
REMARKS AND EXAMPLES ON
TWO-VARIABLE ZETA FUNCTIONS

FOR GRAPHS∗

Kazufumi KIMOTO

Abstract
We establish a formula for the two-variable zeta functions for graphs intro-

duced by Lorenzini, and use it to give explicit formulas of the zeta functions
for dipole graphs, doubled trees and friendship graphs. We observe that the
two-variable zeta functions for these graphs have a unified formula expressed
using the Tutte polynomials.

1 Introduction
The chip-firing game on graphs and its variations have been studied by many authors
from various perspective. Baker and Norine [1] developed the divisor theory on graphs.
They regard a chip configuration on a graph as a divisor, introduce analogs of various
notions in algebraic geometry such as linear equivalence, rank, Jacobians, etc., and es-
tablished a graph-theoretic version of the Riemann-Roch theorem. Motivated by this
result and the study by Pellikaan [7] on the two-variable zeta function for curves over
a finite field studied (which becomes the local or congruent zeta function by a suitable
specialization of a variable), Lorenzini [5] introduced and studied the two-variable zeta
function Z(G, t, u) for a graph G (in fact, Lorenzini generalized the Riemann-Roch
theory to a corank one lattice in Zn equipped with a certain rank function). Like the
local zeta functions, the two-variable zeta function Z(G, t, u) is a rational function
and has the functional equation between Z(G, t, u) and Z(G, 1/ut, u).

One of the purpose of the paper is to give several explicit computations for con-
crete families of graphs such that the genera of the members are strictly increasing.
Concretely, we treat the following three families: dipole graphs, doubled trees, and
friendship graphs. The two-variable zeta function Z(G, t, u) of a graph G is deter-
mined by first g terms, where g is the genus of G, in the defining series of Z(G, t, u),
so it is easier to determine the zeta function when g is small. Actually, Z(G, t, u) is
immediately obtained if the genus of G is at most two (see the examples in Section
3). Thus it would be meaningful to give a concrete example of an infinite family of
graphs whose genera are unbounded and their zeta functions are explicitly computed.
Interestingly, the zeta functions for these have the same form of expression using their
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Tutte polynomials. To accomplish this, we give a formula for the two variable zeta
functions for graphs that is convenient for our calculation, which is interesting in its
own right.

The paper is organized as follows. In Section , we review the necessary language
for the divisor theory on finite graphs and state the facts we will use in our computa-
tion of zeta functions. e also show that the contraction of a bridge does not change
the Picard groups, degree and rank of divisors. This means that it is enough to deal
with the graphs with no edges. In Section 3, we give the definition of Lorenzini s
two-variable zeta function for a graph and state basic facts on it. In Section , we
establish a formula for the two-variable zeta function. Our subsequent computations
are based on this formula. In Section 5, we perform the calculations and give explicit
formulas for the zeta functions of three families of graphs. e conclude the paper by
stating several problems that arise from our observations of examples.

G n r con ntion
or a ∈ R, ⌊a⌋ is the largest integer not exceeding a. or a statement P , define

δ(P ) :=

{
1 P is true,
0 P is false.

e denote by A△B the symmetric di erence of two sets A and B, that is, A△B =
(A \B) ∪ (B \A). or a positive integer n, put [n] := {1, 2, . . . , n}.

Di i or nd in r r tion on r
e quickly review the definition and basic properties of divisors on graphs and related

notions. e refer to the textbooks [ ] and [3] for detailed information. Afterward,
we will brie y discuss how the contraction of a bridge a ects the materials related to
divisors.

1 D nition nd ic ct
Let G = (V,E) be an undirected connected finite (multi)graph without loops. The
genus (or the first Betti number) g of G is defined by g := |E| − |V | + 1. Since G is
connected, we readily see that g ≥ 0, and g = 0 if and only if G is a tree. or an
edge e ∈ E, G− e is the graph obtained from G by deleting e, and G/e is the graph
obtained from G by contracting e. The degree of v ∈ V is denoted by d(v), and the
number of edges between v and w (v, w ∈ V ) is denoted by ν(v, w). An edge e ∈ E
is called a bridge of G if G− e is not connected.

The Tutte polynomial T (G, x, y) of a graph G is defined by

T (G, x, y) = T (G− e, x, y) + T (G/e, x, y)

if e is an edge of G which is neither a loop nor a bridge, and

T (G, x, y) = xbyl
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if the edge set of G consists of b brideges and l loops. It is known that T (G, 1, 1) is
the number of spanning trees of G.

Example 2.1. Let Cn be the cycle graph with n vertices. ere we understand that
C1 is a bouquet graph with one loop, and C2 is a dipole graph D2 (see 5 for dipole
graphs). If n ≥ 2, for any edge e of Cn, we have

T (Cn, x, y) = T (Cn − e, x, y) + T (Cn/e, x, y)

= T (Pn, x, y) + T (Cn−1, x, y) = xn−1 + T (Cn−1, x, y),

where Pn is a path graph with n vertices (which has only n−1 bridges, so T (Pn, x, y) =
xn−1), and T (C1, x, y) = y. Therefore we have

T (Cn, x, y) = xn−1 + xn−2 + · · ·+ x+ y.

e denote by Div(G) the free abelian group on V , that is, the group consisting of
formal Z-linear combination of vertices of G. An element in Div(G) is called a di isor
on G. e often express the coe cient of v in D ∈ Div(G) by D(v), that is,

D =
∑

v∈V

D(v)v.

The identity element of Div(G) is denoted by 0. e say that E ∈ Div(G) is e e ti e
and write E ≥ 0 if E(v) ≥ 0 for all v ∈ V . e denote by Div+(G) the set of all
e ective divisors on G. The sum of all the coe cients D(v) of D ∈ Div(G) is called
the degree of D, and is denoted by degD:

degD :=
∑

v∈V

D(v).

The map Div(G) ∋ D %→ degD ∈ Z is a homomorphism. or convenience, we put

Divk(G) := {D ∈ Div(G) | degD = k},
Divk+(G) := Divk(G) ∩Div+(G).

Div0(G) is the kernel of the degree map. Notice that

Divk+(G) = {x1 + · · ·+ xk |x1, . . . , xk ∈ V }

for each k ∈ Z≥0, and Divk+(G) = ∅ if k < 0.
Let M(G) be the set of all Z-valued functions on V . efine a map ∆ : M(G) →

Div(G) by
∆f :=

∑

v∈V

∆v(f)v

with
∆v(f) = d(v)f(v)−

∑

w∈V

ν(v, w)f(w).

e denote by Prin(G) the image of ∆. Notice that Prin(G) is a subgroup of Div0(G).
Two divisors D,D′ ∈ Div(G) are called linearly e ui alent if and only if D − D′ ∈
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Prin(G). e simply write D ∼ D′ to mean that D and D′ are linearly equivalent.
efine

L(D) := {E ∈ Div+(G) |D ∼ E}.

Namely, L(D) is the set of all e ective divisors which are linearly equivalent to D.
e define the ran function r : Div(G) → Z≥−1 by the following conditions:

(i) If L(D) = ∅, then r(D) := −1.

(ii) or any s ∈ Z≥0,

r(D) ≥ s ⇐⇒ L(D − E) ̸= ∅, ∀E ∈ Divs+(G).

By definition, we see that r(D) = r(D′) if D ∼ D′. If degD < 0, then L(D) = ∅,
and hence r(D) = −1. If degD ≥ 0, then deg(D − E) < 0 when degE > degD,
which implies that r(D) ≤ degD.

Let us introduce a distinguished divisor on G

K :=
∑

v∈V

(d(v)− 2)v,

which is called the anoni al di isor on G. e see that degK = 2g− 2. Remarkably,
the following graph-analog of the Riemann-Roch theorem holds.

e em 2.2 (Baker-Norine [1]). or any D ∈ Div(G) e a e

r(D)− r(K −D) = degD − g + 1.

e further define the i ard group and a obian group of G by

Pic(G) := Div(G)/Prin(G),

Jac(G) := Div0(G)/Prin(G).

The order |Jac(G)| of the group Jac(G) is equal to the number of spanning trees of
G by the matrix-tree theorem. In particular, Jac(G) = {0} (or Div0(G) = Prin(G))
if and only if G is a tree. e denote by [D] an element in Pic(G) represented by
D ∈ Div(G). Notice that

[D] = [D′] ⇐⇒ D ∼ D′ =⇒ degD = degD′.

or convenience, we put

Pick(G) := {[D] ∈ Pic(G) | degD = k}.

Notice that |Pick(G)| = |Jac(G)| for any k ∈ Z.
emar .3 If the mit normal orm of the matrix L1, which is obtained by deleting

the first row and first column of the Laplacian matrix of G, is diag(a1, . . . , an−1), then
Jac(G) ∼= (Z/a1Z)× · · ·× (Z/an−1Z).

or q ∈ V , a divisor D ∈ Div(G) is called q redu ed if
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(1) D(v) ≥ 0 for all v ∈ V \ {q},

(2) for any S ⊂ V \ {q}, there exists a vertex v ∈ V \ {q} such that D(v) −
∆(

∑
s∈S δs)(v) < 0.

e denote by Div(G)q the set of all q-reduced divisors on G, and put

Divi(G)q := Div(G)q ∩Divi(G),

Divi+(G)q := Divi(G)q ∩Div+(G).

emar . In the language of chip-firing game, a q-reduced divisor is a superstable
onfiguration it sin q.

The following fact is crucial for our discussion (see Theorem 3. and Corollary 3.7
in [3]).

e em 2. . et q ∈ V be an arbitrary erte e an ta e t e set o all t e q
redu ed di isors on G as a omplete system o representati es o Pic(G) amely or
any D ∈ Div(G) t ere e ists a uni ue q redu ed di isor i is linearly e ui alent
to D urt er i D is q redu ed t en

r(D) ≥ 0 ⇐⇒ D(q) ≥ 0.

emar . Let D ∈ Div(G)q be a q-reduced divisor. If D(q) ≥ 0, then D− (D(q)+
1)q =

∑
v ̸=q D(v)v − q is also q-reduced and its coe cient of q is negative. Thus we

have r(D) ≤ D(q).
or any E ∈ Divs+(G), there uniquely exists E′ ∈ Divs+(G)q such that E ∼ E′.

Thus we see that

r(D) ≥ s ⇐⇒ L(D − E) ̸= ∅, ∀E ∈ Divs+(G)q.

Contr ction o rid
e note here that a contraction of a bridges does not a ect to the structure of the

Picard groups, degrees and ranks of divisors. e begin with a simple fact.

emma 2. . e = xy ∈ E is a bridge o G t en x− y ∈ Prin(G) ore generally
i t ere is a uni ue pat bet een x and y t en x− y ∈ Prin(G)

roo Let G1 = (V1, E1) and G2 = (V2, E2) be the connected components of G − e
such that x ∈ V1 and y ∈ V2. If we take a function f ∈ M(G) as

f(v) :=

{
1 v ∈ V1,

0 v ∈ V2,

then we have ∆(f) = x− y.

lla 2. . G is not a tree t en r(v) = 0 or e ery v ∈ V
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roo Suppose that there exists a vertex v ∈ V such that r(v) = 1. Since Div0+(G) =
{0}, we have v − w ∼ 0 for any w ∈ V . ence, for any w,w′ ∈ V , we have w − w′ =
(v−w′)−(v−w) ∈ Prin(G). This implies that Prin(G) = Div0(G), or G is a tree.

If e is a bridge of G, then the number of spanning trees (or the order of the
Jacobian group) is invariant under the contraction of e, i.e. |Jac(G)| = |Jac(G/e)|.
More precisely, this operation preserves the structure of the Picard group as well as
degrees and ranks of divisors.

e em 2. . e is a bridge o G t en t ere e ists a group isomorp ism ϕ : Pic(G) →
Pic(G/e) i preser es degree and ran

roo Let G = (V,E) be a connected graph, e = xy ∈ E (x, y ∈ V ) be a bridge of
G, and set G′ = (V ′, E′) = G/e. e take V1, V2 ⊂ V and z ∈ V ′ so that

V = V1 ⊔ {x} ⊔ {y} ⊔ V2, V ′ = V1 ⊔ {z} ⊔ V2

are dis oint unions (see the figure below).

G = x ye
V1 V2 G′ =

z

V1 V2

e denote by d′(v), ν′(v, w) and r′(D) the degree of the vertex v ∈ V ′, the number
of edges in G′ oining v, w ∈ V ′ and the rank of D ∈ Div(G′) respectively. efine
ϕ : Div(G) → Div(G′) by

ϕ : Div(G) ∋ D =
∑

v∈V

D(v)v (→
∑

v∈V1∪V2

D(v)v + (D(x) +D(y))z ∈ Div(G′).

It is immediate to see that ϕ preserves the degrees of the divisors. This map ϕ is
apparently sur ective, and

kerϕ = Z(x− y) = {k(x− y) | k ∈ Z} < Prin(G)

by Lemma .7. Thus ϕ induces the isomorphism

ϕ : Pic(G) ∋ [D] (→ [ϕ(D)] ∈ Pic(G′).

It is easy to check that ϕ gives a bi ection between the set of all x-reduced divisors
on G and that of all z-reduced divisors on G′ (notice that D(y) = 0 if D ∈ Div(G) is
x-reduced). urthermore, we have

r(D) ≥ k ⇐⇒ r′(ϕ(D)) ≥ k

for D ∈ Div(G) and k ≥ 0.

By this theorem, we can restrict our attention to the 2 edge onne ted grap s
(i.e. graphs which have no bridges) without loosing generality when we consider the
two-variable zeta functions introduced in the next section (see Lemma 3.5).
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T o- ri t unction o r
or D ∈ Div(G), we put

h(D) := r(D) + 1.

Notice that we have h(D) = 0 when degD < 0, and by Theorem . , we have

h(D) = degD − g + 1

when degD > 2g − 2.
Lorenzini [5] introduced the two-variable zeta function of G as follows.

e .1 (two-variable zeta function of G). efine

Z(G, t, u) :=
∑

[D]∈Pic(G)

uh(D) − 1

u− 1
tdegD =

∞∑

i=0

bi(G, u)ti,

where we put

bi(G, u) :=
∑

[D]∈Pici(G)

uh(D) − 1

u− 1

for brevity.

emar 3. In fact, in [5], Lorenzini defines a zeta function for a corank-one lattice
Λ ⊂ Zn equipped with a function r : Λ → Z satisfying an analog of the Riemann-Roch
theorem in general.

emar 3.3 or a smooth pro ective curve C over the finite field Fq with q elements,
the lo al eta un tion (or ongruent eta un tion) of C is defined by

ζ(C/Fq, s) :=
∑

D≥0

q−s degD,

where the sum is taken over all e ective divisors D on C. It is known that

ζ(C/Fq, s) =
∑

i≥0

( ∑

[D]∈Pic(C)
degD=i

qh(D) − 1

q − 1

)
T i,

where T = q−s and h(D) = dimFq L(D) is the dimension of the linear system of D.
The following is the basic facts on the zeta functions.

e em . (Lorenzini [5]). (1) T ere e ists a polynomial L(G, t, u) ∈ Z[t, u]
su t at

Z(G, t, u) =
L(G, t, u)

(1− t)(1− ut)
. (3.1)

(2) Z(G, t, u) satisfies t e un tional e uation

Z(G, 1/ut, u) = (ut2)1−gZ(G, t, u). (3. )
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(3) L(G, 0, u) = 1 L(G, 1, u) = |Jac(G)|

(4) L(G, t, 0) = tgT (G, 1, 1/t)

By Theorem . , we obtain the

emma . . e is a bridge o G t en Z(G, t, u) = Z(G/e, t, u)

Put N = |Jac(G)|. Notice that

bi(G, u) = N
ui−g+1 − 1

u− 1

when i > 2g − 2. ence

Z(G, t, u) =
2g−2∑

i=0

bi(G, u)ti +
Nt2g−1

u− 1

( ug

1− ut
− 1

1− t

)

=
2g−2∑

i=0

bi(G, u)ti −N
g−1∑

i=1

ui − 1

u− 1
ti+g−1 +

Ntg

(1− t)(1− ut)
.

By Theorem . , we see that

b2g−2−i(G, u) = ug−1−ibi(G, u) +N
ug−1−i − 1

u− 1

for 0 ≤ i ≤ g − 1, it follows that

Z(G, t, u) =
g−1∑

i=0

bi(G, u)ti +
g−1∑

i=1

uibg−1−i(G, u)tg−1+i +
Ntg

(1− t)(1− ut)
. (3.3)

Thus, the zeta function Z(G, t, u) is determined by the polynomials bi(G, u) (i =
0, 1, . . . , g − 1). This implies that the larger the genus g of G, the harder it may
become to compute the zeta function Z(G, t, u).

e see that b0(G, u) = 1 in general. If G is 2-edge-connected, then we have
b1(G, u) = |V |. Thus the two-variable zeta function of a 2-edge connected graph
whose genus is at most 2 is completely determined by the numbers of its vertices and
spanning trees as we show in the examples below.

Example . (g = 0). If G is a tree, then we readily have

Z(G, t, u) =
1

(1− t)(1− ut)

by (3.3). This is an analog of the local zeta function for the pro ective line P1.

Example . (g = 1). If G = Cn is a cycle graph with n vertices, then we have

Z(G, t, u) = 1 +
nt

(1− t)(1− ut)
=

1 + (n− u− 1)t+ ut2

(1− t)(1− ut)

by (3.3). This is an analog of the local zeta function for an elliptic curve.
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Example . (g = 2). If g = 2 and G is 2-edge connected, then we have

Z(G, t, u) = 1 + nt+ ut2 +
Nt2

(1− t)(1− ut)

=
1 + (n− u− 1)t+ (N − n+ 2u− nu)t2 + u(n− u− 1)t3 + u2t4

(1− t)(1− ut)

by (3.3), where n = |V | and N = |Jac(G)|.

emar 3. Let G = Cm + Cn be a erte sum1of two cycle graphs Cm and Cn, that
is, G is a graph obtained by gluing Cm and Cn at one vertex (see the figure below for
the case m = 7, n = 11).

It is easy to see that Jac(G) ∼= Jac(Cm)×Jac(Cn) and T (G, x, y) = T (Cm, x, y)T (Cn, x, y).
On the other hand, an extra term appears in the relation between (the numerators
of) the zeta functions:

L(G, t, u) = L(Cm, t, u)L(Cn, t, u) + ut(1− t)(1− ut).

In general, if G = G1 + G2 is a vertex sum of two graphs G1 and G2, then we
have Jac(G) ∼= Jac(G1) × Jac(G2) and T (G, x, y) = T (G1, x, y)T (G2, x, y), but the
relation between the zeta functions is rather complicated. In general, Z(G, t, u) is not
determined by Z(G1, t, u) and Z(G2, t, u) alone, but depends on which vertex G1 and
G2 are glued at. or instance (see xample 3.1 in [ ]), the following two graphs

G1 = , G2 =

have the same Tutte polynomials and isomorphic Jacobian groups, but

Z(G2, t, u) = Z(G1, t, u) + ut2.

owever, we can show that

L(G, t, u) ≡ L(G1, t, u)L(G2, t, u) (mod ut(1− t)(1− ut)) (3. )

holds in Z[t, u]. See .3.
o be reci e, e ver ice o be ed o de e e ver e m o d be i dic ed, b e

c oice o c ver ice i irre ev i e re e co e , o e omi i .
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A or u or t o- ri t unction
1 A or u or t o- ri t unction

Let us prepare a formula for Z(G, t, u) which is useful in our calculation. By rewriting
the summand in bi(G, u) as

uh(D) − 1

u− 1
=

r(D)∑

k=0

uk =
∞∑

k=0

δ(r(D) ≥ k)uk,

we have

Z(G, t, u) =
∞∑

i=0

∑

D∈Divi(G)q

∞∑

k=0

δ(r(D) ≥ k)ukti

=
∞∑

i=0

∑

D∈Div0(G)q

∞∑

k=0

δ(r(D + iq) ≥ k)ukti.

ere we use the fact that Divi(G)q = Div0(G)q + iq in the second equality. or a
divisor D ∈ Div(G), we denote by Redq(D) the unique q-reduced divisor which is
linearly equivalent to D. e see that

r(D + iq) ≥ k

⇐⇒ r((D + iq)− (D′ + kq)) ≥ 0, ∀D′ ∈ Div0(G)q, D
′(q) + k ≥ 0

⇐⇒ Redq(D −D′)(q) + i− k ≥ 0, ∀D′ ∈ Div0(G)q, D
′(q) + k ≥ 0.

efine

µk(D) := max
{
−Redq(D −D′)(q)

∣∣D′ ∈ Div0(G)q, D
′(q) + k ≥ 0

}

for k ≥ 0 and D ∈ Div0(G). By definition, we have

µ0(D) ≤ µ1(D) ≤ µ2(D) ≤ . . . ,

and

µ0(D) = max
{
−Redq(D −D′)(q)

∣∣D′ ∈ Div0(G)q, D
′(q) ≥ 0

}
= −D(q) ≥ 0 ( .1)

since Div0(G)q = {0}. Notice that

r(D + iq) ≥ k ⇐⇒ µk(D) ≤ i− k.

Therefore we have

Z(G, t, u) =
∞∑

i=0

∑

D∈Div0(G)q

∞∑

k=0

δ(µk(D) ≤ i− k)ukti

=
∑

D∈Div0(G)q

∞∑

k=0

uk
∞∑

i=0

δ(µk(D) ≤ i− k)ti.

Thus we obtain the following formula for Z(G, t, u).

－ 58 － － 59 －



e em .1. e a e

Z(G, t, u) =
1

1− t

∑

D∈Div0(G)q

∞∑

k=0

uktk+µk(D). ( . )

By this formula, the computation of Z(G, t, u) is reduced to that of µk(D) for each
q-reduced divisor D ∈ Div0(G)q of degree 0.

R r on T or 1
e denote by Crit(G)q the set of all riti al onfigurations on G with sink q having

2|E| − |V | chips. Let D ∈ Div0(G)q be a q-reduced divisor of degree 0. If we define
θ by θ(v) := d(v) − 1 − D(v) for v ∈ V , then θ ∈ Crit(G)q. This gives a bi ection
between Div0(G)q and Crit(G)q.

It is known by Merino [ ] that if we put

level(θ) :=
∑

v ̸=q

θ(v)− |E|+ d(q)

for θ ∈ Crit(G)q, then we have

0 ≤ level(θ) ≤ g

and ∑

θ∈Crit(G)q

ylevel(θ) = T (G, 1, y). ( .3)

rom this, it follows that 0 ≤ −D(q) ≤ g since level(θ) = D(q) + g when θ and D are
related as above. ence we have

0 ≤ µk(D) ≤ g ( . )

for D ∈ Div0(G)q. urthermore, if k ≥ g, then D′(q) + k ≥ D′(q) + g ≥ 0 for any
D′ ∈ Div0(G)q. This implies that when k ≥ g, we have

µk(D) = max
{
−Redq(D −D′)(q)

∣∣D′ ∈ Div0(G)q
}

= max
{
−D′(q)

∣∣D′ ∈ Div0(G)q
}
= g.

Let
Lk(G, t) :=

∑

D∈Div0(G)q

tµk(D) ( .5)

be the generating function of µk(D) for D ∈ Div0(G)q. e notice that Lk(G, t) =
|Jac(G)|tg if k ≥ g. It follows that

Z(G, t, u) =
1

1− t

∞∑

k=0

(ut)kLk(G, t), ( . )

so that the polynomial L(G, t, u) in Theorem 3. is given by

L(G, t, u) = (1− t)(1− ut)Z(G, t, u)
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=
∞∑

k=0

(ut)kLk(G, t)−
∞∑

k=0

(ut)k+1Lk(G, t)

= L0(G, t) +
∞∑

k=1

(ut)k
(
Lk(G, t)− Lk−1(G, t)

)

= tgT (G, 1, 1/t) +
g∑

k=1

(ut)k
(
Lk(G, t)− Lk−1(G, t)

)
. ( .7)

ere L0(G, t) = tgT (G, 1, 1/t) is immediate from ( .3) and ( .1). This recovers ( ) of
Theorem 3. by letting u = 0. e also note that

L(G, t, 1/t) = L0(G, t) +
g∑

k=1

(
Lk(G, t)− Lk−1(G, t)

)
= Lg(G, t) = |Jac(G)|tg. ( . )

R r on rt u o t o r
Let G be a vertex sum of two graphs G1 and G2, and g, g1, g2 be the genera of G, G1,
G2 respectively. Notice that g = g1 + g2. Since

tgT (G, 1, 1/t) = tg1T (G1, 1, 1/t)t
g2T (G2, 1, 1/t),

we see that
L(G, t, u) ≡ L(G1, t, u)L(G2, t, u) (mod ut)

by ( .7), and
L(G, 1, u)− L(G1, 1, u)L(G2, 1, u) = |Jac(G)|− |Jac(G1)||Jac(G2)| = 0,

L(G, t, 1/t)− L(G1, t, 1/t)L(G2, t, 1/t) = |Jac(G)|tg − |Jac(G1)|tg1 |Jac(G2)|tg2 = 0

by (3) of Theorem 3. and ( . ), which imply that L(G, t, u) − L(G1, t, u)L(G2, t, u)
is divisible by 1− t and 1−ut. Since ut, 1− t and 1−ut are relatively prime in Z[t, u],
we obtain the congruence (3. ).

E o t o- ri t unction
In this section we consider three examples of infinite families of graphs: dipole graphs,
doubled trees, friendship graphs. or each family, we give an explicit formula of the
two-variable zeta functions. In view of the question proposed by Lorenzini [5] as to
whether it is possible for two connected graphs having the same Tutte polynomials to
have the di erent zeta functions or non-isomorphic Jacobians, and the negative answer
to this by Clancy-Leake-Payne [ ], we include the Tutte polynomials and Jacobians
in a remark for each example.

1 Di o r
or each positive integer m, let Dm be the dipole grap of size m, that is, a graph

with two vertices which are connected by m edges:

D1 = , D2 = , D3 = , D4 = , . . .
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The graph Dm is the simplest graph whose genus is m − 1, as well as the simplest
graph which is m edge onne ted.

emar 5.1 The Tutte polynomial and the Jacobian group of Dm are given by

T (Dm, x, y) = x+ y + y2 + · · ·+ ym−1, Jac(Dm) ∼= Z/mZ.

Example .2.

Z(D1, t, u) =
1

(1− t)(1− ut)
,

Z(D2, t, u) = 1 +
2t

(1− t)(1− ut)
,

Z(D3, t, u) = 1 + 2t+ ut2 +
3t2

(1− t)(1− ut)
,

Z(D4, t, u) = 1 + 2t+ (3 + u)t2 + 2ut3 + u2t4 +
4t3

(1− t)(1− ut)
.

Let V = V (Dm) = {v, q}. e see that mv −mq generates Prin(Dm). e define

D(a) := a(v − q)

for a ∈ Z. It is readily seen that

Div0(Dm)q = {D(a) | 0 ≤ a < m}.

emma . . or k ≥ 0 e a e

µk(D(a)) = max{(a− b) mod m | 0 ≤ b ≤ min{m− 1, k}} =

{
a k ≤ a,

m− 1 k > a.
(5.1)

roo e see that

D(a)−D(b) = (a− b)(v − q) ∼ D((a− b) mod m)

for any 0 ≤ b < m. ence

µk(D(a)) = max{−Redq(D(a)−D(b))(q) | 0 ≤ b < m,−b+ k ≥ 0}
= max{(a− b) mod m | 0 ≤ b ≤ min{m− 1, k}}

as desired.

e em . . T e eta un tion o Dm is gi en by

Z(Dm, t, u) =
1

(1− t)2(1− ut2)
− (1− u)tm

(1− t)2(1− ut)2
− u(ut2)m

(1− ut)2(1− ut2)
. (5. )

roo e compute the zeta function via the expression ( . ):

Z(Dm, t, u) =
1

1− t

∑

0≤a<m

∞∑

k=0

uktk+µk(D(a)).
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or a fixed a,
∞∑

k=0

uktk+µk(D(a)) =
a∑

k=0

uktk+a +
∞∑

k=a+1

uktk+m−1

=
ta − ut(ut2)a + utm(ut)a

1− ut
.

ence we get

Z(Dm, t, u)

=
1

(1− t)(1− ut)

∑

0≤a<m

(
ta − ut(ut2)a + utm(ut)a

)

=
1

(1− t)(1− ut)

(
1− tm

1− t
− ut

1− (ut2)m

1− ut2
+ utm

1− (ut)m

1− ut

)

=
1

(1− t)(1− ut)

(
1− ut

(1− t)(1− ut2)
− (1− u)tm

(1− t)(1− ut)
− u(1− t)(ut2)m

(1− ut)(1− ut2)

)

=
1− ut

(1− t)2(1− ut2)
− (1− u)tm

(1− t)2(1− ut)2
− u(ut2)m

(1− ut)2(1− ut2)
.

Dou d tr
ix a positive integer m, and let G be a tree with m edges and m+1 vertices. Let G′

be a graph which is obtained from G by replacing all its edges to double edges. Then
the genus of G′ is m. Notice that 2v ∼ 2w in Div(G′) for any v, w ∈ V (G′) = V (G).

Example . . or instance,

G = =⇒ G′ =

emar 5. The Tutte polynomial and the Jacobian group of G′ are given by

T (G′;x, y) = (x+ y)m, Jac(G′) ∼= (Z/2Z)m.

ix a vertex q of G′. or each S ⊂ V \ {q}, define

D(S) :=
∑

v∈S

(v − q).

Then we have
Div0(G′)q = {D(S) |S ⊂ V \ {q}}.
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emma . . or k ≥ 0

µk(D(S)) = min{|S|+ k,m}. (5.3)

roo Since

D(S)−D(T ) =
∑

v∈S

(v − q)−
∑

v∈T

(v − q)

=
∑

v∈S△T

(v − q)− 2
∑

v∈T\S

(v − q) ∼
∑

v∈S△T

(v − q),

we see that
µk(D(S)) = max{|S △ T | |T ⊂ V \ {q}, |T | ≤ k}.

If k ≤ m− |S|, then we can take T ⊂ V \ {q} such that S ∩T = ∅ and |T | = k, which
attains the maximum |S| + k of |S △ T |. Otherwise, we see that µ(S, k) = m. Thus
we get

µk(D(S)) = min{|S|+ k,m}

as desired.

e em . . T e eta un tion o G′ is gi en by

Z(G′, t, u) =
1

1− ut2

(
utm+1(1 + ut)m

1− ut
+

(1 + t)m

1− t

)
. (5. )

roo e compute the zeta function via the expression ( . ):

Z(G′, t, u) =
1

1− t

∑

S⊂V \{q}

∞∑

k=0

uktk+µk(D(S)).

By Lemma 5.7, we have

∞∑

k=0

uktk+µk(D(S)) =
m−s+1∑

k=0

ukt2k+s +
∞∑

k=m−s

uktk+m

= ts
1− (ut2)m−s

1− ut2
+

tm(ut2)m−s

1− ut

for each S ⊂ V \ {q} with s = |S|. Since there are
(m
s

)
subsets of V \ {q} whose

cardinalities are s, we get

Z(G′, t, u) =
1

1− t

m∑

s=0

(
m

s

)(
ts
1− (ut2)m−s

1− ut2
+

tm(ut2)m−s

1− ut

)

=
1

1− t

(
(1 + t)m − (t+ ut2)m

1− ut2
+

tm(1 + ut2)m

1− ut

)

=
1

1− ut2

(
utm+1(1 + ut)m

1− ut
+

(1 + t)m

1− t

)
.
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emar 5. Let G1, G2 be trees with m1 and m2 edges respectively, G′
1, G

′
2 be the

corresponding doubled trees, and G′ = G′
1+G′

2 be a vertex sum of G′
1 and G′

2. Notice
that G′ is a doubled tree obtained from the corresponding vertex sum of G1 and G2,
that is, G′ = (G1 +G2)′. e have

L(G′, t, u) = L(G′
1, t, u)L(G

′
2, t, u) + ut(1− t)(1− ut)Rm1(t, u)Rm2(t, u)

with
Rm(t, u) =

tm(1 + ut)m − (1 + t)m

1− ut2
.

Fri nd i r
The riends ip grap Fm is a simple graph constructed by gluing m triangles C3 at a
common one vertex:

F1 = , F2 = , F3 = , F4 = , . . .

Fm has 2m+ 1 vertices, 3m edges and 3m spanning trees, and the genus of Fm is m.
emar 5.1 The Tutte polynomial and the Jacobian group of Fm are given by

T (Fm, x, y) = (x2 + x+ y)m, Jac(Fm) ∼= (Z/3Z)m.

Let us set V = {q, v1, w1, . . . , vm, wm}, where each {q, vj , wj} forms a sub-triangle.
Notice that

2vj ∼ wj + q, 2wj ∼ vj + q.

Example .11.

Z(F1, t, u) = 1 +
3t

(1− t)(1− ut)
,

Z(F2, t, u) = 1 + 5t+ ut2 +
32t2

(1− t)(1− ut)
,

Z(F3, t, u) = 1 + 7t+ (19 + u)t2 + 7ut3 + u2t4 +
33t3

(1− t)(1− ut)
,

Z(F4, t, u) = 1 + 9t+ (33 + u)t2 + (65 + 9u)t3 + u(33 + u)t4

+ 9u2t5 + u3t6 +
34t4

(1− t)(1− ut)
.

The q-reduced divisors of degree 0 on Fm are

Div0(Fm)q = {D(A,B) |A,B ⊂ [m], A ∩B = ∅},

where
D(A,B) :=

∑

a∈A

(va − q) +
∑

b∈B

(wb − q), A,B ⊂ [m].

Notice that −D(A,B)(q) = |A|+ |B|.

－ 64 － － 65 －



emma .12. or k ≥ 0

µk(D(A,B)) = min{|A|+ |B|+ k,m}. (5.5)

roo e have
D(A,B)−D(A′, B′) ∼ D(A′′, B′′)

with

A′′ = (A \ (A′ ∪B′)) ⊔ (B′ \ (A ∪B)) ⊔ (A′ ∩B),

B′′ = (B \ (A′ ∪B′)) ⊔ (A′ \ (A ∪B)) ⊔ (A ∩B′).

Notice that A′′ ∩ B′′ = ∅ and A′′ ∪ B′′ = (A ∪ B ∪ A′ ∪ B′) \ ((A ∩ A′) ∪ (B ∩ B′)).
Then

−D(A′′, B′′)(q) = |A ∪B ∪A′ ∪B′|− |A ∩A′|− |B ∩B′|.

This attains the maximum if we take A′ and B′ such that A′∪B′ is a maximal subset
of [m] \ (A ∪B), and then −D(A′′, B′′)(q) = min{|A|+ |B|+ k,m}.

e em .1 . T e eta un tion o Fm (m ≥ 1) is gi en by

Z(Fm, t, u) =
(1 + 2t)m

(1− t)(1− ut2)
+

utm+1(2 + ut)m

(1− ut)(1− ut2)
. (5. )

roo e compute the zeta function via the expression ( . ):

Z(Fm, t, u) =
1

1− t

∑

A,B⊂[m]
A∩B=∅

∞∑

k=0

uktk+µk(D(A,B)).

By Lemma 5.1 , we have
∞∑

k=0

uktk+µk(D(A,B)) =
∞∑

k=0

uktk+min{s+k,m}

=
m−s−1∑

k=0

ukt2k+s +
∞∑

k=m−s

uktk+m

= ts
1− (ut2)m−s

1− ut2
+

tm(ut)m−s

1− ut

for each pair (A,B) of dis oint subsets of [m] with s = |A| + |B|. Since there are
2s
(m
s

)
such pairs, we get

Z(Fm, t, u) =
1

1− t

m∑

s=0

2s
(
m

s

)(
ts
1− (ut2)m−s

1− ut2
+

tm(ut)m−s

1− ut

)

=
1

(1− t)(1− ut2)

m∑

s=0

(
m

s

)
(2t)s
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− utm+1

(1− ut)(1− ut2)

m∑

s=0

(
m

s

)
2s(ut)m−s

=
(1 + 2t)m

(1− t)(1− ut2)
− utm+1(2 + ut)m

(1− ut)(1− ut2)
.

emar 5.1 e can regard Fm1+m2 = Fm1 +Fm2 by gluing Fm1 and Fm2 at q. e
have

L(Fm1+m2 , t, u) = L(Fm1 , t, u)L(Fm2 , t, u) + ut(1− t)(1− ut)Rm1(t, u)Rm2(t, u)

with
Rm(t, u) =

tm(2 + ut)m − (1 + 2t)m

1− ut2
.

emar 5.15 Let us consider the graphs

F′
3 =

q
, F′

4 =
q

.

e can regard F′
3 = F1 + F2 and F′

4 = F2 + F2 (by gluing at q in the figure above).
e have

Z(F′
3, t, u) = 1 + 7t+ 19t2 + 7ut3 + u2t4 +

33t3

(1− t)(1− ut)

= Z(F3, t, u)− ut2,

Z(F′
4, t, u) = 1 + 9t+ 33t2 + (65 + 2u)t3 + 33ut4

+ 9u2t5 + u3t6 +
34t4

(1− t)(1− ut)

= Z(F4, t, u)− ut2 − 7ut3 − u2t4.

O r tion nd ro
e can restate the calculation results obtained above in a slightly di erent manner

as follows:

Z(Dm, t, u) =
1− tm

(1− t)2(1− ut2)
+

utm(1− (ut)m)

(1− ut)2(1− ut2)
, (5.2′)

Z(G′, t, u) =
(1 + t)m

(1− t)(1− ut2)
+

utm+1(1 + ut)m

(1− ut)(1− ut2)
, (5.4′)

Z(Fm, t, u) =
(1 + 2t)m

(1− t)(1− ut2)
+

utm+1(2 + ut)m

(1− ut)(1− ut2)
. (5.6′)

e notice that these are written in a unified way, that is, if G is one of the graph
above, then

Z(G, t, u) =
L0(G, t)

(1− t)(1− ut2)
+

utg+1T (G, 1, ut)

(1− ut)(1− ut2)
, (5.7)
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where g is the genus of G. It is remarkable that Z(G, t, u) is written in terms of
the Tutte polynomial in these cases. owever, this equality (5.7) does not hold for
general graphs. or instance, we have

Z(K4, t, u) = 1 + 4t+ 10t2 + 4ut3 + u2t4 +
16t3

(1− t)(1− ut)

=
L0(K4, t)

(1− t)(1− ut2)
+

ut3+1T (K4, 1, ut)

(1− ut)(1− ut2)
− ut2,

where K4 is the complete graph with four vertices. In fact, it would be possible
that G and G′ have the same Tutte polynomials but Z(G, t, u) ̸= Z(G′, t, u) (see
[ ]), so one cannot expect the zeta function Z(G, t, u) to be expressed in terms of
(several specializations of) the Tutte polynomials T (G, x, y) of G alone in general.

e therefore propose the following problems concerning (5.7).

lem .1 . Characterize the graphs whose two-variable zeta function satisfies
the equation (5.7). Notice that we may restrict our consideration to 2-edge connected
graphs since both Z(G, t, u) and the right hand side of (5.7) are invariant under the
contraction of bridges.

lem .1 . ind a formula for Z(G, t, u) like (5.7) that holds for a broader class
of graphs.

It would also be an interesting problem to find other infinite families of 2-edge
connected graphs whose genera are unbounded and the two-variable zeta function of
each member is determined in a closed form. The candidates that come to mind eas-
ily include complete graphs and complete bipartite graphs, wheel graphs, multiplied
trees, vertex sums of dipole graphs (special cases of multiplied trees), etc.
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