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A locally commentative learning
transformation by the entire cyclic
cohomology theory for Banach algebras

Takahiro SUDO

Abstract

We study the entire cyclic cohomology theory for Banach algebras
by following a part of the noncommutative geometric theory invented by
Connes.
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1 Introduction

Following Connes [3] we as beginners, outsiders, fools or not would like to make
a personal locally commentative learning transformation by the entire cyclic
cohomology theory for Banach algebras, as a short story specialized, with some
considerable effort in time and space limited.

This is nothing but a review, added with some explicit computation or proofs,
as a back to the past for a return to the future, after [14] and [15].

Sections presented by us are as follows.

The sections

1. Introduction

. Entire cyclic cohomology theory

. Cycles of dimension infinite

. Traces

. Pairing with K-theory groups

. The entire cyclic cohomology for the circle algebra
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Let’s start with us and helpful x lines as hints added to explore the story,
together with a pencil mightier than an apple, remembering the dream.
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2 Entire cyclic cohomology theory

Let A be a unital Banach algebra over C of complex numbers. Let us recall the
construction of the (b, B) bicomplex of cyclic cohomology.

For a non-negative integer n € N, let C"(A, A*) = C™ denote the space of
continuous (n+1)-linear forms ¢ : A"t — A* on A"+, as n times differentials.

Set C~"(A, A*) = {0} for n > 0.

Define two differentials b and B as in the following.

The differential b : C™ — C™*! is defined by

(bw)(a/o"” ’a‘""l‘l) Qaog, -+, an+1 S

n
- Z(—l)j(p(am LT LR R ’an-‘rl) + (_1)n+1‘p<an+1a0’ T ’an)'
J

In particular, b: C° — C! is given by

(be) (a0, a1) = ¢(aoar) — p(arao).
If bp =0, then o : A — A* is a trace map.
As well, b: C' — C? is given by
(bp)(ap, a1, a2) = p(agar, az) — w(ag, araz) + p(asag, ay).
The differential B : C™ — C™~! is defined by B = Ag o By, where

(BQ(,O)(CLQ, to 7an—1)
= 80(1a Qag, - 7a/n—1) - (_1)"@(G/Oa o, 0p—1, 1)7 (2SS Cn7
(Aoilf)(aow-- an-1)

Z DDy (ag,a541,- - a-1), Y eC™

§=0
In particular, B : C' — C° is given by

(Bow)(ao) = ¢(1,a0) + ¢(ao, 1),
(Aov)(ao) = 9(ao)

so that B = By on CL.
As well, B : C? — C! is given by

(Bow)(ao,a1) = ¢(1,a0,a1) — p(ao, a, 1),
(Ao¥)(ao,a1) = (ag,ar) — (ai, ao).

We have the differential property that

b>=bob=0=B>=BoB



and bo B = —B ob as a non-commutativity.
We then have the bicomplex (C™™ dy,ds), where C™™ is defined by C"~™
for n,m € Z, and the local graded commutative square:

di=(n—(m+1)+1)b

Cn,erl Cn+1,m+1
dz:n_lmBT T@:ﬁB
Ccnom di=(n—m+1)b C""FLW

so that dyody = Boband di ods = bo B as well.
*x The cohomology of the complex ker B/imB by b is zero.

Proof. Consider the exact sequence of complexes of cochains
0 — im(B) —— ker(B) —— ker(B)/im(B) — 0

where the coboundary is given by Hochschild differential b. The first long map
in the sequence above induces an isomorphism in cohomology. Then the coho-

mology of the quotient complex by b is zero (cf. [14]). O
* The spectral sequence associated to the first filtration F,C' =3 . C™™
in the first variable n by b has the initial E5 term equal to zero. B
Proof. The initial term is given by ker(B)/im(B).
Note that Fj,;1C is contained in F,C. O

The bicomplex C™"™ = C™™™ has support in (n,m) with n —m > 0 (not
n+m).

Thus m < n on the (n,m) plane to make the lower triangle region.

The spectral sequence does not converge in general when we take cochains
with finite support.

The cohomology of the bicomplex C' = C** = C*~*, taken with supports
finite, is nothing but the periodic cyclic cohomology H*(A).

Namely, H?>"(C) = H®"(A) and H?>"~}(C) = H°4(A).

As with, FI1C =) C™™ the second filtration, then HP(F1C) = cH™(A)
for n =p — 2gq.

* Note that if p is even, then so is n, and if p is odd, then so is n. As well,
when ¢ varies, so does n.

Taking cochains with supports arbitrary, without controlling their growth,
the corresponding cohomology is trivial.

Provided that we control the growth of the norm in cochains of even or odd
degrees of the b and B bicomplex, we obtain the cohomology relevant to analyze
infinite dimensional spaces and cycles.

Because of the periodicity

m>q

Cm,,m _ Cn—m _ Ck N Cm+l,m+1 _ Cm—m _ Ck

in the bicomplex b and B, it is convenient to work with C*.



Define

(Yan)nen | ¢ € C*™,n € N},

Cev — {
C° = {(p2n41)nen | ¢ € C*"*1n € N}

as the even and odd spaces of sequences of even and odd cochains, respectively.
And define the boundary operator & = d; + dy which maps C*¥ to C°? and
maps C°? to C*V. Namely,

cev COd cev.

* Note that
A(C*) = di(C*) + dy(C*)  CF 1 @ OF 1

As well,
82:806:df+(dlod2)+(d20d1)+d§:()

because of bo B = —B o b so that 9 is a derivation!

Definition 2.1. Cochain sequences (¢2,) € C and (p2,11) € C°? of even
and odd degrees are said to be entire if the radius(es) of convergence of the
following series involving the supremum norm || - ||

lp2nll » lpantall n
D T and ) TEaee

neN neN

in C are infinity, respectively.

* We may denote by ¥ and r°¢ theose respective radiuses.

By definition, for z € C with |z| < r*V and |z| < 7°¢, the respective series
converge absolutely, respectively, and for z € C with |z| > r¢V and |z| > r°d,
the respective series diverge, respectively.

The ratio formula in power series known well implies that

o Bemll+ ) s+ D)

r
n—oo ||<P2(n+1) | n—00 ||<P2(n+1)+1 [

if they exist in [0, 00) U {o0}.
Entireness implies that the limits are infinity. Alternatively, the infinite
limits are replaced as

1 [lo2(nt+1)ll l2(nt1y+all
— = lm el g and o= lim Pl
rev n—oo n+1 rod n—00 n+1
Namely, 222l — 51} (n — 00) and 221l — 4(n) (n — 0o
Y Toaenll = 0(7) ) To2m el = 27 ( )
In particular, if the limits of lo2nll  apnq Meznsall  ppg nonzero, then the
H<P2(n+1)\| |\¢2(n+1)+1||

respective cochain sequences are entire.



Moreover, the Cauchy-Hadamard formula implies that if

[V = limsup { ||<,02'n|| and [°¢ = limsup
n

of lP2n i1l

exist in [0,00) U {oc}, then we have r® = & and r°¢ = ;4.

The ratio formula existence is contained in the Cauchy-Hadamard formula

The norm ||¢| for a cochain ¢ € C™ = C(A™, A*) for any degree m as a
continuous m-linear form on A to the dual A* is defined to be the Banach space
norm given by

[l = sup{lp(ao, - am)| € R||laz]| < 1,5 € {0,--- ,m}}.
* Note that

plao, -+ am)| = [plar, - am)(ao)| < llp(ar, -+ s am)llllaoll

Therefore,
lloll < sup [olar, - am)ll.
llaj[I<1,5=1,---,m

We also have

lp(ars - sam)l = sup |p(ar, - am)(ao)| < el
llaoll<1

It then follows that

el = sup  [lp(ar, - am)]-
laj | S1=1, ;m

* If |||l = 0, then |p(ao, - - ,am)| =0 for |la;|| < 1,7 =0,---,m. Thus, for
any nonzero a; € A, we have

Qg Am
lp(ao, -+ am)| = llaoll - - llamll|le(— -+ s ) =0

laoll” 7 llam|l

Also, ©(0,a1,- - ,am) =2¢(0,a1,- -+ ,am), hence ©(0,a1, - ,a;,) = 0. It then
follows that ¢ = 0. The converse also holds.

By definition, ||ag|| = |a|||¢|| for a € C with absolute value |a].

By definition, |[¢ + || < [[¢]|| + [|¢|| by triangle inequality of absolute value
and by supremum.

For a Cauchy sequence () of C™ by the norm, the completeness of C
implies that there exists ¢ = lim ¢y at any (ag, a1, ,am,). By completeness
and linearity of A and A*, we have ¢ € C™.

It follows in particular that any entire even cochain sequence (pa,) € C®V
defines an entire function f, = fZ" on the Banach space A given by

fﬂP(”T) = Z (_le)nsoQTl("T? t 71')7 x e A
n=0 '



* Note that for any nonzero z € A, with 0! =1,

1
:ZH

n=0

oo

Z

[[o2nl
<oy 3 Bzl
n=0 ’

which converges by entireness.
As well, for odd entire (¢a,+1) € C°4, similarly we have

)" T T
IE

<P2n(m,"' 7m

<)021'L o ax)

oo o0

1 T T o492
902 11z, 7)) = — [p2nt1 (s )| 2l "
- ! nzzo nd [T ]
[®2nt1ll
< i 3 L2zl o2y
n=0
which converges by entireness so that > > _n)n Yant1(z, -+ ,x) is certainly

defined to be f4(x) .

Lemma 2.2. If ¢, is an even or odd entire cochain sequence (van) or (Yan+1)
respectively, then so is 0. = (dy + d2)ps«, where @, may be denoted as ¢V or
©°d respectively.

Proof. For ¢, € C™, we have [|bym | < (m + 2)||oml| and [[Bopm| < 2[leml,
and || Ao Bopm|| < 2m||om|.

* Indeed, for ag, -, a1 € A with norm less than or equal to 1,
[(bpm) (a0, s am1)| <
D lem(ao, -+ ,a5a541, - amin)| + [em(@m1ao, - s am)|
i=0
< (m+2)|leml-
As well,

|(B0g0m)(a07 e 7am—1)| < |§0m(17 ag, -+ 7am—1)|+‘¢m(a0a oty Ame—1, 1)| < 2”507”«”

Moreover,

m—
|(Aowm—1)(ao, -+ am-1) Z lom—1(aj,ajt1,-aj-1)] < mllem-1].
=0

Note also that

1



Thus,

1
10pmll < (m+ 1) [bwm| + —I| Ao Bowm||
1
< (m A+ D(m+ 2)[om]| + —2m|lpm-

Therefore,

Z ||3<p2nH
Z ||&P2n+1H

Entireness for dp. would follow from the convergence of the right hand sides.

By the way, the convergence for the first terms may not follow from entireness
for ¢, in general?

If either the ratio formula or the Cauchy-Hadamard formula imply the radius
of convergence infinity, then there are no problem in convergence.

Anyhow, such a convergence may be involved in the definition for entireness
from the first stage. Or assumed should be that infinite radius of convergence
is given by the ratio formula or the Cauchy-Hadamard formula. O

\ /\

= (2n+1 2n+2 " 2||pan
Z H<P2 || +Z ||902 ||

I /\

. (2n + 2)(2n + 3)||p2n 2llpantall
Z )( )2 +1|| +Z ||902 +1|| v

n!

Definition 2.3. Let A be a unital Banach algebra. The entire cyclic cohomol-
ogy of A is defined to be the cohomology of the following short complex

0=0

I O (A) S OF(A)

ceal(4) Coi(A)

of entire cochain sequences of A with even and odd degrees respectively.

By definition, we have the two entire cyclic cohomology groups as
HEY(A) = ker(0ey)/im(Doq) and  HEA(A) = ker(pq) /im(Dey).

There is an obvious map from H(A) to He(A), where H(A) = HV(A) &
H°d(A) is the periodic cyclic cohomology of A, and H;(A) = HEY (A)@ HO(A).

* Certainly, an entire even or odd cochain sequence is an even or odd cochain
sequence respectively. But the reason is that finite supportness implies entire-
ness. Namely, constantness implies entireness.

There is a natural filtration of H.:(A) by dimensions of cochains.

An even cochain sequence (gs;,) is said to be of dimension < k if a9, = 0
for 2n > k.

Unlike what happens for H(A), that filtration does not exhaust all of H.;(A)
in general. Only the image of H(A) in H.:(A) is exhausted.

Example 2.4. Let A = C the trivial Banach algebra as the simplest case with
dimension 1.



x By the way, the space (C"*1)* of continuous linear forms v, on C"*! is
given by C"*! via the inner product as

j=0

with ¢, identified with (w;) € C"*.
This 1, is certainly linear because

Un((25) + (25))

ZU}j(Zj +25) (%), (%)) € crHt
j=0

wjzj + Y wiz = al(2)) + Yal(2))).

=0

I

<
I
o

Then we have . N
[n ()] <D lwjzg) < ]
j=0 §=0

for [z;] <1, =0,---,n. Thus, [[¢| <377 w;|. Conversely, with z;
for w; nonzero, we have

I
[w;

n
Un((2)) =D wj].
j=0
Therefore, we obtain [[¢,[| = >=7_ [w;] = || (wy) |1
Namely, the dual space (C™*1)* is identified with the Banach space C"*!
with the 1-norm.
* On the other hand, the space C"(C, C*) of continuous (n+1)-(multi-)linear
forms ¢, on C is given by C. Indeed,

QOn(Zo,"',Zn):AnZ(]"‘Zn, Z(]u"'vzne(c

for some \,, € C.
Then we have

lon (20, s 20)| = |[Aull20| -+ - |20] < [An]

for zp, -,z € C with |z0] < 1,--+,|2zn] < 1. Thus, ||on| < |An|. Conversely,
we have ¢, (1,---,1) = \,. Hence |\,| < ||¢n]|. Therefore, ||p,|] = |Anl-

Note also that A\, = @, (1,---,1).

An element of C¢(C) is given by an infinite sequence (Ag,,) with Mg, € C
such that

o A2
g 2nz"<oo, z e C.
n!

n=0

Similarly, an element of C°(C) is given by replacing 2n with 2n + 1 in the
power series.



The boundary 9 = dy + dy of (\ay,) is zero since both b and B are zero on
even cochains.
* Let vo(z0) = Aozo for some A\g € C.

(bpo)(20, 21) = @o(2021) — wo(z120) = XoZzoz1 — Aoz120 = 0.
Bopo = ¢o(1) = ¢o(1) = 0. Byo = AgBop = 0.

Let va(20, 21, 22) = A2202122 for some Ay € C.

(bp2)(20, 21, 22, 23)
= (2021, 22, 23) — P2(20, 2122, 23) + Y2(20, 21, 2223) — P2(2320, 21, 22) = 0.

BogDQ(ZO,Zl) = (,02(1,2’0,21) - QDQ(Zo,Zl, 1) =0. Bgﬁo = A()BQQD =0.

Namely, the image of the boundary map 0, is zero.
For m odd, let ¢(z0, -+ ,2m) = Az0 - 2, With ¢ = ¢,,, € C™(C), we have

(bgp)(zo, o ,Zm-&-l) = /\ZO T Zmtls
(B(p)(z(h co 7Zm71) =2mAzg - Zm_1-

* Let v1(20,21) = Azpz1. Then

(bgpl)(z(b 21, 22) = 801(20217 22) — 301(20, 2122) + 301(2220’ Zl) = )‘2021227
(Bo1)(20) = ¢1(1, 20) + ¢1(20,1) = 2Az.
(Bp1)(20) = (Bog)(z0) = 2Xz0-

It thus follows that

(dlw)(ZOa e 7Z’m+1) = (m + 1))\20 C o Zmdl,
(dop) (20, s Zm—1) = 2A20 - Zm—1

since d; = (m+1)b and dp = L B.

* Note that d; is essentially multiplication by degree m + 1 and ds is also
by only 2.

Therefore, the boundary 9((y2,+1)) of an odd cochain sequence (@2,+1) at
2n is given by

di1pan—1 + dapani1 = (2n)P2n—1 + 20241 = O((P2n41))2n-
If the boundary 9((¢2n+1)) is zero, then
Pant1 = —Npan—1 = = (—1)"nlp;

and dap; = 0. Hence, if so, the sequence is zero. This is the same for C93(C).
Namely, the kernel of the boundary map 9,4 is zero.
It then follows that

Hgtd(c)) = ker(aod)/im(aev) = ker(aod) = {0}



Since the kernel ker(9,q) is zero, then the map 9,4 is injective.
Since the image im(9,,) is zero, then the kernel ker(d,,) is C¢(C).
Moreover, for (¢2,) € C&y(C), in particular, the series

A2
o((pan)) = S (-1)" 22
n=0
is absolutely convergent and convergent.

There is a linear map h from C¢;(C) to the space of holomorphic functions
defined on C, denoted as $.(C), defined as

o0

W(pa))(5) = 3 (-1 22mn e

n!
n=0

There is also a linear quotient map from C¢/(C) to C defined by evy o h,
where the linear map evy on $.:(C) means the evaluation map at 1 € C.
Note that evy oh = 0. Namely, we have the following commutative diagram:

cey 7 5 C 0
1| | |
Her(C) —— C 0.

Note also that the map h is injective, but not surjective.

Indeed, if the function h((pa,)) is zero, then in particular, h(pay,)(0) = Ao =
0. As well, differentiating the function term-wise and evaluating the derivative
at zero implies Ag,, = 0. Continuing this process inductively implies that the
sequence (pa,) is zero.

Furthermore, o((y2y,)) is zero if and only if (p2,) is in the boundary of
Co(C).

* If (p25,) is in the boundary, then o, = 2nwa,—1 + 2p2,11. Thus,

>\2n = 2/\2n 1 = 2)\2n+1
i o S e UL ) |
;( i g ”—1)+n§::o() T (k=n-1)
> 2)\ > 2\on
Sy S,
k=0 n=0 ’

Conversely, if the series o((2y,)) is zero, then we can define Ay = g, A3 =
o — 1o, A = Ihg — B2U); and inductively, thus

2n—-1)+1)

1
)\2n+1 = 5)\271 - B) Aon—1 = 5)\271 — NA2n—1.



By the construction, we obtain 9((Az2n+1)) = (A2n). As well,

Aon 1
Z ntl 2" = )\0+( )\2—on)2+ ( )\4—2)\3)

n'
n=0

1.1
+ n*(f)\Zn - n)\anl)Zn + -

oo

Aon o Aol e
*Z : _;(nQ—ll)!Z %

Therefore,

Z‘X’ A 1 Z‘X’ A
2n+1 n 2n _n
(1 + Z) %Z = 5 n'L z .

n=0 n=0
Hence (A, 41) € C23(C).
It then follows that
HZY (C)) = ker(Dey ) /im(0pq) = Cgy (C) /ker(o) = C.

Proposition 2.5. We have H3}(C) = {0} and HS} (C) = C, with isomorphism
given by

o0 TL

9027; Z

QOQ.,L . ,I)E(C.

Definition 2.6. A cocycle sequence (pa,) or (¢a,41) is said to be normalized
if we have

1 1
Bopp, = —AgBopm = —Bop,
m m
for any respective order m.

In other words, the cochain Byp,, is cyclic. Namely, Byp,, € C"~!. Then
L Ao(Bopm) = Bopm.

Only the normalized cocycle sequences have a natural interpretation in terms
of the universal differential algebra QA.

Lemma 2.7. For any entire cocycle sequence, there is a normalized cohomolo-
gous entire cycle sequence.

Refer to [2]. Also refer to [8].

Remark 2.8. The entire cyclic cohomology defined above and its pairing with
K-theory given below is adapted to arbitrary locally convex algebras A over C
as well as in the following.

A cochain sequence (ga2,) (or (¢2,4+1)) on A is said to be entire if for any
bounded subset B C A, there exists a constant C' depending on B such that

lpan(ao, -+ ,a2,)] < Cnl, a; € B,n€N.



* In particular, it then follows that if we take B as the unit ball of A (by
the norm if any), then

[@2n]| < Cnl.
Therefore,
lim { M <1
Hence, given is the spectral radius as
1
>1
hmnaoo n H‘PZ'nH

for the series Y7 w,z". Is this radius infinite? Or so.

But, replacing B by A™!'B for A > 0, we have that for any bounded subset
B of A and X\ > 0, there exists a constant C' depending on B and A such that

lpon(ao, -+ as,)| < CA\?"nl, aj € B,n € N.
x In the first definition above, replacing B by A™!'B for A > 0 implies that
lpan (A" tag, -+ ;A" ag,)| < Onl, A ta; € A'B,n €N

with the left hand side equal to )\_(2”+1)|<p2n(a0, -+« ,a2,)|. Hence, the power
2n of the multiple A?” should be replaced with 2n + 1.
It then follows that
o o/l _ o
n—00 n! -
Taking A > 0 to zero implies that the limit is zero. Infinite obtained is the
radius of convergence!

Let A be an algebra over C. Then A is a locally convex algebra with the
finest locally convex topology (by some semi-norms or norms). Its entire cyclic
cohomology theory is defined well as shown above.

Bounded subsets of A are given by convex hulls of finite subsets F'.

A cochain sequence (pa,) (or (pan+1)) of A is defined to be entire if for any
finite subset F' of A, there exists a constant C' such that

loan(ag, -+ ,a2,)| < Cnl, a; € F,neN.

In the (di,d>) bicomplex with d; = (n + 1)b at C™ and do = 1B at C™, we
have
didy' =S =n(n+1)bB7?

at C" 1.

* If o = dytp = LByp at C" 1, then 1 = dy ' = nB~ 1.

The pairing of the K-theory group Ky(A) with HE'(A) is given by the func-
tion f, by functional inserting of projections of matrix algebras over A up to



K-theory class via the canonical trace of matrix algebras over C. Its existence
comes from the growth condition such as entireness.
* We certainly have the pairing given as

([p), [¢]> = fso(pN)

Mg

n, P2n (tr(p)p™, -+, tx(p)p7)

)2n+1

n=0
_ Z ntI‘

for [p] € Ko(A) and [p] = [(p2,)] € HE(A) with p € My (A) for some k >
identified with p’ @ p~ € M,,(C) @ A.

x We may consider o, = (n!)?1)q, degree wise. Since ||¢a,| < CA2"Fin!
with C depending on A, then we have ||tz || < C’\znﬂ,

QOQn(pNv e apN)

3 Cycles of dimension infinite

The notion of a cycle of dimension n as a starting point of cyclic cohomology
theory is given by a graded differential algebra (£2,d) with Q = @?:Oﬂj ,d
Q; — Q)41 of degree 1, and d? = 0 and a homogeneous, linear, closed, graded
trace form [ : Q" — C of degree n such that

/w1w2 = (*1)’61]@2 /Wle, Wi c ij,j = 1,2

with (differential forms) wjw; = w; ® w; € QF ® QF of dimension or degree
kj+k =n, and [dw =0 for any w € Q"1

In order to handle the infinite dimensional case, the conditions above is
replaced by the inhomogeneous condition as

/(wlwg — (=1)Fk2pw) = (—1)k /dw1dw2

on forms of degrees k1 + k2 and (k1 + 1) + (k2 + 1) respectively, which may not
be zero.

A linear form p on a differential graded algebra (2, d) with Q = @524, is
said to be even (or odd) if p(w) = 0 for any w € QF with degree k odd (or even,
respectively).

Proposition 3.1. ([2]). Let A be an algebra over C, (Q,d) a graded differential
algebra such that A = Qq, and p an even linear, closed cycle form on Q (over
A) satisfying the inhomogeneous condition given above.

Then a normalized cocycle sequence (@ay,) in the (dyi, d2) bicomplex C™™ =

C" ™(A, A*) is defined by

wan(ag, a1, -+ ,a9,) = (=1)"(2n — DWu(apday - - - dasy,)



foraj € A, 0<j <2n, with (2n — ) =117_;(2n + 1 — 2j).
If w is odd, then a normalized cocycle sequence (Yan+1) in the (dqi,ds) bi-
complez is defined by

Pon+1(ao, ar, -+, azpi1) = (—=1)"(2n)!'pu(aoday - - - dazn1)

foraj € A, 0<j <2n+1, with 2n)!! =117_, (2n + 2 — 2j).

Conversely, for a normalized cocycle sequence (pa,) and (pant1) in the
(d1,d3) bicomplex, even and odd, linear closed, inhomogeneous cycle forms u
on the uniwersal differential algebra Q* A are defined respectively by

w((ag + Al)day - - - dasy,)

= (z(n__l):)”{cpzn(ao, <o+ azn) + M Bowan)(ar, -+ am)},
w((ag + Al)day - - - dagp+1)
(="

= W{SO%H-l(aOa o yazny1) + M Bowanti)(ar, -+, azni1)}

respectively, with A\ € C.

Proof. x As for the first half, we have

(Bowan)(ag, -+, azn-1)

= pon(l,a0, - ,a2n—1) — Pan(ag, -+ ,a2n—1,1)

= (=1)"2n — D) uldag - - - dagn—1) — plapday - - - dagp,—1dl)}
=(=1D)"(2n — Du(dag - - - dagn—1) = @an(l,a0, - ,a2n-1).

Hence, we have

Ao(Bopan)(ao, -+ ;azn—1)
2n—1
= Z (=1 g (L az, a1, aj_1)
j=0
2n—1
=) ()= gy, (1,a0, - azn-1)
j=0

= 2npan(l, a0, -, a2n—1) = 2n(Bowan)(ag, - -+, @2n—1).

This means that Boga, is cyclic, so that (¢a,) is normalized by definition.
As for the converse, we check the even case. Let 1y, = %@gn. Then
Bythay, is cyclic and we have Bytha, = biba, o (why?) for any n.

* Since (pa,) is normalized, Bypa, is cyclic. Then so is Bota,.



(Bowan)(ao, -+ s a2n—1)

= on(1l,a0, - ,a2n-1) — @an(ao, -+ ,a2n—-1,1).
(bpan—2)(ag, -+ ,az,—1)
2n—2
= Z (=1)p2n—2(ao, - ,aja41, -+ ,a2n-1)
j=0
+ (=1)*" Yo, _a(azn—1a0, - ,a2n—2).

We have Bga, = bipa, o for any n.

* The reason certainly comes from b(Bgts,) = 0 and cohomology triviality
as checked before. Or it may be included in the definition from the first.

It is shown that da for any a € A belongs to the centralizer of the functional
1 defined so above.

It follows from the cyclic of By, that

p(da(day - - - dagy, 1)) = (—=1)*"u((day - - - dag, 1 )da).

* Note that in this case, we have ag = 0 so that 2,(0,a,a1, -+ ,a2,-1) = 0.

Since we have Bga, = bo,_o, then bBgys, = 0. Also, Bobys, = 0 since
by, is cyclic.

* We have 0 = bBo¢2n = bBan = —Bb¢2n = —BobL/)Qn.

Let D = Bob + V' Bg. It then follows that

wQTL(aO, cr,A2n—1, a) - (_1)2nw2n(a; (2P aQQn—l)
+ (—1)2”Bo¢2n(aao, ag, - ,agn_l) =0.

That is
p(da(agday - - - das, 1)) = (—=1)*" " u((apday - - - dag, 1 )da).
* Note that since bBys, = 0, we have
V' Botan(ao, -+, azn—1,a) = (=1)*""(Botan)(aao, - , azp—1)-
Also,

(=n"
(2n — 1N

= 7/)271(@0,@1, cr,A2n—1, a)'

u((aoday - - - dagp—1)da) = anlag,ar, -+ ,azn_1,a)

As well, d(aag) = da(ap) + adag. We then obtain

N(d(aao)dal s da2n71) = (301/12n)(aa07 Ay, »a2n)
= H’(da(GO)dal e daQn—l) + 11)271(&, ap, - aa2n—1)-



Namely, da commutes with agday - - - ads,—1 with respect to p up to sign
(_1)27171.
It follows that dw such as dbidbs - - - dby, belongs to the centralizer with re-
spect to p, inductively.
Tt is shown that p(aw — wa) = p(dadw) for any a € A.
With w = agda; - - - das,, we have
u(wa) = pu(ao(das - - dasn)a)
= Yon(ao, a1, ,a2n-1,0a20,0) — P2n(ag, a1, -+, a2n—1a2,,a) + -+
+ (=1 ¢2n(ag, -+, aon—jazn—jp1,- - sa) + - + (—1)*"Pan(aas, - - ,a).
Thus,

wlwa — aw) = plwa) — plaw) = bibe, (ag,ar, -+, asp, a)
= BoYan+2(ao, -+ ,azn,a) = p(dwda) = —p(dadw).
* Note that d(as,a) = (das,)a + aznda. It then follows that
wlao(day - - - dagy)a) = p((apday - - - das,—1)(dasy,)a)
= p(apday - - - dagy—1d(agpa)) — plagday - - - (dagy—1)as,da)
= Pon(ag, a1, - ,a2n—1,02,a) — plapday - - (dasp—_1)aspda).
Next consider that d(ag,—1a2,) = (dag,—1)az, + asn_1das,. Hence
wlaoday -+ (dagy,—1)az,da)
= p(apday - - - d(agn—1a2,)da) — plagday - - - agy—1(das, )da)
= an(ag, a1, ,a2p—102n,a) — plapday - - - agn—1(dagy,)da).

Inductively, we need to consider the derivation equations to obtain the equality
for p(wa).
Note also that
Boania(ao, -, azn,a) = 0+ 1Botania(ao, -, azn,a)
= w2n(03 ap, -, A2n, a) + 1B0¢2n+2(a0, cr, A2n, a)
= p(dag - - - dagpda) = p(dwda).

That’s it!

Finally, we need to check the following for w; = adw of degree k; with a € A
and wy of degree k.

Since dw belongs to the centralizer with respect to u, we have

,u(wlwg - (—1)k1k2w2w1) = p(a(dw)ws — (—1)k1*2wyadw)
143 (12 =) 4 (o)

1)F12=D g (dw)ws )

1)k Gka= D (k1 tk2) (V00 )a)

)

1 ko+k1—kike (dw) )a)

- (=
- (=
- (=
- (=



Is this correct?
It follows that

plwiws — (—=1)F1*20001) = p(dad(dwws)) = (—1)F1 p(dw, dws).
* Note that
pa(dw)ws — (dw)ws)a) = p(dad((de)es))

with
w(dad((dw)ws)) = p(dadwdws) = p(dwidws).

Note as well that k; + ko as well as k1ks may be even because p is even.
It seems that the factor (—1)¥* may be removed from the formula in the even
case. The factor may represent the odd case degree if involved.

Conversely, as for the first half, the proof above implies that any functional p
on Q%A of even or add, satisfying the inhomogeneous condition given like above
defines even or odd, normalized cochain sequences (12,,) and (¢2,1) such that
by, = Botm4o for any m, given by

(a0, am) = plagdas - -~ dasy).

By universality of the differential graded algebra 2*A over A we obtain the
first half. O

Let A be a Banach algebra. Consider the norms for the universal differential
algebra Q* A defined by, with r > 0,

oo

Il 720 wills = D r* lwllpr
k=0

where ||wg||,» is the projective tensor product norm on
QF = QF(A) = 9% (A~ @c A) 2 A~ ® (2" A)
with A~ = A @ C1 the unitization of A by 1 (cf. [1]).

Theorem 3.2. There is a canonical bijection between normalized entire cocycle
sequences on A and linear forms on Q1* A, of even and odd respectively, satisfying
the inhomogeneous condition, given above, and continuous for all the norms

Il

The natural topology on Q*A provided by the statement above is not the
projective limit im(Q2* A, || - [|) of the normed spaces (24, || - [|;) given by the
normes || - ||, as r — oo.

That is the inductive limit for » — 0. Namely,

QA = lm(Q°A,|-[).



* For 0 < m < rg, we have |w||,, < |wl|r, for w € Q*A. There is a

continuous identity map from the normed space (2*A, | - ||-,) to (Q*A, || - |+,)-
Namely,

. " qr. " » 28 . *
Hm(Q*A, || - [lr) —=—= (@A, - Ir,) = (A - [lr) —— Em(Q"A, || - [|\)

with g, the quotient map by projectiveness and %,, the injective map by induc-
tiveness.

For each r > 0, the completion of * A by the norm |||, is a Banach algebra,
denoted by €,.(A)

There is a natural homomorphism from €,.(A) to Q,.(A) for 0 < ' < r,
which is the identity on Q*A and is norm decreasing.

Let Q.(A4) = lim Q,.(A) for r > 0.

Then Q. (A) is a locally convex algebra with the continuous homomorphism
from Q.(A) to A™ given by the augmentation as sending @72 wy, to wo of Q*A.

Proposition 3.3. A linear form p on Q*A is continuous for all the norms |- ||,
forr >0 if and only if that on Q.(A) is continuous.
There is the following short exact sequence of Banach algebras

0 — J = ker(aug) —— Q.(4) —=2- 4~ -0
by augmentation aug. Then any element w € J the kernel is quasi-nilpotent,
i.e. A1 —w is invertible in Q. (A) for any X nonzero.

Proof. x Note that

"
Q, —L

| H
0.(4) —— C.

Let w € Q, for some r > 0. If w € J, then w = Zzozl wy with wi € QF A and
el = 3553 7wl < oo

Replacing r by a smaller 0 < 7' < r implies that [|[A\"'w|,» < 1. It then
follows that 1 — A~ lw is invertible in €.

* Let A be a unital Banach algebra and @ € A with |ja|]| < 1. Then 1 —a is
invertible in A with inverse given by > >° ja™ (cf. [13]).

Indeed, we have

oo oo oo 1
1> ar <> a <> flal™ = 1= Jal
n=0 n=0 n=0

We also have

n n
(1—-a) ak:Zak(l—a)zl—a”Jrl
k=0 k=0
Taking the limit as n — oo implies the statement (x) above. O



* Certainly, it looks like that those inductive limits are just A~. Then J is
trivial zero. Is this right?

Q. (A) is a Zo-graded differential algebra, since the differential d of Q*A is
continuous for all the norms || - ||,. The range of d is contained in the ideal J.

4 'Traces

Lemma 4.1. ([4], cf. [9]). Let (Q.d) be a differential Zz-graded algebra and
X € C. An associative bilinear product on Q = Q°V @ Q° is defined as
W1 ")\ Wo = Wiwsa + )\wldwg, wy € QOd,WQ € Q,

W1 A Wo = wiwsy, wy € NV, wy € Q.
Proof. For wy,ws € Q°Y and w3 € €, we compute

wi -x (w2 - w3) = w1 -x (Waws + Awadws)

= w1 (Wow3) + Awwadws 4+ Mwid(waws) + AN2wid(wadws)
(W1 A w2) A w3 = (Wiwz + Awrdwy) - w3

= (wiwe)ws + Awidws(ws) + Mwiws + Awidws)dws.

But it seems to have both lines above not equal in general. O

The algebra corresponding to A = 0 is €.

The algebras for A # 0 are independent.

Possibly, we may consider non-associative algebras like.

The Zs-grading of Q is given by the involutive automorphism defined as
oo(w) = (—1)%8«w. The grading is extended to a Zs-grading of the deformed
algebra given by

oa(w) = (1) (w — \dw)

which is an involutive automorphism of the deformed product.
Proof. We have

o3 (w) = (~1) DT (pydesey, — g,
We also have

o3 (w) = ox((—1)%8¥ (w — Adw))
= w — Mw + x((—1)48 % \dw)
=w— Mw + Mw — \2d*w = w!



Lemma 4.2. ([2]). Let (2,d,-)) be as above with the Zy-grading oy.

Any odd linear form T on (2, d) corresponds to T as its restriction to °4
extended to 0 on Q.

There is a canonical bijection between odd traces on (Q,d,-x,0x) as T~ and
odd linear forms T on (Q,d) such that

1
T (wiwy — (—1)k1k2w2w1) = §A2(—1)lew(dw1dw2)
for w; € Ok,

Proof. Let T be an odd trace on (€, -)), corresponding to the linear form on €.
Assume that w; € Q°9, wy € V. Then we have 7(w; -y w2) = T(wy -) wy). For
w = widwsy even, we have

T(w) = %T(w — oy (w)).

Indeed,

T(widws — o) (w1dws))
= 7(w1dws — widws + Ad(w1dws))
= A7 (dw)

because the degree of d(widws) is odd. It seems that the formula above is wrong
and is corrected so.
It then follows that

T(wy A wa — Aw) — T(wg ) wy)
= T(wiws + Awrdws — Awidws) — T(wawn)

k1ka

= 1(wiws — (—1)" "2 wowy)

and on the other hand

T(w1 A we — Aw) — 7(w2 A wi)
= -M(w) = = AT(A\dw + o) (w))
= M (\dw + w — Adw) = =A7(w).

Hence the condition in the statement may be corrected so.
We may skip the second half left. O

There is an analogue in the even case.

Let E) = (€, -)) X4, Z2 denote the crossed product of (€2,-)) by Zs by the
Zo-grading autumorphism oy.

There is the dual Zs-grading 6 of E) defined by 6 (w) = w for w € Q and
6A(F) = —F, where F is the element of E) associated to the generator of Zs
such that F2? =1 the identity.



Lemma 4.3. ([2]). Any odd linear form T on E\ corresponds to 7~ as the
restriction of T(Fw) to w € Q% extended by 0 on Q°9.

There is a canonical bijection between odd traces T on Ey and even linear
forms ™ on (,d) satisfying the same condition in the lemma above.

Let Q-(A) denote the Zs-graded algebra obtained as (Q2.(A),d, )

Let Q2 (A) denote the crossed product of Q.(A) by the Zs-grading o such
that 02 = 1 the identity.

Both Q.(A) and Q2 (A) are locally convex algebras.

There is a canonical bijection between continuous odd traces on Q.(A4) (and
QL (A) respectively) and normalized odd (and even) entire cocycle sequences on
the Banach algebra A.

Let QA denote the Zy-graded algebra obtained as (Q4,d, - ).

Let Q" A denote the crossed product of QA by the Zs-grading o.

Proposition 4.4. ([4]). Let A be an algebra over C.
(a) The pair (p1,p2) of homomorphisms from A~ to QA are defined as

pra) =a € QA and pyla) =a—V2daec Q®AG QA

fora € A™, giving an isomorphism of the free product A~ xc A~ with QA. The
Zao-grading o of QA is the automorphism exchanging p1(a) with pa(a) fora € A.
(b) The pair (py, py) of homomorphisms from A~ and Zy to Q™A are defined
as
(@) =ac QA and ph(n)=F"

for a € A~ and n € Zsy, giving an isomorphism of A~ x¢ C|Zz] with Q™(A).
The Zo-grading o” of QNA satisfies o o pp = py* and o(F) = —F.

Proof. For a,be A™,
pa(ab) = ab — /2d(ab)
pa(a) * /5 p2(b) = pa(a)p2(b) + V2pa(a)dps(b)
= (a — V2da)(b — V2db) + V2(a — V2da)d(b — V/2db)
= ab — v/2(adb + (da)b) + 2dadb + /2(adb — v/2dadb)
= ab — V2(da)b.
It seems that ps is not homo. O]

For a € A™, the difference ga is defined by
ga = p1(a) — pa(a) = V2da € QA.

We may identify A~ with p;(A™) in QA.



Proposition 4.5. Let 7 be an odd trace on QA such that 7(qa) = v/27(da) =0
for any a € A. Then a normalized odd cocycle sequece (pan+1) in the (di,ds)
bicomplex is defined as

go(ao, s ,a2n+1) = (—1)"7117(@0(1@1 : "qa2n+1) a; € A
= (—1)””!2”\/5’7’(&0(10/1 R da2n+1).

Let 7 be an odd trace on Q™(A). Then a normalized even cocycle sequence
(p2n) in the (dy,ds) bicompler is defined as

1
QDQH(CL(), e ,agn) = F(TL + §)T(Fa0[F, al] e [F, agnD.
Proof. Note that

FaO[F,al] = Fao(Fal — alF) = FaOFa1 — FaoalF
= (FaOF)a1 — FaoalF

which is viewed as belonging to A.
Also [F,as] = Fay — asF is in A x Zs. O

The crossed product Q" (A) X4+ Zg of Q" (A) by its Zs-grading ¢’ such that
o'(F) = —F and ¢’ is the identity on Q" (A) is defined so and is then isomorphic
to Q(A) ® My(C) = M5(Q(A)), denoted as (Q™)"(A).

This is generated by a copy of A™ and a pair (F,~) of elements such that

[v,a]=va—ay=0, ac€A, ~F=—Fy, and ~?*=F?=1.

x Note that o/(F) = yFy = —F. Also, vay = a. As well, o(a) = FaF,
which may not be a.
Those relations represents (Q")"(A).

Corollary 4.6. Let 7 be a trace on (Q™)"(A) such that T(ya) =0 for a € A.
A normalized cocycle sequence in the (dq,ds) bicomplex is defined by

Yant1(ao, - s a2nq1) = nlT(yFag[F,a1] - - - [F, azn11]), aj € A.

Such an explicit construction of cocycle sequences of ([4]) by the traces is
viewed as the translation of the triviality of the first spectral sequence of the
(b, B) bicomplex.

Let A be a Banach algebra. The algebra QA defined as above has the locally
convex topology inherited from the inductive limit topology of QA.

Let Q.(A) correspond in the same way to Q.(A).

Then QA is a subalgebra of Q. A, and its topology is the restriction of that
of Q- A.

There is a bijective correspondence between continuous odd traces on both
algebras QA and Q. (A) by restriction and extension by continuity.

As established in the proposition and the corollary above, we obtain



Theorem 4.7. Let A be a Banach algebra. There is a canonical bijection
between continuous odd traces on QL (A) and on (Q2)(A) wanishing on vA
and entire normalized even and odd cocycle sequences on A, respectively.

As well, QA or Q. A and their dual crossed products can be used instead.

The structure of the locally convex algebra Q. A is similar to that of Q. A as
described by continuous linear forms with respect to the norms and the kernel
of the augmentation.

The augmentation morphism ¢ : Q. A — A~ is given as the morphism ¢ :
Q.A — A~. This homomorphism is insensitive to the deformation product.

We have e od = 0. Also, eoq = 0.

Proposition 4.8. Let J = ker(e), where € : Q. A — A~. Any element x of J
is quasi-nilpotent in the sense that A1 — x is invertible in Q.A for any nonzero
reC.

Namely, Q.A is a quasi-nilpotent extension by A™.

5 Pairing with K-theory groups
Lemma 5.1. Let (p2,) be a normalized entire cocycle sequence even on a Ba-

nach algebra A. If the sequence belongs to the image under the boundary O
contained in C, then

> (_1)n<pzn(p7 ,p) =0

n!

n=0
for any idempotent p € A.

Proof. Let (an+1) € CS3 such that d(¥a,11) = (pan). For each n, we have

1
= 2nbbay 1 + ——— Bibons 1.
P2 nbiy 1+2n+1 Yont1

* Recall that 0 = dy + dy so that

O(Yan—1,%an+1) = ((2n — 1) + 1)bpa,—1 +

Bipont1.
m 1 Yont1

Since (p2,,) is normalized, we have Bypa, € cC?" is cyclic, so that Bypay, =
Bys,, and

1
Bobpop—1 = %BOSDZn

is cyclic for any n.

* This follows from multiplying the equation above with By not B = Ay By
from the left, if By o B = 0. It seems that the last equation is not equivalent to
B? = 0. That follows from multiplying with B. The reason is that

Bbpop,—1 = —bBa,—1 = —bBota,_1



but which should be equal to Bybipo,_1. Or just Bbis, 1 = Bgbipa, 1 if nor-
malization is preserved by the boundary b.
* Since (12,41) is also normalized, we let

1

=——720>B n y T .
M1 Yont1(p p)

an = (BoYant1)(p, -+ 5 D)

Since p? = p, we have

an = (V'Botant1)(ps -+ ,p)
= ((D = Bob)t2n11)(p, -+ ,p)
= (DYont1)(p, - s p) = 2¢2n11(p, -+, p).-

* Note that for the ((2n + 1) + 1)-tuple (p,--- ,p),

2n

(¥ Botons1) (s ,p) = 3 _(=1) (Bothont1)(p,- -+ 0%, ,p)
=0

= (BO¢2n+1)(p7"' y Dyt 7p)

Also, D = Bgb + b’ By. As well, multiplying that equation with b implies that

1
0=0+ ——0bBo,
NPT LA
and hence Bbta, 1 = 0, so that Byba,+1 = 0 by the reason mentioned above.
Since 19,41 is cyclic and the signature of odds is —1, we obtain

Dipop i1 = Vany1 — (—1)Ao¥ont1 = 2¢2n41.

Also.
1

(wan-&-l)(p, T ’p) - 1/)2714-1(]97 e 7p) = ianu
* Note that for the ((2n + 2) + 1)-tuple (p, - ,p),

2n—+1

(b2ns1) (D 5p) = Y (=1 Yansa(p,-- 0% p)

=0
+ (=12 4oy 1 (P2 ps - D) = Yons1 (D D).
Thus,

1

SOQn(pa e 7p) = Zn(wanfl)(pa e 7p) + m(Bw2n+l)<p7 e 7p)

1
= Qnian_l + ay,.



Therefore,

n!

n=0 n=0
= () = (1)
:fziozn_lJrzian:O.
— (n—1)! — n!

* Note that [|p[| = [[p?|| < |p||* so that 1 < [[p] if p # 0.
Also, the spectral radius of p is computed by

. 1
r(p) = lim [[p"]» = 1.

The Gelfand representation is only norm-decreasing (cf. [13]).
If A is a C*-algeba, then ||p| = ||p?|| = ||p||?, so that ||p|| = 1 if p # 0.
In such a case, we have

lon| = 2[Woni1(p, - 0)| < 2| Y2ng1l-

n
Then entireness implies that the series >~ w converges at any

z € C. In particular, the series converges at z = —1. ]

We next let A, = M,(C) ® A = M,(A) be the Banach algebra of ¢ x ¢
matrices over a Banach algebra A, for g € N.

For any ¢ € C™(A) as a multi-linear functional on A™*1, we denote by ¢
the natural multi-linear extension of ¢ to M,(C) ® A defined as ¢? = tr#op.
Namely,

P (po @ ao, o @ ) = tr(po - m) (a0, -+ » am)
for p; € M,(C) and a; € A.

Lemma 5.2. For any entire even and odd cochain sequence (pa,) and (pant1)
on A, the extended even and odd cochain sequences (3,,) and (o3, 1) on My(A)
are also entire, respectively.

The map sending entire cochain sequences ¢ on A to % on My(A) is a
morphism of the complexes of entire cochain sequences.

Proof. For ¢ € C™(A), we have ||©?] < ¢™¢].
* It seems that we in fact have

171 < gl

since tr(A) = tr(P~'AP) on M,(C), and upper trianglization as P~*AP by
an invertible P holds for any matrix A in M,(C), as A = o - - ftm, and the
spectral radius r(P~'AP) = r(A) < ||A| < 1, where the norm of ¢? may be
defined only on such simple tensors j; ® a; with their norms less than or equal
to 1 coordinatewise.



It then follows that for instance,

oo q n o

¥ z Panll|Z
Z” 22|'|| | qull ZL"H | cC
n=0 : n=0 ’

as desired.
We have the following even morphism

P : CF(A) — CF (My(C) © A)
where ®((¢2n)) = (trar, () #P2n). The odd case is defined similarly. O

Theorem 5.3. Let ¢ = (p2,) be an entire normalized cocycle sequence on a

Banach algebra A. Define

fo0) = ot 0, 2 (©) 04
n=0 :

as the corresponding entire function on Mo (A) = UgenMy(A). The the re-
striction of f, to the idempotents p = p?, p € My (A) defines an additive map
fo : Ko(A) — C defined as up to K-theory equivalence. The value (p, [p]) as
fo(p) only depends on the entire cohomology class of ¢ in HZY (A).

Proof. We may replace A with A~ and do ¢, with ¢5,,.
We have that for z; + ;1 € A™,

(pgn(xo + )‘017 Sy Top + >\2n1)
- ()0271(550; o axQn) + )\03090277,(:517 o 71'211)«

* Note that

(BOQOQn)(J?l,"' 7m2n)
= @271(17*%17”' 7:1:277,) _90271(1.17"' 7‘73277,71)'

This is zero if @9, is cyclic. Being cyclic may be assumed from the beginning.
Then the second term in the formula for ¢35, above is zero.

It then follows that each o, vanishes if some z;, j > 0 is equal to 1.
* Namely, by definition,

()OQNn(an"' 70+17 ;x2n>:@2n(x07"' 707"' ,$2n):0~

We need to show that the value f,(p) for p a projection of M,(A) only
depends upon the connected component of p in the space P,(A) of projections
of M,(A).

Since the map from ¢ to ¢? is a morphism of complexes, we may assume
that ¢ = 1.

Let p(t) be a C'-class map from the interval [0,1] to the space P(A) of
projections of A.



It is shown that

I w(0) =0,
We have
d d
ZP(0) = [a(®),p(®)],  a(t) = (1 = 2p(t)) 7, p(t).
* Note that

%p(t) = %p(t)2 = 2p(t)p'(1)-

We then have (1—2p(¢))p’(t) = 0. Multiplying p(¢) from the left to the equation
implies that —p(t)p’(t) = 0. Therefore, we obtain p'(t) = 0 = a(t). By the way,
projection valued functions may not be differentiable at some points, in general,
as in the case of real valued functions such as characteristic functions.

We need to compute < f,,(p(t)) at t = 0.
Let p = p(0) and a = a(0) = 0.
* We then compute in a way different from the original text that

2n
L (1), POl = 3 2npl0), - F (D)D) oo
j=0

2n
:Z¢2”(p"" ,0,-++,p) =0.
=0

Being zero of the derivative implies that the value f,(p(t)) is a constant.
Hence it does depend only on the (C!-)connected component of p.

Does it hold that f,(p + ¢) = fo(p) + fo(q) as an additive sense?

But 9, is multi-linear, and then

Yo+ a4, 0+ q) =D, ,p) + pan(a,- - ,q)?

Let n =1.

o2lp+ap+tap+q) =w2p,p+a,p+q) + 9200+ 00+ q)
= @2(p, 0, 1) + v2(p, P, @) + ©2(p, ¢, P) + v2(p, 4, q)
+©2(q,p,p) + ¢2(q, 0, q) + ©2(q,9,p) + v2(q, ¢, 9)-

But cycling implies

2,1, q) = p2(q,p,0) = w2(p, 4, p),
©02(p,q,q) = v2(q, 0, 9) = ¢2(q,q,p).



Theorem 5.4. Let 7 be a continuous odd trace on Q2 A. Then the map f, of
K (A) to C given above by the entire even cocycle sequence ¢ = (pay,) associated
to T is obtained by the formula

1
folp) = 7(Fp(1 —(ap)*)"%), pe P(A).
Proof. The entire cocycle sequence ¢ associated to 7 has components given by

(—1)"(2n — 1)t

on 7(Faoq(a1) - - - q(azn))

QDQTL(aOv e aa2n) -

up to an overall normalization constant, where ga = v/2da.
* If so, then we have

pan(p, -+ ,p) = (=1)"(2n — )!l7(Fpdp- - - dp)

Then we have

oo

Z

’I’L

90271 7p)

> (2n — )N
= Z%T(dep...dp)_
~ nl

Also, we have
dp = d(p*) = (dp)p + pdp.

Thus, p(dp)p = 0. Also, pdp = (dp)(1 — p).
On the other hand, we have 1 — (¢p)? = 1 — 2p. This is positive. Thus there

exists the positive /T — 2p such that (y/T —2p)? = 1 — 2p. But /T — 2p may

not be invertible.

There may be more reasons for the formula attained. O]

Remark 5.5. The normalization condition for the cocycle sequence can be
removed by the following minor modification

Z

’I'L

1
— b ap)

90277, 2

to be zero (cf. [11]).

When A is a C*-algebra then E) A has a natural C*-algebra norm (but not
complete) which defines a stronger topology than that used above. There are
continuous traces on EyA for the C*-norm (cf. [5]).

The pairing above is applied to the case of arbitrary algebras over C by using
Remark given above to define entire cyclic cohomology in a generality.



6 The entire cyclic cohomology for the circle al-
gebra

The periodic cyclic cohomology H*(A) of an algebra A with Hochschild dimen-
sion finite n is given by the image of the cyclic cohomology groups cH?(A) with
q <nin H*(A) described by the diagram of I o S o B maps. In order to obtain
such a result for entire cyclic cohomology assuming entireness for cochains or
that A is a Banach algebra, we need to construct a homotopy oy for k > n of
the bar resolution with controlling the size of oy, for k large (cf. [12]). See also
[6] and [7].

Let us recall that the standard bar resolution of a unital algebra A as the
bimodule A over B = A ® A°P is given by the acyclic chain complex (Mj,b)
defined as My = B ® (®FA) and the B-module map by : My, — My_1,

br(

—~

11)Ra1®--®ap) =(a1 @1)® (aa ® -+ @ ag)+

el
I
—

(1)1 ® - ®ajaj1 @ - Qap+ (-1)f(1®a)@a @ @ap_1.
1

.
I

* The map by : M1 — My = B is defined by

h(lel)®a)=(a®1)—(1®a°)e B, acA,a® € AP,
Also, we check the differentiability at My as by o by = 0 as the following:

(b1ob)(1®1)®a; ®as) =bi1((a1 ® 1) ®asg)
—bi(1®1)®aiaz) + b1 ((1®a3) ® ar)

= (maz ®1) — (a1 ® a3)

—(a1a2 ® 1) + (1 ® (a102)") + (a1 ® a3) — 1 ® (a3a7) =0

where the bimodule structure for B is given by right multiplication by elements
of A on each tensor factor A and A°P.

In the topological context, the above tensor products are (projective or) -
tensor products of locally convex vector spaces, with topology given by some
continuous semi-norms on A or by continuous product A x A — A.

We now consider an algebra A of complex-valued-functions in one complex
variable z € C.

Since A is commutative, we may assume that A = A°P so that B = AQ A°P =
A®A.

Any element f € My, = B®(®FA) is viewed as a function f(z, 20, 21, -+ , 21)
of complex k + 2 variables.

The domain of the complex variables or the regularity of functions f may
not be specified.

In particular, we consider the case of A = C[z,z7!] of Laurent polynomials
in what follows. The algebra A with generators as variables z and z~! = Z with



|z| = 1 (or nonzero) may be called as the circle (or torus or annulus) algebra by
us.
Define a B-module map o, : M,, — M, 1 for n > 1 by

(Jnf)(za 20521, ,Zn+1) = (71)n+1f(za 20521y 7211)
z — Z
+ (_1)n ad 0 (f(zvz()v 21,0 7Zn) - f(za 205215 5 Zn—1, ZO))
Zn — 20

Lemma 6.1. We have b, 10, + 0,,—1b, =id,, on M, for n > 2.

* Namely, it holds as in the diagram.

On—1 On
M1 M, My

idn,lT H J{id'rrkl

bn

brt1

Mn—l Mn Mn+1-
Proof. For g € M,, we have
(bng)(z,zo, 21y ,anl) = g(Z, 20y%y %1, ,anl)

n—1
+ Z(f]—)Jg(Za 205 %1y 3 Ry Ryttt azn—l) + (71)ng(z, 205215 5 Zn—1, ZO)-
7j=1

* Assume that b, is defined so. We then compute

(b302f>(za 20,21, Z2) = (UQf)(Za 20,25 %15 22)
— (02f)(2, 20, 21, 21, 22) + (02 f)(2, 20, 21, 22, 20)

zZ9 — Z
= —f(Z,ZO,Z,Zl) + 22 — Zz (f(Z7Z072721) - f(Z7ZOaZ7ZO))

Z9 — 20

+ f(Z,ZO,Zl,Zl) - P P (f(Z7Z07ZIaZ1) - f(Z,ZO,Zl,ZO))
1 — <0
20 — 0

- f(za207zl,2:2) + 29 — 20 (f(z”zOleaZZ) - f(2720721320))
22 — 20

= _f(Z,ZO,Z,Zl) + 21 — 20 (f(Z,ZO,Z,Zl) - f(Z,ZO,Z,ZO))
Z2 — 20

+ f(2,20,21,21) — (f(z, 20,21, 21) — f(2, 20, 21, 20)) — f(2, 20, 21, 22)

21— 20



Also,
(01b2f)(2, 20, 21, 22) = (b2 f)(2, 20, 21)
2720 (b f) (2, 20, 21) — (b2 f) (2, 20, 20))

= f(ZaZ07ZaZ1) - f(Z,ZO,Zl,Zl) + f(Z,ZO,Zl,ZO)

+
21— 20

zZ9 — Z
2 . (f(Z,ZO,Z,Zl) - f(Z,ZO,Z1,Zl) + f(Z7Z0721720))
21— 20
Z92 — 20
- 2 — 2o (f(zvz()azvzo) - f(272072032:0) + f(2720720320))
= f(2,20,2,21) = f(2,20,21,21) + f(2, 20, 21, 20)
22 — 20
+ 21 — 20 (f(Z,Z(),Z,Zl) - f(ZWZOleaZl) + f(Z,ZQ,Zl,Z()) - f(za2072720))

Therefore we obtain

(b302 + Ule)f(Z7ZO?'ZlaZ2) = _f(Z,Zo,Zl,ZQ) + f(Z,ZO,Zl,ZO)+

22 — &
22— (f(2: 20,7, ) = f(z 20,21, 21) + £ (2, 20,21, 20) = (2, 70,2, 20)).
17— <0

On the other hand we obtain

(=bsoa + 01b2) f(2, 20, 21, 22) = 2(f(2, 20,2, 21) — f(2,20,21,21))

+ f(2: 20, 21, 22) + f(2, 20, 21, 20).-
Possibly, something may be wrong in a way along. O
Theorem 6.2. Let A = C|z,271] be the circle algebra of Laurent polynomials.

Then its entire cyclic cohomology is given by HS (A) = C and H2(A) = C.
Their generators are given respectively by the cyclic cocycles

o(f) = / f()dz and 71 (fo, fr) = / fodf.

Specializing the general homotopy o given above to the bimodule A* over
A yields linear maps

a1 O (A, A%) — C7(A, A*)

such that a,b+ ba,,—1 = id on C™(A, A*) for n > 2.
* Namely,
Cn(A, A%) =L, On1(A, A¥)

)| s

Cn (A, A*) —2n 0y O™ (A, AY).



The transposed map o, : @A — @1 4 is given by

(Oéflf)(Z(J, e 7Zn+1) = (_1)n+1f('20a T vzn)

z — Z
+ (_1)’”M(f(207 e ,Zn_l,Zn) - f(Z07 T azn—laZO))-
Zn — 20
* Note that
M, —2~ M1 _e=f A* or C.
bilinear

Define o, (¢) = ¢ o 0,,. For f € M, define as af, f = o, f.

Given an odd cocycle sequence ¢ = (pa2r+1) in the (b, B) bicomplex, pro-
duced is a cohomologous cocycle sequence (¢, ;) With @5, | = 0 for any k& > 1
by adding to ¢ the coboundary of the cochain sequence (t)o5,) whose components
are given by, using the homotopy a = (o)

o0

Yor, = Z a(Ba)" pomyokt1-

m=0

In particular, 1o = aps + aBaws + - - -.
* In the last case, we have aps = asps. Also, aBaps = asBayps. More
precisely, in the general case, we have

a(Ba)" pam k1 =

aop(Baokt2) -+ (BQokt2m)P2k+2m+1-

The formulae above are given as standard homotopy formulae for cocycles
with support finite in any bicomplex.

Only the difficulty we carry is to show that the formulae continue to make
sense for entire cocycle sequences with support infinite or arbitrary.

The growth condition on cochain sequeneces is given by that for any finite
subset ¥ of A, there exists C' = Cy, such that

C
lpar+1(ao, -, azps1)] < PR %

in the (b, B) bicomplex instead of the equivalent (dy,ds) bicomplex.
* Note that
2k 4 1)!
@kt 1! =(2k+1)(2k)---(k+1)

A
1 2k k+1+1 k+2
= k! —
Her DT z 1

(k+1)

whose factors except k! may be involved to the constant C' as another constant.

Given a finite subset X of the algebra A of Laurent polynomials, the maximal
degree of elements of ¥ is denoted as d = d(X), so that any f € ¥ can be written

d .
as Z]:*d szj'
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Lemma 6.3. Let f € @A be a Laurent polynomial of degree at most d in
each variable z; for 0 < j < n. Then of,B'f € ®"T1A has the same degree

property.

Let || - |1 denote the I*-norm on @A for any n, so that
£l =1 Mgzl -zl = Y [Nigeia-
7;07...)1'71

If f has degree less than d, then we have
lor, Bofllx < (2d +2)| 1 f]1-

Proof. Cyclic permutations Af for variables z; do not change the degree for f.
It is enough to prove the first statement for of, Bf f, where B* = A} B{.
We have

(Béf)(207 e ;Zn+1) = f(zla to 7Zn+1) - (71)nf(207 e 72”)‘

Thus,

(afzﬂB(t)f)(Zo, S Zngls Zng2) = (—1)"”(36}0)(20,“' s Znt1)
n Zn — 2
+ (~1) 2 (B ) (20, 2ns1) — (BSS) (20, + 2n, 20)
Zn+1 — 20

and

(Béf)(ZQ, o ’ZnJrl) - (B(tJf)(ZO’ T 7271’20)
= f(Z1,' o 7Zn+1) - (_1)nf(207 T 7Zn) - f(zh e 727”'20) + (_1)nf(20ﬂ T 7zn)
= f(z1, " y2n+1) — f(21,- -+ ,2n,20) (cancelled).

It is true that Bff has the same (or less as zero) degree as f.
We need to deal with the other term. We may assume that f has the form

f(ZOa"' 7Zn) :h(Z07"' ;Zn—l)zgly \C]| Sd
Then we evaluate a part of the Laurent polynomial (terms) such that

Zn42 — ZO( q q
Zntz — % — 2.

n+1 0
Zn+1 — 20

If ¢ is positive, then the part is divided as to be
(zn+2 = 20)(z051 +20g120 + 28 ).

If ¢ is negative, with p = —¢ > 0, we have

p
¢ a_ 1 _i_zo—zn_‘_l
Zn+1 Zo—zp P TP P

n+1 0 n+1~0



so that the part is divided as to be

(Zn42 — zO)zrqz-f-lzg(Zg_l + Z(I))_2Zn+1 +oeee Ziﬂ)
= (342 = 20) (24120 + 2041207 o+ 240 20)-
In both cases, checked is that the degree (with respect to each variable) is less
than (or equal to) d.
Also checked is that the I'-norm satisfies the inequality in the statement.
* If cyclic permutations not involved, then the [!-norm of the left hand side
is estimated by

2[ £l + 2lglliAlly = 2(ql + DI fll < 2(d + DI fll2

where ¢ # 0 and the factorization by z? is assumed, but both may not be
assumed in general.

O
Proof. (For the theorem above). The formula

o0
hor, = 5 a(Ba)™pamyart1
m=0
is convergent.

Indeed, given a finite subset 3 of A, there exists a growth constant C' = Cx
such that

1
lan+t1(ao, -+, amt1)| < C;7 a; € X.

Thus, taking the monomials %zq, lg| < d as for X, it then follows that for any
Laurent polynomials f; of degree less than (or equal to) d (with respect to each
variable) we have

)\2n+2
l2nt+1(fo, -+, fant1)] < Crd

e Lt VIR

* Let f; = Zi:_d cs,; 2% with ¢,; € C. Then

d d
|¢2n+1(f0a ) f2n+1)| = |(p2n+1( Z Csozsov ) Z 052n+1282n+1)|
so=—d 82n+1=—d
d d
D I DR T CoRE |
so=— Soptp1=—d
d d
= | Z Cso ™" Z Cs2n+1)‘2n+2§02n+1()‘_12307 U a)‘_1232n+1)|
So=— Szn+1=—d
d d 1
< Z |cso| Tt Z |C'52n+1 ‘)‘2n+20>\747|
so=—d Sonp1=—d v
2n+2
=Cha [ foll -~ Il fentall
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Using the lemma above with the equality B = AgBy we then obtain
|(Ba)™ p2my2k+1(fo, -+ 5 fort1)]
\2mA2k+2

= O mr

(2d +2)" L7y (2K + 2 TG £

for any f; € A of degree less than (or equal to) d.
* Note that for m =1,

(Ba)payor+1(fo, -, fart1) = Ao(Boa)wator+i(fo, -+ 5 fort1)
with
(Boa)patak1(for s fort1) = pot2kt1 (o' BE(fo @ -+ @ faps1))-

Do this seem to make sense? Then

|(Ba)patort1(fo, -+ s fors1)]
APk 241
< (2k+ Q)Ox\,dm@d + 2G| £l

That’s it for m = 1!
Taking A small enough implies that there is a constant Cy such that

1
2m!

[(Ba)pzi2k+1(fo, , faws1)| < Ca TR £
for any f; € A of degree less than (or equal to) d.

* Note that it seems that the behavior of C) 4 for A small enough is not so
clear to obtain such an estimate.

It then follows that the series converge as desired so that (¢g)) is an entire
cochain sequence.
* A possible solution for this is to have that

i ] 2ome=o [(BA) ™ 02m 2kl _

We have

oo o0
il < D lla(Ba) " wamranall < Y llazklll(Ba)" wam-ranll

m=0 m=0

with i

[(Ba)™ p2mt2r+1ll < Cagmry
if the last estimate is correct. It seems that the behavior of ||aak|| as k large
enough is not clear. As well, what is the norm? Masaka, infinity?
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On the other hand, we have
& 1
log Vkl = Elog k!
For any n € N, there is £ € N such that £ > n such that
E=nl(n+1)---k>nln---n=nlnk™m

so that
|
VE! > Vnln!=% = in.
= v
It then follows that limj_ . log ¥/k! > n. Therefore, we obtain limy_, o log V! =

00.
O

Corollary 6.4. Let A be a locally convex algebra. The pairing between the
K-theory K1(A) and the odd entire cohomology theory HO(A) is defined by

1 ~ ~ B
(u, p) = mZ(—l)mmlwgmH(u Luyu™ o Juut )

™ 0

for w € GLy(A™) C My(A™) = My(C) ® A~ and any normalized cocycle se-
quence ¢ = (pam+1) in the (b, B) bicomplex, where

CPgmH(UO ®ag, - ,Uzmy1 @ G2my1) = tr(Uo - Uzm41)P2mt1(a0, -+ 5 G2my1)-

Proof. Any invertible element v € GL,,(A) of a locally convex algebra A unital
determines a homomorphism p,, of the unital algebra L of Laurent polynomials
of 2,271 to M, (A).

* We may define as seen by us that p,(z) = u and p,(27!) = u~!. This is
extended to such a homomorphism from L to M, (A).

The pull-back pf ¢ of any odd entire cocycle sequence ¢ on A is cohomologous
to a multiple Amy of 77.

* Note that 71 (fo, f1) = [ fodf1 € C. Also, ¢4, ,, is defined on @?ZOHMn(A).

Then p;, 05,1 with u fixed is defined on @?Zg‘ 'L. In particular, p% ¢} is defined

on L @ L to C. It seems to be possible to find such a multiple A, but how to?
The pairing (u, ) is defined to be A.
The explicit formula for A follows from the proof above (cf. [6] and also [10]).
x As for m = 0, the corresponding term is p{(u~!,u). Does differentiation
look like multiplication by such an invertible? O]

Given an entire odd cocycle sequence (¢2,+1) on A = C[Z] as in the theorem
above, we further compute exlicitly the entire even cochain ¢ = (12,,) such that

Vont+1 = bo, + Bopia, n > 1
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The formula for 9, to be simplified is that

o0

Poy, = Z a(Ba) " Yogt2m+1-

m=0

In order to simplify the computation we may assume that

Vant1(fo, -+ fang1) =0

for some f; =1 for some j > 1. This is a normalization condition weaken.
At the level of chains as elements of ®" 1! A, that means that any function
f(z0,- - ,2n) which is independent of some z; for some j > 1 can be ignored.
It then follows that the formula for the map of, Bf given above is converted
(?7) as to

f(zla"' azn)if(zla"' 7271—1720)

(OLZB(t)f)(ZOa T 7Zn+1) = (_1)n(zn+1 — Zo)
Zn — 20

for f € @ 1A (with the factor z,.1 — 2o changed from only z,1).

Therefore, o, Bf is essentially a divided difference. As well, (o' B*)™ is viewed
as iterated divided differences which satisfy remarkable identities.

The computation may become straightforward and as well the result is for-
mulated in terms of the algebra (Q")"(A).

The algebra (Q")"(A) is generated by A~ and two elements F', v such that
F?2=~%2 =1, va = ay for any a € A, and vF = —F~.

* Recall that

(QM)MA) = QMNA) x4 Zy = QA X Ly Xy Ly = QA @ My(C).

This is a version of the Takai duality for crossed products of C*-algebras by
actions of abelian groups.

The weak normalization condition above implies that the distinction between
A and A~ is not necessary. Thus, the unit of A is that of (Q")"(A).

Lemma 6.5. Let 7 be a trace on (Q™)"(A) vanishing on yA, and pani1) the
cocycle sequence in the (b, B) bicomplex given by

Yont1(ao, -+ ,a2nq1) = tnT(VFag[F,a1] - - - [F,a2p41]), a; € A

with t,;1 = 2"(2n + 1)!I. With u as the generator of A = C[Z], the cochain
sequence ¥ = (o) such that po,+1 = biba, + Bionio for n > 2 is then given
by Yon = a(pont1 — Aobant1), where

O2nt1(fo, s fons1) =

= [ P G Aot AP P NP D] . o -+ ALF ) D (),

where dpin (N) = t, (1 — 4X2)" 2 dA.

— 105 —



Proof. There is the possibility of applying the Laurent polynomials f; € A to
any invertible element of an algebra, and in particular to u + A[F, u] which is
invertible in (Q™)2(A).

* We have u = z with u~! = % We may assume that A is small enough to
have that u + A[F, u] close to w is invertible.

That formula does fit with the quantized calculus where the quantum differ-
ential is given by the graded commutator operator [F, -] by F. Or equivalently
it is done by [yF,-].

* Note that

[vF,u] = yFu — uyF = v[F, u].

Thus, u + A[F,u] plays the role of u + Adu.
The following formula is needed in this proof:

ADE, flu AL )] = o5 (F(u ALF, ) — F = NE,u]).

This relates the quantum differential of f(u + Adu) to the difference slope:

1
5(f(u + Adu) — f(u— Adu)).

* Note that
V[VFau+ A[Fvu]] = 7[7Fa 'LL] +7[’7F7>‘(FU - UF)]

= [F,u] + N(F?u — FuF) — \y(Fu — uF)yF
[F,u] + Mu — AFuF + AFuF — Au = [F, u]

1
= oy (u— u+ A[F,u] = (“A[F,u]))

= i(u + A[F,u] — (u— A[F,u))).
2\
That’s it!
We may check the case of multiples of u + A[F,u| as f similarly. But not.
See the computation given below as a partial part.
The proof of that formula is straightforward for Laurent polynomials, or for
1

f(u) = =, as computed as above. O

The formula of the lemma above is interpreted using a natural deformation
of the algebra (Q”)"(A) to an exterior algebra over A.
Define an endomorphism o of (Q")"(A) for A € [0, 1) by

ox(u) = u+ A\[F,ul,
ox(F) =F,

02(1) = k(1 - 2AF).
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* Certainly, oy is linear at u, F', and . Check that

ox ()2 = (u+ A[F, u])?

=u? + Mu(Fu—uF) + MNFu— uF)u+ X (Fu — uF)?

=u? — MPF + AFu? + \?(FuFu — Fu*F — u* + uFuF)

= u? + \[F,u?] + \>(FuFu — Fu®F — u® + uFuF)

= o (u?) + N (FuFu — Fu®F — u® + uFuF).
The second term may not vanish but it does if u commutes with F. Note
that Fu?F = (FuF)% Also, FuFu = F(uFuF)F. So we should have that

Fu?F = —u? and F(uFuF)F = —uFuF as a possible choice. This seems to
involve the definition of F' given as FuF = +iu so that Fu?F = —u? but

F(uFuF)F = +iu* # Fiu® = —uFuF.

It should be a canonical case. In this case, we do not have oy(u)? = oy (u?).
Also, as another case, if we take FuF = —u, then (FuF) = u®.

We have o, (7)% = 1.
% Check that

1
oaa(y)? = mV(l —2AF)y(1 - 2AF)
1
= m(Wg — 2\y2F — 2\yFy + 4\*yFyF)
1

— 2027 _
We have that o (y) commutes with o (u) and anti-commutes with F' so that

[ox(7),0a(u)] = 0 and ox(7)F + Fox(y) =
* Check that zero is

(722,23 (0)] = s 9L = AP+ MF ) = (u+ AP ) (1 = 20}

1
NiEwye
{yu — wy + AO[F,u] = [F,uly) = 2A(vFu — uyF) = 2X*(YF[F, u] — [F,u]yF)}

with the first term and the second plus third term to be zero as

yu —uy =0,

Y[F,u] — [F,uly = yFu — yuF — Fuy + uF~y

= —Fyu — uyF — Fyu — uyF = =2(Fyu + uyF),
yFu — uyF = —Fyu — uyF = —(Fyu + uvyF),
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and the forth zero as

YF[F,u] — [F,u]yF = yu — yFuF — FuyF + uF~yF
=yu — yFuF + yFuF —uy = 0.

Also, we have
ox(y )F+F0A(’Y)
m{v( —2\F)F + Fy(1 —2)\F)}
= ﬁ{yF— 2\y + Fy — 2AF~F}
= %W{WF — 2 My —yF +2\y} =0.

. / .
We have o) o oy = oy with 2\ = ff‘égi, Thus, we have a semi-group of
ox for X € [0, 3).

* Note that as a possible computation,

(ox 0 ox)(u) = ox(u+ N[F, ul)

= O’)\(’LL) + )\/FU)\(’LL) — )\IU)\(’LL)F

=u+ AF,ul + NF(u+ NF,u]) — X (u+ A\F,u])F
=u+ A+ N)[F,u] + \W{F(Fu—uF)— (Fu—uF)F}
=u+ A+ N)[F,u] + \N(u — FuF — FuF + u)

= (14 22X)u+ (A + N)[F,u] — 2AN FuF.

For any f € A, we have

ﬁmmmﬂum

* Possibly, the multiple should be changed to v/1 — 4A2? Note that

VE, fu+ A[F, u])] =

oA(Y[F,u]) = oxn(vFu — yuF)

= ﬁw(l = 2AF)F(u+ A[F, u]) — ﬁw(l — 2\F)(u + A[F,u))F
- ﬁﬂ?(l — 2AF)(u+ A[F,u]) — ﬁ(l + 2AF)y(u + A[F,u])F.

Also,

AF(u+ \[F,u]) = A\Fu 4+ \*(u — FuF).
v(u 4 A[F, u]) = uy + AM(—Fuy + uFy) = (u — \[F,u])y.
AF(u — N[F,u]) = \Fu — \*(u — FuF).
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Therefore,

1
1
+ m(—”«yu —2\2(yFu — yuF) — 2A\FuyF + 2)*(uyF — FuF~F)).

The second term is converted to

1
m(—w«y(u — FuF) — 2\*(yFu — 2yuF + Fuy))
1
= m(—Q}q(u — FuF) + 4\*yuF).

It seems to be necessary to have that the second term vanishes.
The formula for 05,41 in the lemma above is simplified to

92n+1(f0;"' af2n+1)
=tn/% r(2-0r(f0)oA(F. fi]++ [P, fona Y F))d.
o an’

* Note that for fo = fo(u) € A, we have
ox(fo(uw)) = folu + A[F,u]),

but as a possible or probable computation. Also, as a possible or probable
computation,

VE, fr(u + AE u))] - [V F, fanga (u 4+ AL, ul)]
oA(YE, fans1(w)])

1—4X2
= S O A@]-AE, fonia (@)]).

Moreover,

VE, f1(w)] = A[F, fr(w)]y? = y(F fi(u) — fi(u)F)y?
= (=Fvfi(uw) + fi(w)Fy)y* = (=D[F, f1(uw)]y.
As well,
(W[, f2(w)]y[F, f5(u)]
) u)

Y [F, f2(u))(—
2(w)][F, f3(u)

DIF, f3(u)ly
]y.

Furthermore,

VE, fr(w)IV[E, f2(w) [y [F, fs ()Y [E, fa(u)]y[F, f5(u)]
= (=D[E, fr(w)[F, f2 ()] (=D[E, fs(w)/[F, fa(@)(=DIF, f5(u)]y
= (=DIE A@IE, f2()lF, f3()][F, fa(@)][F, f5(u)]y.
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Therefore, the factor (—1)" as a multiple should be attached to the simplified
formula. Since 7 is a trace, then 7(F(---)) =7((---)F).

Since 7 is a trace, we can replace the endomorphisms oy by a, for s € R as
their inner conjugates, defined as

—s

{ozs(u)zé(u—FFuF + %5
as(v) =7, as(F)=F.

(u — FuF),

Indeed, we have

as(z) = 2z, loa(@)zs, @ € (Q)"(4),

2 Lot
Zs = Z_1llog(1-4X2) = cosh 3 + F'sinh oL 2\ = tanht.

* Since s = —3log(l — 4A?) with A € [0, 3), we have non-negative s €
[0,00) C R. We also have 2X € [0,1) so that ¢t € [0, 00). If we take +s, then real
+s e R.

We compute to check that
t ot t Lt
(cosh B + F'sinh 5)(c0sh 5~ F'sinh 5)
t t
= cosh? 5~ F2sinh? 5= 1.

Hence, cosh %+F sinh % is invertible with inverse cosh %fF sinh % In particular,
(cosh & — Fsinh £ )ox(u)(cosh & + Fsinh )
cosh — — F'sinh —)o(u)(cosh = sinh —

2 277 2 2
t t
= cosh? 50)‘(“) — sinh? QFO')\(U)F
t t
+ cosh B sinh §(o>\(u)F — Foy(u))
with

Foy(u)F = FuF + AF(Fu—uF)F = FuF + AMuF — Fu).
ox(u)F — Fox(u) = uF — Fu+ A(Fu—uF)F — F(Fu— uF))
=uF — Fu+ A2FuF — 2u).

Thus, the inner conjugated is converted to
)t ot )t gt
(cosh §)u — (sinh §)FUF + A{cosh §[F, u] + sinh §[F7 ul}
t t
+ cosh B sinh §{uF — Fu+ A2FuF — 2u)}.

Note that

e = ez lo8(1-4%") — /1 )2,
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As well,
(cosh r_ F'sinh E) (F)(cosh t + F'sinh E)
2 2/ 2 2
t t t t
= (cosh? §)F — sinh? §F + cosh B sinh 5(1 -1)=F!
Moreover,

t t t t
(cosh 3~ F'sinh 5)0’)\(7)(008}1 3 + F'sinh 5)

t t t t
= (cosh? 5)0,\(7) — sinh? 5F0’)\(7)F + cosh B sinh i(a,\(fy)F — Fox(v))
with

Fy(1 =2\F)F = —y 4+ 2\ F = —y(1 — 2\F).
V(1 = 2AF)F — Fy(1 — 2\F) = 2yF — 4)\.

Thus, the inner conjugated is converted to

t t 1
cosh? = + sinh? =) ———~(1 — 2A\F
t t 1
+ cosh — sinh — ————(2vF — 4)\v).
2y e )

Our mission impossible of checking the contents suitably or patiently this
time as a sort of continuation of [14] as well as [15] is yet incomplete towards
the end in a few pages left, involving the last reformuation lemma, proposition,
and theorem, which may not be continued to be done.
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