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LINEAR RELATIONS FOR
BERNOULLI NUMBERS AND ITS
APPLICATION TO CONGRUENCES
INVOLVING HARMONIC SUMS*
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Abstract

We show certain linear relations among Bernoulli numbers by using umbral
calculus. As an application, we prove some congruence relations involving bino-
mial coefficients and harmonic sums which appear in a certain supercongruence
problem.
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1 Introduction

In this short note, we give a simple way to produce linear relations among Bernoulli
numbers by using umbral calculus, and use it to prove some congruence relations
involving binomial coefficients and harmonic sums, which appear in a certain super-
congruence problem [3].

In §2, we first introduce a linear map ¢: R[z] — R which sends each monomial
x* to the Bernoulli number By, and describe the very basic properties of it. For any
polynomial f(z) € ker, the equation ¥ (f(x)) = 0 gives a certain linear relation
among Bernoulli numbers. Thus it is natural to seek a sufficient condition for a
polynomial f(z) to be in the kernel of this umbral map 1. We give such a simple
sufficient condition. Our calculation in §2 is essentially the same with the one given
by Momiyama [2]. Actually, if we discuss over the p-adic integer ring Z,, then the
umbral map 1 is realized as the Volkenborn integral. As we will see, however, we do
not need to bring the Volkenborn integral to obtain linear relations among Bernoulli
numbers in a similar manner; We only needs the standard properties on Bernoulli
numbers.

In §3, by using the facts given in §2 and the von Staudt-Clausen theorem, we
give several congruence relations modulo p?, where p is an odd prime, among certain
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sums involving binomial coefficients and harmonic sums. Such congruence relations
are used to reduce a certain supercongruence (i.e. a congruence relation modulo a
power of p) to a lower power case.

2 Linear relations for Bernoulli numbers

We denote by By and Bj(z) the Bernoulli numbers and Bernoulli polynomials re-

spectively:
> k tx
t t te
;Bkﬁzet—l’ ZBk et 17

We recall the standard facts: For any k € Z>(, we have

By(z) = Ek: (];) By, (2.1)

j=0

Bi(b) = Be(a) =k »_ ¥ (a,b€Z, a<b), (2.2)
a<j<b

(—1)*By(1) = By. (2.3)

2.1 A lemma for the umbral map

Define a R-linear map ¢: R[z] — R by

¥: R[z] 3 Zakx — U(f ZakBk eR. (2.4)

The following fact is an immediately consequence of the basic properties (2.1), (2.2)
and (2.3).

Proposition 2.1. For any f(z) € R[z], we have

U((x +a)*) = Br(a) (k€ Zso, a €R), (2.5)

G(fx+b) = fla+a)= > f( (a,b € Z, a<b), (2.6)
a<j<b

Y(f(—z = 1)) = (f(2)). (2.7)

O

Proof. First, by the linearity of ¢ and (2.1), we have

s =3 (v =3 (one, = e

j=0 7=0



which is (2.5). By the linearity of ¢ again, it is enough to prove (2.6) and (2.7) when
f(z) = 2% k € Z>¢. By (2.2) and (2.3), we have

V(f@+b) — fle+a)— D FG) =@+ —d(@+a)) - Y ki*!
a<j<b a<j<b
= By,(b) — Bla) =k Y j*!
a<j<b
=0
and

O(f(—z = 1) = (f(2) = ¥((—z = D)) —(a")
= (-1)"By(1) = B =0
as desired. O]

If f(z) € ker, then we get some linear relation ¥(f(x)) = 0 among Bernoulli
numbers. Thus it is convenient if we have a simple sufficient condition for f(z) to be
killed by ?. One such would be as follows.

Lemma 2.2. Let L be a positive integer. Assume that f(x) € Rlz] satisfies the
following conditions:

(A1) f(=z) =—f(z - L),
(A2) X5 f(=i)=0
Then ¥(f(x)) = 0.
Proof. By (2.7) and (A1), we have
P(f (@) =(f(—z - 1)) = =¢(f(= (=2 = 1) = L)) = =(f(z = L+ 1)).

If L =1, then we have ¢(f(x)) = 0 at this point. When L > 2, by adding ¥ (f(z)) to
the both side and using (2.6), we get

L—-1
20(f(@) =v(f@) = fle =L+ D)= >, G =D f(-i)=

—L+1<;5<0
by (A2). O
We give a slightly weaker version of the lemma above. This is the main tool in
our discussion below.

Lemma 2.3. Let L be a positive integer. Assume that F(x) € Rlz] satisfies the
following conditions:

(Bl) F(-—z)=F(z—L),
(B2) Tl (z+i)®| F(x),
Then ¢ (F'(x)) = 0.

Proof. Tt is clear that F'(x) satisfies (A1) when F(x) satisfies (B1). If F(z) satisfies
(B2), then F"(—i) =0fori=1,...,L—1, which implies that F’(z) satisfies (A2). O
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2.2 Examples
We give a few examples obtained by Lemma 2.3.

Example 2.4. Let s be a non-negative integer. Put
F(z) =xz°(z+1)°.

It is immediate to see that F'(x) satisfies (B1) and (B2) with L = 1. Hence we have
Y(F'(x)) = 0 by Lemma 2.3. Since

F'(x) = % ZS: (Z) p5th ZS:(k: +5) (Z) i1

k=0 k=0
we get the formula
- s
> (k+s) (k) Biys 1 =0. (2.8)
k=0

The formula (2.8) is due to von Ettingshausen [4]. For any r > 0, the 2r-th derivative
F@7)(z) of F(x) also satisfies (B1) and (B2) with L = 1. Since

FCriD () zs: S\ F+8Y pts—2ro
(2r+1)! — \k/\2r +1 ’

k

we also get a slightly general formula
* s\ [ k+s

By_or14 =0, 2.9
kz_o(k>(2r+1) itk (29)

where we understand that B, = 0 when ¢ < 0. As a special case, by letting s = 2r+1,

we have Z <Z) <kZS>Bk o (2.10)

k=0
if s is odd. This equation does not hold when s is even.

Remark 2.5. By putting s =n + 1 in (2.8), we get

" 1 n—1 77,—|-1 N
Bop = ———— ") B, 2.11
) n+1i_o< B (2.11)

where By, = (k + 1) By [1].
Example 2.6. Let m,n be non-negative integers. Put
F(x) _ (_1)nxn+1(x + 1)m+1 + (—1)m$m+1($ + 1)n+1.

It is immediate to see that F'(x) satisfies (B1) and (B2) with L = 1. Hence we have
P(F'(x)) = 0 by Lemma 2.3. Since

F(z) = (-1)" mi:l <m;— 1> g R () nif ("Z 1) FmHRL

k=0 k=0



we have
m+1 n+1
1 1
(=" Z (m;— >(n+k+1)Bn+k+(—1)mZ (n—}: )(m+k+1)Bm+k =0.
k=0 k=0

We notice that there occurs a cancellation between the last terms in these sums:
((=1)" 4+ (=1)"™)Bm4n+1 = 0 when m +n > 0. Thus we get

" /m+1 " /n+1
(=" E (n+k+1)Bpir+(—1)™ E (m+k+1)B4r=0.
k=0 ( k > o k=0 < k ) o

This is the Momiyama’s identity [2]. By the same argument as in Example 2.4, we
have

m—+1
m+1\/n+k+1
-n" B, o
( )Z(k>(2r+1) 2k
k=0
n+1
m n+1\/m+k+1
+(_1) Z( k >< 27’+1 )B'm—QT'-l-k:O

for r > 0.

Remark 2.7. In general, for any positive integer L and any polynomial p(x) such that
L5 (= 0)® | p(2),
F(z) = p(—z) + p(z + L)

satisfies (B1) and (B2). For instance, p(z) = —a""1(1 — 2)™*! and L = 1 give the
last example.

3 Congruences involving binomial coefficients and
harmonic sums

We first recall the von Staudt-Clausen theorem:

Theorem 3.1. For any positive integer n and any odd prime p,

1
Bon+ Y = (3.1)
p:prime p
p—1|2n
s an integer. O

As a simple consequence of the theorem, for any odd prime p and a positive integer
k, we have

-1 p—-1|k
B, = d p). 3.2
Pok { 0 otherwise (mod p) (32)



This implies that if
N
flx) = Zakxk € Q[x]
k=0

and the denominator of the coefficient ay is not divisible by p for every k, then

N =
pY(f(z)) = axpBr=— Y ap-1) (mod p). (3.3)
k=0

i=1
We give a lemma for later use.

Lemma 3.2. For any odd prime p,
k
P _
o= 0 (mod p?)

holds for k > 3.

Proof. Let us denote by v,(z) the p-adic valuation of x € Q\ {0}, that is,
x=p””($)%, a,beZ, pta, ptb.

It is well known that

Hence we have

a(f) =k S| 2 Sz ;) 2 5>

i>1 i>1

as desired. O

3.1 Results

In what follows, we fix an odd prime p, and put m = % for short. We denote by
H,, the harmonic sum, i.e. H, =>;_, %

Theorem 3.3. Ifp > 5, then

3 (m; k) (Hpix — Hy) =0 (mod p?), (3.4)
k=0

m 6

> (m; k) (Hpmik — Hy) =0 (mod p?). (3.5)
k=0



Proof. For a positive integer s, define

Fu(z) = <~’L’+m> Ze()z

Notice that the denominator of the coefficient e ) e Q is not divisible by p for every
i. Since

we have

Emi (m,—: k)S(Hch — Hy) = %iFs’(k).

k=0
Thus it is enough to prove

1ZFS'(IC) =0 (mod p?)
% k=0

for s = 4,6. Notice that

so that the denominator of every coefficient ““— L of L sFl(z) € Q[z] is not divisible by
p regardless of whether s is divisible by p or not

For a while, we only suppose that s is even, s > 4 and p{ s (notice that s = 4,6
satisfy this condition). Since

lF'(k) (“mm> Z II G+i)=0 (modp

1<]<m
JFi

ifm+1<k<p-—1, we have

1 & 154
- / [ / 2
SR =Y ) (mod p?).
k=0 k=0
By (2.6) and Lemma 3.2, we have

ZFé(k) = ¢(Fs(x+p) - Fs(:c))
k=0



We see that Fs(z) satisfies (B1) and (B2) with L = m + 1. Indeed,

m

Z’s
i=1

is divisible by [[;~, (x + i)® since we assume s > 4, and

T G IS G ) ISV PR

m m

by the relation (%)
have

(=1)™(*~*') and the assumption that s is even. Hence we

Y(Fi(z)) =0
by Lemma 2.3. By using (3.3), we get

sm—2
po(FL () = pi (D 14+ 2)(0 + Del e’
=0

=- Z (2im + 2)(2im + 1)6;1)71_’_2 (mod p)

(i —1)(i —2)e) .o (mod p).

This is congruent to 0 modulo p if s < 6. Thus we have

i Fl(k) = py(Fi(z)) + g pb(F"(2)) =0 (mod p?)
k=0

for s = 4,6 as desired. U

Remark 3.4. In general, it is not true that

S (" s =0
k=0

when s is even and s # 4,6. When s = 2, we have

S (" ) s~ 110 = o) mod 52)

k
k=0
We see that py)(F5(x)) =0 (mod p), but py(F4(z)) # 0 (mod p?) in general. When
s > 6, we have

—1

(M1

m

S (") - 1y = -2

i1\ (s
(15l mod i)
k=0

=3

which is not congruent to 0 modulo p? in general.
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Corollary 3.5. For any positive even integer s, we have
m m + k’ s
S (") o= ) =0 (mod )

k=0 k

Proof. By the same discussion as in the proof above, we have

S (" e 0 = L3 w0 = L5 R = o)
k m—+k k s s =5 s

k=0 k=0 k=0

When s > 4, we have ¢(F.(x)/s) = 0. When s = 2, we directly have

2m

Zkek pBr_1 =0 (mod p)

(mod p).

po(Fy(x
k=1
3.2 An application
Lemma 3.6.
+k
(") = CoR () (1 pltmin = Ha) - Gmod 57

Proof. We have

Since
Hypo — Hyp = 3~
+h ]Z:: m+4+j5+1 =

we have the conclusion.
By the lemma, for any s > 1, we have

m+k
k

)25 = (7:)2 (1 + 25p(Hpmyi — Hm)) (mod p?)



Hence we have

Zm: (m,j k)QS(Hch — Hy)

k=0
m

m 2s 0
mn m
Ekio (k) (H7n+k —Hk)+28p; (k) H7”+k(H7n+k—Hk)

2s
m
_2SpHmeO (k) (Hm+k _Hk) (mOd p2>'

Using Corollary 3.5, this implies that

m

> <7Z> (Hyptk — Hi) =0 (mod p), (3.6)

k=0

and hence

m m—l—k 2s
Z ( k ) (Hm-i-k - Hk)

k=0
m 2s m 2s
m m
EZ <k> (Hm+k_Hk)+2spk§_o(k) Hm+k(Hm+k_Hk;) (mod p2>

Especially, when s = 2,3, Theorem 3.3 allows us to obtain the following expressions:

Proposition 3.7. We have

m m 4 m m 4
S (1) o= 1= =403 () ) Hoor(Hoo = 7)o ). 61
k=0

kio N ] - N .
S () s = 1) = =63 () Hoer(i = 1) (mod . (39
k=0 k=0

These exhibit the p-divisibility of the sums in an explicit manner. These formulas
could be used to reduce the analysis of the mod p? behavior of the sums in the left-
hand sides to that of the mod p behavior of the corresponding sums in the right-hand
sides.

3.3 Related conjectural congruences

In the final position, we give several conjectures on congruences involving odd powers
of binomial coefficients and harmonic sums which we found by numerical experiments.

Conjecture 3.8. If p=1 (mod 4) and p > 5, then

m 3

) (m; k) (Hmsk = Hr) =0 (mod p?), (3.9)
k=0

Z <m; k> (Hmix — Hi) =0 (mod p?). (3.10)
k=0



Conjecture 3.9. If p =3 (mod 4), then

m m+k 5

S (") - B 5 - H) =0 Gmod ), @)
k=0

T m+ kY o) (2) 2 2

Do\ ) W Y = T ik — H)*) =0 (mod p7), (3.12)
k=0

where H,(LQ) =5" L.

=1 4
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