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REMARKS AND EXAMPLES ON
TWO-VARIABLE ZETA FUNCTIONS
FOR GRAPHS”

Kazufumi KIMOTO

Abstract

We establish a formula for the two-variable zeta functions for graphs intro-
duced by Lorenzini, and use it to give explicit formulas of the zeta functions
for dipole graphs, doubled trees and friendship graphs. We observe that the
two-variable zeta functions for these graphs have a unified formula expressed
using the Tutte polynomials.

1 Introduction

The chip-firing game on graphs and its variations have been studied by many authors
from various perspective. Baker and Norine [1] developed the divisor theory on graphs.
They regard a chip configuration on a graph as a divisor, introduce analogs of various
notions in algebraic geometry such as linear equivalence, rank, Jacobians, etc., and es-
tablished a graph-theoretic version of the Riemann-Roch theorem. Motivated by this
result and the study by Pellikaan [7] on the two-variable zeta function for curves over
a finite field studied (which becomes the local or congruent zeta function by a suitable
specialization of a variable), Lorenzini [5] introduced and studied the two-variable zeta
function Z(G,t,u) for a graph G (in fact, Lorenzini generalized the Riemann-Roch
theory to a corank one lattice in Z" equipped with a certain rank function). Like the
local zeta functions, the two-variable zeta function Z(G,t,u) is a rational function
and has the functional equation between Z(G,t,u) and Z(G, 1/ut,u).

One of the purpose of the paper is to give several explicit computations for con-
crete families of graphs such that the genera of the members are strictly increasing.
Concretely, we treat the following three families: dipole graphs, doubled trees, and
friendship graphs. The two-variable zeta function Z(G,t,u) of a graph G is deter-
mined by first g terms, where g is the genus of G, in the defining series of Z(G,t,u),
so it is easier to determine the zeta function when g is small. Actually, Z(G,t,u) is
immediately obtained if the genus of G is at most two (see the examples in Section
3). Thus it would be meaningful to give a concrete example of an infinite family of
graphs whose genera are unbounded and their zeta functions are explicitly computed.
Interestingly, the zeta functions for these have the same form of expression using their
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Tutte polynomials. To accomplish this, we give a formula for the two variable zeta
functions for graphs that is convenient for our calculation, which is interesting in its
own right.

The paper is organized as follows. In Section 2, we review the necessary language
for the divisor theory on finite graphs and state the facts we will use in our computa-
tion of zeta functions. We also show that the contraction of a bridge does not change
the Picard groups, degree and rank of divisors. This means that it is enough to deal
with the graphs with no edges. In Section 3, we give the definition of Lorenzini’s
two-variable zeta function for a graph and state basic facts on it. In Section 4, we
establish a formula for the two-variable zeta function. Our subsequent computations
are based on this formula. In Section 5, we perform the calculations and give explicit
formulas for the zeta functions of three families of graphs. We conclude the paper by
stating several problems that arise from our observations of examples.

General conventions

For a € R, |a] is the largest integer not exceeding a. For a statement P, define

5(P) = 1 P ?s true,
0 P is false.

We denote by A A B the symmetric difference of two sets A and B, that is, AA B =
(A\ B)U(B\ A). For a positive integer n, put [n] = {1,2,...,n}.

2 Divisors and linear relations on graphs

We quickly review the definition and basic properties of divisors on graphs and related
notions. We refer to the textbooks [4] and [3] for detailed information. Afterward,
we will briefly discuss how the contraction of a bridge affects the materials related to
divisors.

2.1 Definitions and basic facts

Let G = (V, E) be an undirected connected finite (multi)graph without loops. The
genus (or the first Betti number) g of G is defined by ¢ := |E| — |V| 4 1. Since G is
connected, we readily see that ¢ > 0, and g = 0 if and only if G is a tree. For an
edge e € E, G — e is the graph obtained from G by deleting e, and G/e is the graph
obtained from G by contracting e. The degree of v € V' is denoted by d(v), and the
number of edges between v and w (v, w € V) is denoted by v(v,w). An edge e € E
is called a bridge of G if G — e is not connected.
The Tutte polynomial T(G,z,y) of a graph G is defined by

T(G7 z, y) = T(G — 6, y) + T(G/ev z, y)
if e is an edge of G which is neither a loop nor a bridge, and

T(G,z,y) = 2"y



if the edge set of G consists of b brideges and [ loops. It is known that T(G,1,1) is
the number of spanning trees of G.

Example 2.1. Let C,, be the cycle graph with n vertices. Here we understand that
C; is a bouquet graph with one loop, and Cs is a dipole graph D4 (see §5 for dipole
graphs). If n > 2, for any edge e of C,, we have

TCh,z,y) =T(Cp, —e,z,y) + T(Cp/e,x,y)
= T(fp’f‘w Z‘,y) + T(e’ﬂ—lax’ y) = mn_l + T(en—17x7y)a

where P, is a path graph with n vertices (which has only n—1 bridges, so T'(P,, z,y) =
2"~ 1), and T(Cy, x,y) = y. Therefore we have

T(Cp,z,y) =" a4 a4y

We denote by Div(G) the free abelian group on V, that is, the group consisting of
formal Z-linear combination of vertices of G. An element in Div(G) is called a divisor
on G. We often express the coefficient of v in D € Div(G) by D(v), that is,

D= Z D(v)v.

veV

The identity element of Div(G) is denoted by 0. We say that E € Div(G) is effective
and write E > 0 if E(v) > 0 for all v € V. We denote by Divy (G) the set of all
effective divisors on G. The sum of all the coefficients D(v) of D € Div(G) is called
the degree of D, and is denoted by deg D:

deg D = Z D(v).

veV

The map Div(G) 2 D +— deg D € Z is a homomorphism. For convenience, we put

Div¥(G) := {D € Div(G) | deg D = k},
Div} (G) = Div"(G) N Divy(G).

Div’(G) is the kernel of the degree map. Notice that
DiV_lf_(G) ={x1+ - +ap|x,..., 2 €V}

for each k € Zs¢, and Divi (G) = @ if k < 0.
Let M(G) be the set of all Z-valued functions on V. Define a map A: M(G) —
Div(G) by
Af = Z Av(f)v
veV
with
Au(f) = d(v)f(v) = D (v, w)f(w).

weV

We denote by Prin(G) the image of A. Notice that Prin(G) is a subgroup of Div’(G).
Two divisors D, D’ € Div(G) are called linearly equivalent if and only if D — D’ €



Prin(G). We simply write D ~ D’ to mean that D and D’ are linearly equivalent.
Define
L(D) :={F € Divy(G)| D ~ E}.

Namely, L(D) is the set of all effective divisors which are linearly equivalent to D.
We define the rank function r: Div(G) — Z>_; by the following conditions:

(i) If L(D) = @, then r(D) = —1.
(ii) For any s € Zx,
r(D)>s < L(D—-E)# 9, VE¢cDivi(G).
By definition, we see that r(D) = r(D’) it D ~ D’. If deg D < 0, then L(D) = &,
and hence (D) = —1. If deg D > 0, then deg(D — E) < 0 when deg E > deg D,

which implies that r(D) < deg D.
Let us introduce a distinguished divisor on G

K = Z(d(v) —2)v,

veV

which is called the canonical divisor on G. We see that deg K = 2g — 2. Remarkably,
the following graph-analog of the Riemann-Roch theorem holds.

Theorem 2.2 (Baker-Norine [1]). For any D € Div(G), we have
r(D)—r(K —D)=degD — g+ 1.
We further define the Picard group and Jacobian group of G by
Pic(G) := Div(G)/ Prin(G),
Jac(G) = Div’(G)/ Prin(G).

The order |Jac(G)| of the group Jac(G) is equal to the number of spanning trees of
G by the matrix-tree theorem. In particular, Jac(G) = {0} (or Div’(G) = Prin(G))
if and only if G is a tree. We denote by [D] an element in Pic(G) represented by
D € Div(G). Notice that

[D]=[D'] & D~D" = degD =degD'".
For convenience, we put
Pic*(G) == {[D] € Pic(G) | deg D = k}.

Notice that [Pic®(G)| = |Jac(G)]| for any k € Z.

Remark 2.3. If the Smith normal form of the matrix Lq, which is obtained by deleting
the first row and first column of the Laplacian matrix of G, is diag(aq, ..., a,—1), then
Jac(G) 2 (Z/arZ) x -+ x (Z)an-7).

For g € V, a divisor D € Div(G) is called g-reduced if



(1) D(v) >0 for all v € V' \ {q¢},

(2) for any S C V \ {q}, there exists a vertex v € V \ {¢} such that D(v) —
A eg0s)(v) <0.

We denote by Div(G), the set of all g-reduced divisors on G, and put
Divi(G), = Div(G), N Div'(Q),
Div’ (G), = Div'(G), N Divy(G).

Remark 2.4. In the language of chip-firing game, a ¢-reduced divisor is a superstable
configuration with sink q.

The following fact is crucial for our discussion (see Theorem 3.6 and Corollary 3.7
in [3]).

Theorem 2.5. Let g € V' be an arbitrary verter. We can take the set of all the q-
reduced divisors on G as a complete system of representatives of Pic(G). Namely, for
any D € Div(G), there exists a unique q-reduced divisor which is linearly equivalent
to D. Further, if D is q-reduced, then

r(D) >0 <= D(q) > 0.

Remark 2.6. Let D € Div(G), be a g-reduced divisor. If D(g) > 0, then D — (D(q) +
g =3,.,D(v)v—qis also g-reduced and its coefficient of ¢ is negative. Thus we
have (D) < D(q).

For any E € Div}(G), there uniquely exists E’ € Div} (G), such that £ ~ E'.
Thus we see that

r(D)>s < L(D—-E)#9, VE¢cDiv](G),.

2.2 Contraction of a bridge

We note here that a contraction of a bridges does not affect to the structure of the
Picard groups, degrees and ranks of divisors. We begin with a simple fact.

Lemma 2.7. Ife = zy € E is a bridge of G, then x —y € Prin(G). More generally,
if there is a unique path between x and y, then x —y € Prin(G)

Proof. Let G1 = (V4, E1) and Gy = (Va, E2) be the connected components of G — e
such that x € V5 and y € V5. If we take a function f € M(G) as

. 1 UEVl,
f('U> o {0 RS VQ,

then we have A(f) =z —y. O

Corollary 2.8. If G is not a tree, then r(v) =0 for every v € V.



Proof. Suppose that there exists a vertex v € V such that r(v) = 1. Since Div}(G) =
{0}, we have v — w ~ 0 for any w € V. Hence, for any w,w’ € V, we have w — w’ =
(v—w') = (v—w) € Prin(G). This implies that Prin(G) = Div’(G), or G is a tree. [

If e is a bridge of G, then the number of spanning trees (or the order of the
Jacobian group) is invariant under the contraction of e, i.e. |Jac(G)| = |Jac(G/e)|.
More precisely, this operation preserves the structure of the Picard group as well as
degrees and ranks of divisors.

Theorem 2.9. Ife is a bridge of G, then there exists a group isomorphism @: Pic(G) —
Pic(G/e) which preserves degree and rank.

Proof. Let G = (V, E) be a connected graph, e = zy € E (z,y € V) be a bridge of
G, and set G' = (V', E') = G/e. We take V1,V5 C V and z € V' so that

V=Viu{z}u{ytus, V=1V u{z}uVs
are disjoint unions (see the figure below).

G: G/:

We denote by d’'(v), v/(v,w) and /(D) the degree of the vertex v € V', the number
of edges in G’ joining v,w € V' and the rank of D € Div(G’) respectively. Define
: Div(G) — Div(G’) by

p: Div(G)>D =Y Dwuvr Y D@+ (D(@)+ D(y))z € Div(G').
veV veViuVs

It is immediate to see that ¢ preserves the degrees of the divisors. This map ¢ is
apparently surjective, and

ker p = Z(x — y) = {k(z — y) | k € Z} < Prin(G)
by Lemma 2.7. Thus ¢ induces the isomorphism
©: Pic(Q) 3 [D] — [p(D)] € Pic(G).

It is easy to check that ¢ gives a bijection between the set of all z-reduced divisors
on G and that of all z-reduced divisors on G’ (notice that D(y) = 0 if D € Div(G) is
x-reduced). Furthermore, we have

r(D) >k < r'(p(D)) >k
for D € Div(G) and k > 0. O

By this theorem, we can restrict our attention to the 2-edge-connected graphs
(i.e. graphs which have no bridges) without loosing generality when we consider the
two-variable zeta functions introduced in the next section (see Lemma 3.5).



3 Two-variable zeta functions of graphs
For D € Div(G), we put
h(D) = r(D) + 1.
Notice that we have h(D) = 0 when deg D < 0, and by Theorem 2.2, we have

h(D)=degD —g+1

when deg D > 2¢g — 2.
Lorenzini [5] introduced the two-variable zeta function of G as follows.

Definition 3.1 (two-variable zeta function of G). Define

whD)
Z(G tu) = Y w7~ Len _ Zb (G, u)t

u—1

where we put
uMP) — 1

bi(Gou) = Y —

[D]ePici (G)
for brevity.

Remark 3.2. In fact, in [5], Lorenzini defines a zeta function for a corank-one lattice
A C Z" equipped with a function r: A — Z satisfying an analog of the Riemann-Roch
theorem in general.

Remark 3.3. For a smooth projective curve C' over the finite field I, with ¢ elements,
the local zeta function (or congruent zeta function) of C' is defined by

((CFy8) = ¢ &P,
D>0
where the sum is taken over all effective divisors D on C. It is known that

o= ( ¥ 2N

qg—1
i20 [D]ePic(C)
deg D=1

where T' = ¢~* and h(D) = dimy, L(D) is the dimension of the linear system of D.

The following is the basic facts on the zeta functions.

Theorem 3.4 (Lorenzini [5]). (1) There exists a polynomial L(G,t,u) € Z[t, u]

such that LGt u)
Z(G,t,u) = A—0d—w) (3.1)
(2) Z(G,t,u) satisfies the functional equation
Z(G, 1/ ut,u) = (ut*)*~9Z(G, t,u). (3.2)



(3) L(G,0,u) =1, L(G, 1,u) = |Jac(G)|.
(4) L(G,t,0) =t9T(G,1,1/t).
By Theorem 2.9, we obtain the
Lemma 3.5. If e is a bridge of G, then Z(G,t,u) = Z(G/e,t,u).
Put N = |Jac(G)|. Notice that

w9t —1
b;(G,u) = N—F—
(Gu) u—1
when i > 2g — 2. Hence
292 29—1
- Nt29 u9 1
2 tu) = S bi(Gu)t ( - )
(Gt ) ; (Gt + == (T~ T
2g—2 g-1
. ut —1 . Nt9
— . t_ N i+g—1 .
Zbl(G,u)t ZT*N +—(17t)(17ut)
=0 1=1
By Theorem 2.2, we see that
. g—1—i __ 1
bag—2—i(G,u) = u? ™' (G u) + N%
for 0 <i<g—1, it follows that
91 oo . N9
Z(G,t,u) = bi(G,u)t’ + u'b ,1,i(G,u)t9_1+’ 4+ — (3.3)
; ; I (1 —1)(1 — ut)

Thus, the zeta function Z(G,t,u) is determined by the polynomials b;(G,u) (i =
0,1,...,9 — 1). This implies that the larger the genus g of G, the harder it may
become to compute the zeta function Z(G,t,u).

We see that by(G,u) = 1 in general. If G is 2-edge-connected, then we have
b1(G,u) = |V|. Thus the two-variable zeta function of a 2-edge connected graph
whose genus is at most 2 is completely determined by the numbers of its vertices and
spanning trees as we show in the examples below.

Example 3.6 (¢ =0). If G is a tree, then we readily have

1
Z(G,t,u) = —————
(Gtw) = Gy =
by (3.3). This is an analog of the local zeta function for the projective line P!,
Example 3.7 (g =1). If G = G, is a cycle graph with n vertices, then we have

B nt _1+(n—u—1)t+ut2
2Gt) =1 Ty —w) — (=D - u)

by (3.3). This is an analog of the local zeta function for an elliptic curve.



Example 3.8 (g = 2). If g =2 and G is 2-edge connected, then we have

Z(G,t u)—1+nt+ut2+N—t2
T (1 —t)(1 — ut)
1+(m—u—1Dt+(N—n+2u—nu)t?+uln—u— 1)t +u?t!

(1—=1)(1 — ut)
by (3.3), where n = |V| and N = |Jac(G)|.

Remark 3.9. Let G = G, + €, be a vertex sum'of two cycle graphs C,, and G, that
is, G is a graph obtained by gluing C,, and C,, at one vertex (see the figure below for
the case m =7, n = 11).

Tt is easy to see that Jac(G) = Jac(C,, ) xJac(C,) and T(G, x,y) = T(Cp, x,y)T(Cpr, x, y).
On the other hand, an extra term appears in the relation between (the numerators
of) the zeta functions:

L(G,t,u) = L(Cop, t, u)L(Cpy t, 1) + ut(l — t)(1 — ut).

In general, if G = G; + G5 is a vertex sum of two graphs G; and G35, then we
have Jac(G) = Jac(Gy) x Jac(G2) and T(G,x,y) = T(G1,z,y)T (G2, x,y), but the
relation between the zeta functions is rather complicated. In general, Z(G, ¢, u) is not
determined by Z(G1,t,u) and Z(Ga,t,u) alone, but depends on which vertex G; and
G are glued at. For instance (see Example 3.1 in [2]), the following two graphs

G1: y G2:

have the same Tutte polynomials and isomorphic Jacobian groups, but
Z(Go,t,u) = Z(Gq,t,u) + ut?.
However, we can show that
L(G,t,u) = L(G1,t,u) L(Ga,t,u) (mod ut(l —t)(1 — ut)) (3.4)

holds in Z[t, u]. See §4.3.

ITo be precise, the vertices to be glued to define the vertex sum should be indicated, but the
choice of such vertices is irrelevant in the present context, so we omit it.




4 A formula for two-variable zeta functions

4.1 A formula for two-variable zeta functions

Let us prepare a formula for Z(G, ¢, ) which is useful in our calculation. By rewriting
the summand in b;(G,u) as

we have

Z(G,t,u) Z > 25 JuF e

=0 DeDivi(G), k=0
=3 > D (D +iq) = k)yutt'.
i=0 DeDiv0(G), k=0

Here we use the fact that Div'(G), = Div’(G), + ig in the second equality. For a
divisor D € Div(G), we denote by Red,(D) the unique g-reduced divisor which is
linearly equivalent to D. We see that

r(D +iq) > k

<~ r((D+iq) — (D' + kq)) >0, ¥D' € Div’(G),, D'(q) + k > 0

<= Red,(D —D')(q) +i—k >0, ¥D' € Div’(G),, D'(q) + k > 0.
Define

p1(D) == max{—Red,(D — D')(q) | D' € Div’(G)4, D'(q) + k > 0}
for k > 0 and D € Div’(G@). By definition, we have

po(D) < (D) < pa(D) < ...,
and
pio(D) = max{—Redy(D — D')(q) | D’ € Div'(G), D'(q) >0} = —D(q) >0 (4.1)
since Div’(G), = {0}. Notice that
r(D+iq) >k < up(D) <i—k.

Therefore we have

Z(G,t,u) Z Z Zéuk ) <i— k)ukt?

1=0 DeDiv0(G), k=0

_ Z Zm )< k)i

DeDiv0(G)q k =

Thus we obtain the following formula for Z(G,t, u).



Theorem 4.1. We have
_ 1 = k pk+ i (D)
2Gtu)y=1— Y D ultttm® (4.2)
DeDiv9(G), k=0

By this formula, the computation of Z (G, t, ) is reduced to that of u (D) for each
g-reduced divisor D € Div’(G), of degree 0.

4.2 Remarks on Theorem 4.1

We denote by Crit(G), the set of all critical configurations on G with sink ¢ having
2|E| — |V| chips. Let D € Div’(@), be a g-reduced divisor of degree 0. If we define
0 by 6(v) = d(v) —1 — D(v) for v € V, then 0 € Crit(G),. This gives a bijection
between Div’(G), and Crit(G),.

It is known by Merino [6] that if we put

level(9) = Z@(v) — |E| + d(q)
vF#q
for 6 € Crit(G)y, then we have
0 <level(d) <g

and

> YO =T(G 1) (4.3)

0ECrit(G),

From this, it follows that 0 < —D(gq) < g since level(§) = D(q) + g when 6 and D are
related as above. Hence we have

0<u(D)<g (4.4)

for D € Div’(G),. Furthermore, if k > g, then D'(q) +k > D’(q) +g > 0 for any
D' € Div’(G),. This implies that when k > g, we have

pi(D) = max{—Red, (D — D")(q) ’ D e DiVO(G)q}
=max{—D'(¢q)| D' € Div’(G),} = g.

Let
Li(Git)= > (4.5)

DeDiv0(G)q
be the generating function of (D) for D € Div’(G),. We notice that Ly (G,t) =
|[Jac(G)|t? if k > g. Tt follows that
k
2(Gtu) = — ];) (ut)* Ly (G, 1), (4.6)

so that the polynomial L(G,¢,u) in Theorem 3.4 is given by
LG, t,u) = (1 —t)(1 —ut) Z(G, t,u)



oo

- i(ut)’wa B = > (ut) Li(G 1)

=0 k=0
— )+ Y (ut)* (Li(G,t) — L1 (G, 1))
k=1
g
=t9T(G,1,1/t) + Y _(ut)*(Li(G,t) — L1 (G, 1)). (4.7)
k=1

Here Lo(G,t) = t9T(G,1,1/t) is immediate from (4.3) and (4.1). This recovers (4) of
Theorem 3.4 by letting u = 0. We also note that

L(G,t,1/t) = Lo(G,t) + zg: (Li(Gt) = Li 1 (G, 1)) = Ly(G, 1) = [Jac(G)|t. (4.8)
k=1

4.3 Remarks on vertex sums of two graphs

Let G be a vertex sum of two graphs G and Gs, and ¢, g1, g2 be the genera of G, Gy,
G5 respectively. Notice that g = g1 + go. Since
9T (G, 1,1/t) =tN"T(G1,1,1/t)t92T(Go,1,1/t),
we see that
L(G,t,u) = L(Gy,t,u)L(G2,t,u) (mod ut)
by (4.7), and
L(G,1,u) — L(G1,1,u) L(Ga, 1,u) = |Jac(G)| — |Jac(G1)||Jac(G2)| = 0,
L(G,t,1/t) — L(G1,t,1/t) L(Ga,t,1/t) = |Jac(G)|t? — |Jac(G1)[t9* |Jac(G2)[t92 = 0
by (3) of Theorem 3.4 and (4.8), which imply that L(G,t,u) — L(G1,t,u)L(Ga,t, u)

is divisible by 1 —¢ and 1 —ut. Since ut, 1 —t and 1 — ut are relatively prime in Z[t, u],
we obtain the congruence (3.4).

5 Examples of two-variable zeta functions

In this section we consider three examples of infinite families of graphs: dipole graphs,
doubled trees, friendship graphs. For each family, we give an explicit formula of the
two-variable zeta functions. In view of the question proposed by Lorenzini [5] as to
whether it is possible for two connected graphs having the same Tutte polynomials to
have the different zeta functions or non-isomorphic Jacobians, and the negative answer
to this by Clancy-Leake-Payne [2], we include the Tutte polynomials and Jacobians
in a remark for each example.

5.1 Dipole graphs

For each positive integer m, let D,, be the dipole graph of size m, that is, a graph
with two vertices which are connected by m edges:

®1:.—07 ®2:©7 ®3:®a ®4:@3



The graph D, is the simplest graph whose genus is m — 1, as well as the simplest
graph which is m-edge-connected.

Remark 5.1. The Tutte polynomial and the Jacobian group of D,,, are given by
T(Dm,z,y) =z +y+y>+-+y" ', Jac(Dy,) 2 Z/mZ.

Example 5.2.

1
Z(D1,t,u) = EDEEk
2t

At = Ty
Z(Da,t u)=1+2t—|—ut2—|—3—t2

Y (1—1t)(1—ut)’
Z(Dy,t,u) =1+ 2t + (3 +u)t? + 2ut® + u’t* + 4—t3.

(I —=t)(1 —ut)

Let V=V (D,,) = {v,q}. We see that mv — mgq generates Prin(D,,). We define
D(a) ==a(v—q)
for a € Z. It is readily seen that
Div’(D,n), = {D(a) |0 < a < m}.
Lemma 5.3. For k > 0, we have

pr(D(a)) = max{(a — b) mod m |0 < b <min{m — 1,k}} = {Zl . IZ i Zf (5.1)

Proof. We see that
D(a) = D(b) = (a = b)(v = ¢) ~ D((a — b) mod m)
for any 0 < b < m. Hence
r(D(a)) = max{ — Red, (D(a) — D(5))() |0 < b < m, b+ k > 0}
= max{(a —b) mod m |0 < b < min{m — 1,k}}
as desired. O

Theorem 5.4. The zeta function of D,, is given by

B 1 (1 —u)t™ u(ut?)™
Z@mtw) = T A —w) T (- 020w (A —weri—w) Y

Proof. We compute the zeta function via the expression (4.2):

2D tou) = 1 S0 D ki),

0<a<m k=0



For a fixed a,

(o] a o0
Zukthr#k(D(a)) _ Zukthra + Z wkktm—1
k=0

k=0 k=a+1
T — ut(ut?)® + ut™ (ut)”
1—ut ’

Hence we get

Z(D’"ht;u)

! 2\a m a
= T, 2 (1) )
= A S o S S U1
R (l_t)(l_“t)< 1= “Tioae T T w )
_ 1 1—ut (1—u)tm (1 — t)(ut?)™
= (I—=1)(1 —ut) <(1 —t)(1 — ut?) - (1 —t)(1 —ut) N (1 —ut)(1— ut2)>

1 —ut (1—u)t™ - w(ut?)™ )

(1—t)2Q—ut?) (1—02(1—ut)2 (1 —ut)2(l —ut?)

5.2 Doubled trees

Fix a positive integer m, and let G be a tree with m edges and m + 1 vertices. Let G’
be a graph which is obtained from G by replacing all its edges to double edges. Then

the genus of G’ is m. Notice that 2v ~ 2w in Div(G’) for any v,w € V(G') = V(G).

Example 5.5. For instance,

Remark 5.6. The Tutte polynomial and the Jacobian group of G’ are given by
T(G2,y) = (v +9)™,  Jac(G') = (Z/22)™.
Fix a vertex ¢ of G’. For each S C V' \ {¢}, define

D(S) = (v—q).

veS

Then we have
Div’(G")y = {D(S) | S C V \ {a}}.



Lemma 5.7. For k > 0,
u(D(S)) = min{|S| + k,m}. (5.3)

Proof. Since

D(S)-D(T)=> (v—q) =Y (v—2q)
veES veT
=Y w-q-2> w-a~ > (-0,
veESAT veET\S veESAT

we see that
pe(D(S)) = max{|S AT||T C V\{q}, [T| <k}

If E < m—|S], then we can take T' C V' \ {¢} such that SNT = @ and |T'| = k, which
attains the maximum |S| + k of |S A T|. Otherwise, we see that p(S, k) = m. Thus

we get
pi(D(S)) = min|S| + k, m}

as desired. O]

Theorem 5.8. The zeta function of G' is given by

1 (utm+1(1 +ut)7n (1 +t)7n)

Z(G' t,u) =
(G, ) 1 —ut? 1—ut 1—t

Proof. We compute the zeta function via the expression (4.2):

[ee]
2(G ) = % S kD)),

SCV\{a} k=0
By Lemma 5.7, we have
o0 m—s—+1 e’}
Zuktk-ﬂtk(D(S)) _ Z ukt2k+s + Z uktk-‘rm
k=0 k=0 k=m—s

s 1— (ut2)m—s tm(ut2>m—s
1 — ut? 1—ut

=t

for each S C V' \ {¢} with s = |S|. Since there are (") subsets of V' \ {¢} whose
cardinalities are s, we get

Z(G tu) = 1 & <m) (tsl ~ (ut?)ms . tm(utg)ms)

1_ts:O s 1 — ut? 1 —wut
1 (1+t)m—(t+ut2)m+tm(1+ut2)m
T 1-—t 1 — ut? 1—ut
1 wt™ 1+ ut)™ (1 + )™ O
1 —ut? 1—ut 1—t )7



Remark 5.9. Let G, Gy be trees with m; and my edges respectively, G, G', be the
corresponding doubled trees, and G’ = G + G}, be a vertex sum of G} and G),. Notice
that G’ is a doubled tree obtained from the corresponding vertex sum of G; and G,
that is, G’ = (G1 + G2)’. We have

L(G' t,u) = L(GY, t,u) L(GY, t,u) + ut(1 — ¢)(1 — ut) Ry, (t,u) Ry, (£, )
with
" (1 +ut)™ — (1+6)™
1 — ut? ’

R, (t,u) =

5.3 Friendship graphs

The friendship graph F,, is a simple graph constructed by gluing m triangles C3 at a
common one vertex:

51‘<I, 5:21>'<17 ?3§<} Sr4[%]7

F.n has 2m + 1 vertices, 3m edges and 3" spanning trees, and the genus of &, is m.

Remark 5.10. The Tutte polynomial and the Jacobian group of F,, are given by
T(Fm,z,y) = (22 +x+y)™, Jac(F,n) = (Z/37)™.

Let usset V = {q,v1, w1, ..., Um, Wy, }, where each {¢,v;, w;} forms a sub-triangle.
Notice that
2v; ~ wj +q, 2w; ~vj +q.
Example 5.11.
3t
Z(Fq,t =14+ ——
Outw) =1+ Gy
) 322
Z(Fa,t =145t t —_—
( 2, ?u) + +u +(1_t)(l_ut)7
2 3, 2,4 3%
Z(Fs,t =147t 19 t Tut t —_
( 3, ,u) + +( +’LL) + Tut® +u +(17t)(17ut)7
Z(Fyt,u) =149t + (33 + u)t? + (65 + 9u)t + u(33 + u)t?
2,5 | 346 3t
Yu“t t —_—.
+ 9ut” +u”t” + 1= —u)

The g-reduced divisors of degree 0 on F,, are
Div?(F,,), = {D(A,B)|A,B C [m], AN B = &},

where

D(A,B) = Z(va—q)—l—Z(wb—q), A, B C [m)].

acA beB
Notice that —D(A, B)(q) = |A| + |B].



Lemma 5.12. For k >0,
ue(D(A, B)) = minf|A| + | B + k,m}. (5.5)

Proof. We have
D(A7B) - D(Alv B/) ~ D(AN’ B//)
with
A" =(A\ (A UB))U(B"\(AuB))U(A'nB),
B"=(B\(AUB)U(A"\(AUB))U(ANB’).
Notice that A” N B"”" =@ and A”UB"=(AUBUA UB)\ (ANnA)U(BnNB).

Then
—D(A",B")(q) =|[AUBUA UB'|—-|ANnA'| - |BN B’|.

This attains the maximum if we take A” and B’ such that A’U B’ is a maximal subset
of [m] \ (AU B), and then —D(A”, B")(¢) = min{|A| + |B| + k,m}. O
Theorem 5.13. The zeta function of F,, (m > 1) is given by

(1+2t)™ ut™ (2 + ut)™

S (e ) R (s Tl

Proof. We compute the zeta function via the expression (4.2):

1 o ekt (D(ALB))
Z(g:m,t,u):HABZC[ ]kz_ou thTHE .

ANB=g&
By Lemma 5.12, we have

00 )
Z ukthr,uk (D(A,B)) _ Z uktk+min{s+k,m}
k=0 k=0

m—s—1 oo
— Z ukt2k+s_,’_ Z uktk-‘rm
k=0 k=m—s
B T o U
1 — ut? 1—ut

for each pair (A, B) of disjoint subsets of [m] with s = |A| + |BJ|. Since there are
2%("") such pairs, we get

Z(Fotu) = 390 <m> <t51 S tm(ut)ms)
s=0

1—t s 1 — ut? 1—ut

= a2 ()

s=



Utm+1 G m S m—s
(1 —ut) (1 — ut?) ; <s>2 (ut)
(2™ ut™ (2 4 ut)™ -
T -1 —w?)  (1—ut)(1—ut?)

Remark 5.14. We can regard Jp,, 4m, = T, + T, by gluing F,,,, and F,,,, at ¢. We
have

L(Frny4mas tst) = L(Fpny s 6, u) L(Fony, ty ) + ut(1 — ) (1 — wt) Ry, (¢, w) Ry (E, 1)

with

t"(2 +ut)m — (14 26)™
Ron(tyu) = 1)_ut2( il

Remark 5.15. Let us consider the graphs

q q

We can regard F5 = F1 + F5 and F) = F» + F» (by gluing at ¢ in the figure above).
We have
3343
Z(Fg,t,u) = 1+7t+19t2+7ut3+u2t4+m
=Z(Fs, t,u) — ut27

Z(F4t,u) = 1+ 9t + 3362 + (65 + 2u)t® + 33ur*

34
(1= #)(1 —ut)
= Z(Fy, t,u) —ut? — Tut® — ut*.

+9u?t® + uit® +

5.4 Observations and problems

We can restate the calculation results obtained above in a slightly different manner
as follows:

1—tm wt™(1 — (ut)™)

20t = =) = w2l - we)’ (52
, o A+nm ut™ (1 4+ ut)™ ,
2@t = A=) T O =) = uf)’ (5.4)
2T tou) = (1+2t)™ ut™ (2 + ut)™ (5.6)

(1—0)(1 —ut?) (1 —ut)(l —ut?)’

We notice that these are written in a unified way, that is, if G is one of the graph

above, then
Lo(G,t) wtI T (G, 1, ut)

T—0(—u?®) T A=—w)(1—u2)’

Z(G,t,u) = (5.7)



where ¢ is the genus of G. It is remarkable that Z(G,t,u) is written in terms of
the Tutte polynomial in these cases. However, this equality (5.7) does not hold for
general graphs. For instance, we have

16¢3
Z(Ky, t,u) =1+ 4t + 1062 + dut® + ?t 4+ ——————
(Ky,t,u) + 4t + + dut” +u +(17t)(17ut)
_ Lo(fK4,t) + ut3+1T(fK4,Lut) . ut2,

(I—-t)(1—wut?) (1 —wut)(l—ut?)

where X4 is the complete graph with four vertices. In fact, it would be possible
that G and G’ have the same Tutte polynomials but Z(G,t,u) # Z(G' t,u) (see
[2]), so one cannot expect the zeta function Z(G,¢,u) to be expressed in terms of
(several specializations of) the Tutte polynomials T(G,z,y) of G alone in general.
We therefore propose the following problems concerning (5.7).

Problem 5.16. Characterize the graphs whose two-variable zeta function satisfies
the equation (5.7). Notice that we may restrict our consideration to 2-edge connected
graphs since both Z(G,t,u) and the right hand side of (5.7) are invariant under the
contraction of bridges.

Problem 5.17. Find a formula for Z(G, ¢, u) like (5.7) that holds for a broader class
of graphs.

It would also be an interesting problem to find other infinite families of 2-edge
connected graphs whose genera are unbounded and the two-variable zeta function of
each member is determined in a closed form. The candidates that come to mind eas-
ily include complete graphs and complete bipartite graphs, wheel graphs, multiplied
trees, vertex sums of dipole graphs (special cases of multiplied trees), etc.
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