are given respectively by the cyclic cocycles

τ0(f) =
∫

f(z)dz and τ1(f0, f1) =
∫

f0df1.

Specializing the general homotopy σk given above to the bimodule A∗ over
A yields linear maps

αn : Cn+1(A,A∗) → Cn(A,A∗)

such that αnb + bαn−1 = id on Cn(A,A∗) for n ≥ 2.
⋆ Namely,

Cn(A, A∗)
αn−1−−−−→ Cn−1(A,A∗)

b

⏐⏐#
⏐⏐#b

Cn+1(A,A∗) αn−−−−→ Cn(A,A∗).
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The transposed map αt
n : ⊗nA → ⊗n+1A is given by

(αt
nf)(z0, · · · , zn+1) = (−1)n+1f(z0, · · · , zn)

+ (−1)n zn+1 − z0

zn − z0
(f(z0, · · · , zn−1, zn) − f(z0, · · · , zn−1, z0)).

⋆ Note that
Mn

σn−−−−→ Mn+1
ϕ=f−−−−−→

bilinear
A∗ or C.

Define αn(ϕ) = ϕ ◦ σn. For f ∈ Mn, define as αt
nf = σnf .

Given an odd cocycle sequence ϕ = (ϕ2k+1) in the (b,B) bicomplex, pro-
duced is a cohomologous cocycle sequence (ϕ′

2k+1) with ϕ′
2k+1 = 0 for any k ≥ 1

by adding to ϕ the coboundary of the cochain sequence (ψ2k) whose components
are given by, using the homotopy α = (αk)

ψ2k =
∞∑

m=0

α(Bα)mϕ2m+2k+1.

In particular, ψ2 = αϕ3 + αBαϕ5 + · · · .
⋆ In the last case, we have αϕ3 = α2ϕ3. Also, αBαϕ5 = α2Bα4ϕ5. More

precisely, in the general case, we have

α(Bα)mϕ2m+2k+1 =
α2k(Bα2k+2) · · · (Bα2k+2m)ϕ2k+2m+1.

The formulae above are given as standard homotopy formulae for cocycles
with support finite in any bicomplex.

Only the difficulty we carry is to show that the formulae continue to make
sense for entire cocycle sequences with support infinite or arbitrary.

The growth condition on cochain sequeneces is given by that for any finite
subset Σ of A, there exists C = CΣ such that

|ϕ2k+1(a0, · · · , a2k+1)| ≤
C

k!
, aj ∈ Σ

in the (b, B) bicomplex instead of the equivalent (d1, d2) bicomplex.
⋆ Note that

(2k + 1)!
k!

= (2k + 1)(2k) · · · (k + 1)

= k!(2 +
1
k

)(
2k

k − 1
) · · · k + 1 + l

l
· · · k + 2

1
(k + 1)

whose factors except k! may be involved to the constant C as another constant.

Given a finite subset Σ of the algebra A of Laurent polynomials, the maximal
degree of elements of Σ is denoted as d = d(Σ), so that any f ∈ Σ can be written
as

∑d
j=−d fjzj .
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Lemma 6.3. Let f ∈ ⊗n+1A be a Laurent polynomial of degree at most d in
each variable zj for 0 ≤ j ≤ n. Then αt

nBtf ∈ ⊗n+1A has the same degree
property.

Let ∥ · ∥1 denote the l1-norm on ⊗n+1A for any n, so that

∥f∥1 = ∥
∑

λi0···inzi0
0 · · · zin

n ∥1 =
∑

i0,··· ,in

|λi0···in |.

If f has degree less than d, then we have

∥αt
nBt

0f∥1 ≤ (2d + 2)∥f∥1.

Proof. Cyclic permutations At
0 for variables zj do not change the degree for f .

It is enough to prove the first statement for αt
nBt

0f , where Bt = At
0B

t
0.

We have

(Bt
0f)(z0, · · · , zn+1) = f(z1, · · · , zn+1) − (−1)nf(z0, · · · , zn).

Thus,

(αt
n+1B

t
0f)(z0, · · · , zn+1, zn+2) = (−1)n+2(Bt

0f)(z0, · · · , zn+1)

+ (−1)n+1 zn+2 − z0

zn+1 − z0
((Bt

0f)(z0, · · · , zn+1) − (Bt
0f)(z0, · · · , zn, z0))

and

(Bt
0f)(z0, · · · , zn+1) − (Bt

0f)(z0, · · · , zn, z0)
= f(z1, · · · , zn+1) − (−1)nf(z0, · · · , zn) − f(z1, · · · , zn, z0) + (−1)nf(z0, · · · , zn)
= f(z1, · · · , zn+1) − f(z1, · · · , zn, z0) (cancelled).

It is true that Bt
0f has the same (or less as zero) degree as f .

We need to deal with the other term. We may assume that f has the form

f(z0, · · · , zn) = h(z0, · · · , zn−1)zq
n, |q| ≤ d.

Then we evaluate a part of the Laurent polynomial (terms) such that

zn+2 − z0

zn+1 − z0
(zq

n+1 − zq
0).

If q is positive, then the part is divided as to be

(zn+2 − z0)(zq−1
n+1 + zq−2

n+1z0 + · · · + zq−1
0 ).

If q is negative, with p = −q > 0, we have

zq
n+1 − zq

0 =
1

zp
n+1

− 1
zp
0

=
zp
0 − zp

n+1

zp
n+1z

p
0
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so that the part is divided as to be

(zn+2 − z0)zq
n+1z

q
0(zp−1

0 + zp−2
0 zn+1 + · · · + zq−1

n+1)

= (zn+2 − z0)(zq
n+1z

−1
0 + zq+1

n+1z
−2
0 + · · · + z−1

n+1z
q
0).

In both cases, checked is that the degree (with respect to each variable) is less
than (or equal to) d.

Also checked is that the l1-norm satisfies the inequality in the statement.
⋆ If cyclic permutations not involved, then the l1-norm of the left hand side

is estimated by

2∥f∥1 + 2|q|∥h∥1 = 2(|q| + 1)∥f∥1 ≤ 2(d + 1)∥f∥1

where q ̸= 0 and the factorization by zq
n is assumed, but both may not be

assumed in general.

Proof. (For the theorem above). The formula

ψ2k =
∞∑

m=0

α(Bα)mϕ2m+2k+1

is convergent.
Indeed, given a finite subset Σ of A, there exists a growth constant C = CΣ

such that
|ϕ2n+1(a0, · · · , a2n+1)| ≤ C

1
n!

, aj ∈ Σ.

Thus, taking the monomials 1
λzq, |q| ≤ d as for Σ, it then follows that for any

Laurent polynomials fj of degree less than (or equal to) d (with respect to each
variable) we have

|ϕ2n+1(f0, · · · , f2n+1)| ≤ Cλ,d
λ2n+2

n!
Π2n+1

j=0 ∥fj∥1.

⋆ Let fj =
∑d

sj=−d csj z
sj with csj ∈ C. Then

|ϕ2n+1(f0, · · · , f2n+1)| = |ϕ2n+1(
d∑

s0=−d

cs0z
s0 , · · · ,

d∑

s2n+1=−d

cs2n+1z
s2n+1)|

= |
d∑

s0=−d

cs0 · · ·
d∑

s2n+1=−d

cs2n+1ϕ2n+1(zs0 , · · · , zs2n+1)|

= |
d∑

s0=−d

cs0 · · ·
d∑

s2n+1=−d

cs2n+1λ
2n+2ϕ2n+1(λ−1zs0 , · · · , λ−1zs2n+1)|

≤
d∑

s0=−d

|cs0 | · · ·
d∑

s2n+1=−d

|cs2n+1 |λ2n+2Cλ,d
1
n!

= Cλ,d
λ2n+2

n!
∥f0∥1 · · · ∥f2n+1∥1.
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Using the lemma above with the equality B = A0B0 we then obtain

|(Bα)mϕ2m+2k+1(f0, · · · , f2k+1)|

≤ Cλ,d
λ2m+2k+2

(m + k)!
(2d + 2)mΠm

j=1(2k + 2j)Π2k+1
j=0 ∥fj∥1

for any fj ∈ A of degree less than (or equal to) d.
⋆ Note that for m = 1,

(Bα)ϕ2+2k+1(f0, · · · , f2k+1) = A0(B0α)ϕ2+2k+1(f0, · · · , f2k+1)

with

(B0α)ϕ2+2k+1(f0, · · · , f2k+1) = ϕ2+2k+1(αtBt
0(f0 ⊗ · · ·⊗ f2k+1)).

Do this seem to make sense? Then

|(Bα)ϕ2+2k+1(f0, · · · , f2k+1)|

≤ (2k + 2)Cλ,d
λ2k+4

(k + 1)!
(2d + 2)Π2k+1

j=0 ∥fj∥1.

That’s it for m = 1!
Taking λ small enough implies that there is a constant Cd such that

|(Bα)ϕ2+2k+1(f0, · · · , f2k+1)| ≤ Cd
1

2mk!
Π2k+1

j=0 ∥fj∥1

for any fj ∈ A of degree less than (or equal to) d.
⋆ Note that it seems that the behavior of Cλ,d for λ small enough is not so

clear to obtain such an estimate.
It then follows that the series converge as desired so that (ψ2k) is an entire

cochain sequence.
⋆ A possible solution for this is to have that

lim
k→∞

k

√∑∞
m=0 ∥α(Bα)mϕ2m+2k+1∥

k!
= 0.

We have

∥ψ2k∥ ≤
∞∑

m=0

∥α(Bα)mϕ2m+2k+1∥ ≤
∞∑

m=0

∥α2k∥∥(Bα)mϕ2m+2k+1∥

with
∥(Bα)mϕ2m+2k+1∥ ≤ Cd

1
2mk!

if the last estimate is correct. It seems that the behavior of ∥α2k∥ as k large
enough is not clear. As well, what is the norm? Masaka, infinity?
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On the other hand, we have

log k
√

k! =
1
k

log k!

For any n ∈ N, there is k ∈ N such that k > n such that

k! = n!(n + 1) · · · k ≥ n!n · · ·n = n!nk−n

so that
k
√

k! ≥ k
√

n!n1−n
k = k

√
n!
nn

n.

It then follows that limk→∞ log k
√

k! ≥ n. Therefore, we obtain limk→∞ log k
√

k! =
∞.

Corollary 6.4. Let A be a locally convex algebra. The pairing between the
K-theory K1(A) and the odd entire cohomology theory Hod

et (A) is defined by

⟨u,ϕ⟩ =
1√
2πi

∞∑

m=0

(−1)mm!ϕq
2m+1(u

−1, u, u−1, · · · , u, u−1, u)

for u ∈ GLq(A∼) ⊂ Mq(A∼) = Mq(C) ⊗ A∼ and any normalized cocycle se-
quence ϕ = (ϕ2m+1) in the (b, B) bicomplex, where

ϕq
2m+1(u0 ⊗ a0, · · · , u2m+1 ⊗ a2m+1) = tr(u0 · · ·u2m+1)ϕ2m+1(a0, · · · , a2m+1).

Proof. Any invertible element u ∈ GLn(A) of a locally convex algebra A unital
determines a homomorphism ρu of the unital algebra L of Laurent polynomials
of z, z−1 to Mn(A).

⋆ We may define as seen by us that ρu(z) = u and ρu(z−1) = u−1. This is
extended to such a homomorphism from L to Mn(A).

The pull-back ρ∗uϕ of any odd entire cocycle sequence ϕ on A is cohomologous
to a multiple λτ1 of τ1.

⋆ Note that τ1(f0, f1) =
∫

f0df1 ∈ C. Also, ϕn
2m+1 is defined on ⊕2m+1

j=0 Mn(A).
Then ρ∗uϕn

2m+1 with u fixed is defined on ⊕2m+1
j=0 L. In particular, ρ∗uϕn

1 is defined
on L ⊕ L to C. It seems to be possible to find such a multiple λ, but how to?

The pairing ⟨u,ϕ⟩ is defined to be λ.
The explicit formula for λ follows from the proof above (cf. [6] and also [10]).
⋆ As for m = 0, the corresponding term is ϕq

1(u−1, u). Does differentiation
look like multiplication by such an invertible?

Given an entire odd cocycle sequence (ϕ2n+1) on A = C[Z] as in the theorem
above, we further compute exlicitly the entire even cochain ψ = (ψ2n) such that

ϕ2n+1 = bψ2n + Bψ2n+2, n ≥ 1.
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The formula for ψ2k to be simplified is that

ψ2k =
∞∑

m=0

α(Bα)mψ2k+2m+1.

In order to simplify the computation we may assume that

ϕ2n+1(f0, · · · , f2n+1) = 0

for some fj = 1 for some j ≥ 1. This is a normalization condition weaken.
At the level of chains as elements of ⊗n+1A, that means that any function

f(z0, · · · , zn) which is independent of some zj for some j ≥ 1 can be ignored.
It then follows that the formula for the map αt

nBt
0 given above is converted

(?) as to

(αt
nBt

0f)(z0, · · · , zn+1) = (−1)n(zn+1 − z0)
f(z1, · · · , zn) − f(z1, · · · , zn−1, z0)

zn − z0

for f ∈ ⊗n+1A (with the factor zn+1 − z0 changed from only zn+1).
Therefore, αt

nBt
0 is essentially a divided difference. As well, (αtBt)n is viewed

as iterated divided differences which satisfy remarkable identities.
The computation may become straightforward and as well the result is for-

mulated in terms of the algebra (Q∧)∧(A).
The algebra (Q∧)∧(A) is generated by A∼ and two elements F , γ such that

F 2 = γ2 = 1, γa = aγ for any a ∈ A, and γF = −Fγ.
⋆ Recall that

(Q∧)∧(A) = Q∧(A) !γ Z2 = QA !F Z2 !γ Z2
∼= QA ⊗ M2(C).

This is a version of the Takai duality for crossed products of C∗-algebras by
actions of abelian groups.

The weak normalization condition above implies that the distinction between
A and A∼ is not necessary. Thus, the unit of A is that of (Q∧)∧(A).

Lemma 6.5. Let τ be a trace on (Q∧)∧(A) vanishing on γA, and ϕ2n+1) the
cocycle sequence in the (b,B) bicomplex given by

ϕ2n+1(a0, · · · , a2n+1) = tnτ(γFa0[F, a1] · · · [F, a2n+1]), aj ∈ A

with t−1
n = 2n(2n + 1)!!. With u as the generator of A = C[Z], the cochain

sequence ψ = (ψ2n) such that ϕ2n+1 = bψ2n + Bψ2n+2 for n ≥ 2 is then given
by ψ2n = α(ϕ2n+1 − A0θ2n+1), where

θ2n+1(f0, · · · , f2n+1) =

=
∫ 1

2

0
τ(F

∂

∂λ
f0(u + λ[F, u])[γF, f1(u + λ[F, u])] · · · [γF, f2n+1(u + λ[F, u])])dµn(λ),

where dµn(λ) = tn(1 − 4λ2)n+ 1
2 dλ.
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Proof. There is the possibility of applying the Laurent polynomials fj ∈ A to
any invertible element of an algebra, and in particular to u + λ[F, u] which is
invertible in (Q∧)∧ε (A).

⋆ We have u = z with u−1 = 1
z . We may assume that λ is small enough to

have that u + λ[F, u] close to u is invertible.
That formula does fit with the quantized calculus where the quantum differ-

ential is given by the graded commutator operator [F, ·] by F . Or equivalently
it is done by [γF, ·].

⋆ Note that
[γF, u] = γFu − uγF = γ[F, u].

Thus, u + λ[F, u] plays the role of u + λdu.
The following formula is needed in this proof:

γ[γF, f(u + λ[F, u])] =
1
2λ

(f(u + λ[F, u]) − f(u − λ[F, u])).

This relates the quantum differential of f(u + λdu) to the difference slope:

1
2λ

(f(u + λdu) − f(u − λdu)).

⋆ Note that

γ[γF, u + λ[F, u]] = γ[γF, u] + γ[γF,λ(Fu − uF )]

= [F, u] + λ(F 2u − FuF ) − λγ(Fu − uF )γF

= [F, u] + λu − λFuF + λFuF − λu = [F, u]

=
1
2λ

(u − u + λ[F, u] − (−λ[F, u]))

=
1
2λ

(u + λ[F, u] − (u − λ[F, u])).

That’s it!
We may check the case of multiples of u + λ[F, u] as f similarly. But not.

See the computation given below as a partial part.
The proof of that formula is straightforward for Laurent polynomials, or for

f(u) = 1
u−z , as computed as above.

The formula of the lemma above is interpreted using a natural deformation
of the algebra (Q∧)∧(A) to an exterior algebra over A.

Define an endomorphism σλ of (Q∧)∧(A) for λ ∈ [0, 1
2 ) by

⎧
⎪⎨

⎪⎩

σλ(u) = u + λ[F, u],
σλ(F ) = F,

σλ(γ) = 1√
1−4λ2 γ(1 − 2λF ).
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⋆ Certainly, σλ is linear at u, F , and γ. Check that

σλ(u)2 = (u + λ[F, u])2

= u2 + λu(Fu − uF ) + λ(Fu − uF )u + λ2(Fu − uF )2

= u2 − λu2F + λFu2 + λ2(FuFu − Fu2F − u2 + uFuF )

= u2 + λ[F, u2] + λ2(FuFu − Fu2F − u2 + uFuF )

= σλ(u2) + λ2(FuFu − Fu2F − u2 + uFuF ).

The second term may not vanish but it does if u commutes with F . Note
that Fu2F = (FuF )2. Also, FuFu = F (uFuF )F . So we should have that
Fu2F = −u2 and F (uFuF )F = −uFuF as a possible choice. This seems to
involve the definition of F given as FuF = ±iu so that Fu2F = −u2 but

F (uFuF )F = ±iu2 ̸= ∓iu2 = −uFuF.

It should be a canonical case. In this case, we do not have σλ(u)2 = σλ(u2).
Also, as another case, if we take FuF = −u, then (FuF ) = u2.

We have σλ(γ)2 = 1.
⋆ Check that

σλ(γ)2 =
1

1 − 4λ2
γ(1 − 2λF )γ(1 − 2λF )

=
1

1 − 4λ2
(γ2 − 2λγ2F − 2λγFγ + 4λ2γFγF )

=
1

1 − 4λ2
(1 − 2λF + 2λF − 4λ2Fγ2F ) = 1.

We have that σλ(γ) commutes with σλ(u) and anti-commutes with F so that
[σλ(γ),σλ(u)] = 0 and σλ(γ)F + Fσλ(γ) = 0.

⋆ Check that zero is

[σλ(γ),σλ(u)] =
1√

1 − 4λ2
{γ(1 − 2λF )(u + λ[F, u]) − (u + λ[F, u])γ(1 − 2λF )}

=
1√

1 − 4λ2

{γu − uγ + λ(γ[F, u] − [F, u]γ) − 2λ(γFu − uγF ) − 2λ2(γF [F, u] − [F, u]γF )}

with the first term and the second plus third term to be zero as

γu − uγ = 0,

γ[F, u] − [F, u]γ = γFu − γuF − Fuγ + uFγ

= −Fγu − uγF − Fγu − uγF = −2(Fγu + uγF ),
γFu − uγF = −Fγu − uγF = −(Fγu + uγF ),
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and the forth zero as

γF [F, u] − [F, u]γF = γu − γFuF − FuγF + uFγF

= γu − γFuF + γFuF − uγ = 0.

Also, we have

σλ(γ)F + Fσλ(γ)

=
1√

1 − 4λ2
{γ(1 − 2λF )F + Fγ(1 − 2λF )}

=
1√

1 − 4λ2
{γF − 2λγ + Fγ − 2λFγF}

=
1√

1 − 4λ2
{γF − 2λγ − γF + 2λγ} = 0.

We have σλ ◦ σλ′ = σλ′′ with 2λ′′ = 2λ+2λ′

1+4λλ′ . Thus, we have a semi-group of
σλ for λ ∈ [0, 1

2 ).
⋆ Note that as a possible computation,

(σλ ◦ σλ′)(u) = σλ(u + λ′[F, u])
= σλ(u) + λ′Fσλ(u) − λ′σλ(u)F
= u + λ[F, u] + λ′F (u + λ[F, u]) − λ′(u + λ[F, u])F
= u + (λ + λ′)[F, u] + λλ′{F (Fu − uF ) − (Fu − uF )F}
= u + (λ + λ′)[F, u] + λλ′(u − FuF − FuF + u)
= (1 + 2λλ′)u + (λ + λ′)[F, u] − 2λλ′FuF.

For any f ∈ A, we have

[γF, f(u + λ[F, u])] =
1√

1 − 4λ2
σλ(γ[F, f(u)]).

⋆ Possibly, the multiple should be changed to
√

1 − 4λ2? Note that

σλ(γ[F, u]) = σλ(γFu − γuF )

=
1√

1 − 4λ2
γ(1 − 2λF )F (u + λ[F, u]) − 1√

1 − 4λ2
γ(1 − 2λF )(u + λ[F, u])F

=
1√

1 − 4λ2
γF (1 − 2λF )(u + λ[F, u]) − 1√

1 − 4λ2
(1 + 2λF )γ(u + λ[F, u])F.

Also,

λF (u + λ[F, u]) = λFu + λ2(u − FuF ).
γ(u + λ[F, u]) = uγ + λ(−Fuγ + uFγ) = (u − λ[F, u])γ.

λF (u − λ[F, u]) = λFu − λ2(u − FuF ).
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Therefore,

σλ(γ[F, u]) =
1√

1 − 4λ2
[γF, u + λ[F, u]]

+
1√

1 − 4λ2
(−2λγu − 2λ2(γFu − γuF ) − 2λFuγF + 2λ2(uγF − FuFγF )).

The second term is converted to
1√

1 − 4λ2
(−2λγ(u − FuF ) − 2λ2(γFu − 2γuF + Fuγ))

=
1√

1 − 4λ2
(−2λγ(u − FuF ) + 4λ2γuF ).

It seems to be necessary to have that the second term vanishes.
The formula for θ2n+1 in the lemma above is simplified to

θ2n+1(f0, · · · , f2n+1)

= tn

∫ 1
2

0
τ(

∂

∂λ
σλ(f0)σλ([F, f1] · · · [F, f2n+1]γF ))dλ.

⋆ Note that for f0 = f0(u) ∈ A, we have

σλ(f0(u)) = f0(u + λ[F, u]),

but as a possible or probable computation. Also, as a possible or probable
computation,

[γF, f1(u + λ[F, u])] · · · [γF, f2n+1(u + λ[F, u])]

=
1√

1 − 4λ2
σλ(γ[F, f1(u)]) · · · 1√

1 − 4λ2
σλ(γ[F, f2n+1(u)])

=
1

(1 − 4λ2)n+ 1
2
σλ(γ[F, f1(u)] · · · γ[F, f2n+1(u)]γ2).

Moreover,

γ[F, f1(u)] = γ[F, f1(u)]γ2 = γ(Ff1(u) − f1(u)F )γ2

= (−Fγf1(u) + f1(u)Fγ)γ2 = (−1)[F, f1(u)]γ.

As well,

γ[F, f1(u)]γ[F, f2(u)]γ[F, f3(u)]
= (−1)[F, f1(u)]γγ[F, f2(u)](−1)[F, f3(u)]γ
= [F, f1(u)][F, f2(u)][F, f3(u)]γ.

Furthermore,

γ[F, f1(u)]γ[F, f2(u)]γ[F, f3(u)]γ[F, f4(u)]γ[F, f5(u)]
= (−1)[F, f1(u)]γγ[F, f2(u)](−1)[F, f3(u)]γγ[F, f4(u)](−1)[F, f5(u)]γ
= (−1)[F, f1(u)][F, f2(u)][F, f3(u)][F, f4(u)][F, f5(u)]γ.
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Therefore, the factor (−1)n as a multiple should be attached to the simplified
formula. Since τ is a trace, then τ(F (· · · )) = τ((· · · )F ).

Since τ is a trace, we can replace the endomorphisms σλ by αs for s ∈ R as
their inner conjugates, defined as

{
αs(u) = 1

2 (u + FuF ) + e−s

2 (u − FuF ),
αs(γ) = γ, αs(F ) = F.

Indeed, we have

αs(x) = z−1
s σλ(x)zs, x ∈ (Q∧

ε )∧(A),

zs = z− 1
2 log(1−4λ2) = cosh

t

2
+ F sinh

t

2
, 2λ = tanh t.

⋆ Since s = − 1
2 log(1 − 4λ2) with λ ∈ [0, 1

2 ), we have non-negative s ∈
[0,∞) ⊂ R. We also have 2λ ∈ [0, 1) so that t ∈ [0,∞). If we take ±s, then real
±s ∈ R.

We compute to check that

(cosh
t

2
+ F sinh

t

2
)(cosh

t

2
− F sinh

t

2
)

= cosh2 t

2
− F 2 sinh2 t

2
= 1.

Hence, cosh t
2+F sinh t

2 is invertible with inverse cosh t
2−F sinh t

2 . In particular,

(cosh
t

2
− F sinh

t

2
)σλ(u)(cosh

t

2
+ F sinh

t

2
)

= cosh2 t

2
σλ(u) − sinh2 t

2
Fσλ(u)F

+ cosh
t

2
sinh

t

2
(σλ(u)F − Fσλ(u))

with

Fσλ(u)F = FuF + λF (Fu − uF )F = FuF + λ(uF − Fu).
σλ(u)F − Fσλ(u) = uF − Fu + λ((Fu − uF )F − F (Fu − uF ))
= uF − Fu + λ(2FuF − 2u).

Thus, the inner conjugated is converted to

(cosh2 t

2
)u − (sinh2 t

2
)FuF + λ{cosh2 t

2
[F, u] + sinh2 t

2
[F, u]}

+ cosh
t

2
sinh

t

2
{uF − Fu + λ(2FuF − 2u)}.

Note that
e−s = e

1
2 log(1−4λ2) =

√
1 − 4λ2.
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As well,

(cosh
t

2
− F sinh

t

2
)σλ(F )(cosh

t

2
+ F sinh

t

2
)

= (cosh2 t

2
)F − sinh2 t

2
F + cosh

t

2
sinh

t

2
(1 − 1) = F !

Moreover,

(cosh
t

2
− F sinh

t

2
)σλ(γ)(cosh

t

2
+ F sinh

t

2
)

= (cosh2 t

2
)σλ(γ) − sinh2 t

2
Fσλ(γ)F + cosh

t

2
sinh

t

2
(σλ(γ)F − Fσλ(γ))

with

Fγ(1 − 2λF )F = −γ + 2λγF = −γ(1 − 2λF ).
γ(1 − 2λF )F − Fγ(1 − 2λF ) = 2γF − 4λγ.

Thus, the inner conjugated is converted to

(cosh2 t

2
+ sinh2 t

2
)

1√
1 − 4λ2

γ(1 − 2λF )

+ cosh
t

2
sinh

t

2
1√

1 − 4λ2
(2γF − 4λγ).

Our mission impossible of checking the contents suitably or patiently this
time as a sort of continuation of [14] as well as [15] is yet incomplete towards
the end in a few pages left, involving the last reformuation lemma, proposition,
and theorem, which may not be continued to be done.
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