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Abstract
We show certain linear relations among Bernoulli numbers by using umbral

calculus. As an application, we prove some congruence relations involving bino-
mial coefficients and harmonic sums which appear in a certain supercongruence
problem.
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1 Introduction
In this short note, we give a simple way to produce linear relations among Bernoulli
numbers by using umbral calculus, and use it to prove some congruence relations
involving binomial coefficients and harmonic sums, which appear in a certain super-
congruence problem [3].

In §2, we first introduce a linear map ψ : R[x] → R which sends each monomial
xk to the Bernoulli number Bk, and describe the very basic properties of it. For any
polynomial f(x) ∈ kerψ, the equation ψ(f(x)) = 0 gives a certain linear relation
among Bernoulli numbers. Thus it is natural to seek a sufficient condition for a
polynomial f(x) to be in the kernel of this umbral map ψ. We give such a simple
sufficient condition. Our calculation in §2 is essentially the same with the one given
by Momiyama [2]. Actually, if we discuss over the p-adic integer ring Zp, then the
umbral map ψ is realized as the Volkenborn integral. As we will see, however, we do
not need to bring the Volkenborn integral to obtain linear relations among Bernoulli
numbers in a similar manner; We only needs the standard properties on Bernoulli
numbers.

In §3, by using the facts given in §2 and the von Staudt-Clausen theorem, we
give several congruence relations modulo p2, where p is an odd prime, among certain
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sums involving binomial coefficients and harmonic sums. Such congruence relations
are used to reduce a certain supercongruence Ui.e. a congruence relation modulo a
power of pV to a lower power case.

k Lin2�r r2H�tionb 7or B2rnouHHi nuK#2rb
We denote by Bk and Bk(x) the Bernoulli numbers and Bernoulli polynomials re-
spectively,

∞∑

k=0

Bk
tk

k!
=

t

et − 1
,

∞∑

k=0

Bk(x)
tk

k!
=

tetx

et − 1
.

We recall the standard facts, For any k ∈ Z≥0, we have

Bk(x) =
k∑

j=0

(
k

j

)
Bk−jx

j , U2.RV

Bk(b)−Bk(a) = k
∑

a≤j<b

jk−1 (a, b ∈ Z, a < b), U2.2V

(−1)kBk(1) = Bk. U2.3V

kX1 A H2KK� 7or t?2 uK#r�H K�T
.efine a R-linear map ψ : R[x] → R by

ψ : R[x] $ f(x) =
n∑

k=0

akx
k %−→ ψ(f(x)) =

n∑

k=0

akBk ∈ R. U2.9V

The following fact is an immediately consequence of the basic properties U2.RV, U2.2V
and U2.3V.

Proposition 2.1. For any f(x) ∈ R[x], we have

ψ((x+ a)k) = Bk(a) (k ∈ Z≥0, a ∈ R), U2.8V

ψ(f(x+ b)− f(x+ a)) =
∑

a≤j<b

f ′(j) (a, b ∈ Z, a < b), U2.eV

ψ(f(−x− 1)) = ψ(f(x)). U2.dV

Proof. First, by the linearity of ψ and U2.RV, we have

ψ((x+ a)k) =
k∑

j=0

(
k

j

)
ajψ(xk−j) =

k∑

j=0

(
k

j

)
ajBk−j = Bk(a),
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which is U2.8V. By the linearity of ψ again, it is enough to prove U2.eV and U2.dV when
f(x) = xk, k ∈ Z≥0. By U2.2V and U2.3V, we have

ψ(f(x+ b)− f(x+ a))−
∑

a≤j<b

f ′(j) = ψ((x+ b)k)− ψ((x+ a)k)−
∑

a≤j<b

kjk−1

= Bk(b)−Bk(a)− k
∑

a≤j<b

jk−1

= 0

and
ψ(f(−x− 1))− ψ(f(x)) = ψ((−x− 1)k)− ψ(xk)

= (−1)kBk(1)−Bk = 0

as desired.

If f(x) ∈ kerψ, then we get some linear relation ψ(f(x)) = 0 among Bernoulli
numbers. Thus it is convenient if we have a simple sufficient condition for f(x) to be
killed by ψ. One such would be as follows.
G2KK� 2.2. Gei L #e a TobBiBve Bnie;er. �bbmKe ihai f(x) ∈ R[x] baiBb}eb ihe
foHHowBn; +on/BiBonb,

UARV f(−x) = −f(x− L),

UA2V
∑L−1

i=1 f ′(−i) = 0.
hhen ψ(f(x)) = 0.
Proof. By U2.dV and UARV, we have

ψ(f(x)) = ψ(f(−x− 1)) = −ψ(f(−(−x− 1)− L)) = −ψ(f(x− L+ 1)).

If L = 1, then we have ψ(f(x)) = 0 at this point. When L ≥ 2, by adding ψ(f(x)) to
the both side and using U2.eV, we get

2ψ(f(x)) = ψ(f(x)− f(x− L+ 1)) =
∑

−L+1≤j<0

f ′(j) =
L−1∑

i=1

f ′(−i) = 0

by UA2V.

We give a slightly weaker version of the lemma above. This is the main tool in
our discussion below.
G2KK� 2.j. Gei L #e a TobBiBve Bnie;er. �bbmKe ihai F (x) ∈ R[x] baiBb}eb ihe
foHHowBn; +on/BiBonb,

UBRV F (−x) = F (x− L),

UB2V
∏L−1

i=1 (x+ i)3 | F (x),
hhen ψ(F ′(x)) = 0.
Proof. It is clear that F ′(x) satisfies UARV when F (x) satisfies UBRV. If F (x) satisfies
UB2V, then F ′′(−i) = 0 for i = 1, . . . , L−1, which implies that F ′(x) satisfies UA2V.
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kXk Et�KTH2b
We give a few etamples obtained by Gemma 2.3.
1t�KpH2 2.9. Get s be a non-negative integer. Sut

F (x) = xs(x+ 1)s.

It is immediate to see that F (x) satisfies UBRV and UB2V with L = 1. >ence we have
ψ(F ′(x)) = 0 by Gemma 2.3. Since

F ′(x) =
d

dx

s∑

k=0

(
s

k

)
xs+k =

s∑

k=0

(k + s)

(
s

k

)
xk+s−1,

we get the formula
s∑

k=0

(k + s)

(
s

k

)
Bk+s−1 = 0. U2.3V

The formula U2.3V is due to von 1ttingshausen [9]. For any r ≥ 0, the 2r-th derivative
F (2r)(x) of F (x) also satisfies UBRV and UB2V with L = 1. Since

F (2r+1)(x)

(2r + 1)!
=

s∑

k=0

(
s

k

)(
k + s

2r + 1

)
xk+s−2r−1,

we also get a slightly general formula
s∑

k=0

(
s

k

)(
k + s

2r + 1

)
Bs−2r−1+k = 0, U2.NV

where we understand that Bi = 0 when i < 0. As a special case, by letting s = 2r+1,
we have

s∑

k=0

(
s

k

)(
k + s

k

)
Bk = 0 U2.RyV

if s is o//. This equation does not hold when s is even.
_eKarF 2.8. By putting s = n+ 1 in U2.3V, we get

B̃2n = − 1

n+ 1

n−1∑

i=0

(
n+ 1

i

)
B̃n+i, U2.RRV

where B̃k = (k + 1)Bk [R].
1t�KpH2 2.e. Get m,n be non-negative integers. Sut

F (x) = (−1)nxn+1(x+ 1)m+1 + (−1)mxm+1(x+ 1)n+1.

It is immediate to see that F (x) satisfies UBRV and UB2V with L = 1. >ence we have
ψ(F ′(x)) = 0 by Gemma 2.3. Since

F (x) = (−1)n
m+1∑

k=0

(
m+ 1

k

)
xn+k+1 − (−1)m

n+1∑

k=0

(
n+ 1

k

)
xm+k+1,
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we have

(−1)n
m+1∑

k=0

(
m+ 1

k

)
(n+ k + 1)Bn+k + (−1)m

n+1∑

k=0

(
n+ 1

k

)
(m+ k + 1)Bm+k = 0.

We notice that there occurs a cancellation between the last terms in these sums,
((−1)n + (−1)m)Bm+n+1 = 0 when m+ n > 0. Thus we get

(−1)n
m∑

k=0

(
m+ 1

k

)
(n+ k + 1)Bn+k + (−1)m

n∑

k=0

(
n+ 1

k

)
(m+ k + 1)Bm+k = 0.

This is the MomiyamaǶs identity [2]. By the same argument as in 1tample 2.9, we
have

(−1)n
m+1∑

k=0

(
m+ 1

k

)(
n+ k + 1

2r + 1

)
Bn−2r+k

+ (−1)m
n+1∑

k=0

(
n+ 1

k

)(
m+ k + 1

2r + 1

)
Bm−2r+k = 0

for r ≥ 0.

_eKarF 2.d. In general, for any positive integer L and any polynomial p(x) such that∏L−1
i=1 (x− i)3 | p(x),

F (x) = p(−x) + p(x+ L)

satisfies UBRV and UB2V. For instance, p(x) = −xn+1(1 − x)m+1 and L = 1 give the
last etample.

j Con;ru2nc2b inpoHpin; #inoKi�H co2{ci2ntb �nd
?�rKonic buKb

We first recall the von Staudt-Clausen theorem,

h?2or2K j.1. For any TobBiBve Bnie;er n an/ any o// TrBKe p,

B2n +
∑

p:prime
p−1|2n

1

p
U3.RV

Bb an Bnie;er.

As a simple consequence of the theorem, for any odd prime p and a positive integer
k, we have

pBk ≡
{
−1 p− 1 | k
0 otherwise

(mod p). U3.2V
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This implies that if

f(x) =
N∑

k=0

akx
k ∈ Q[x]

and the denominator of the coefficient ak is not divisible by p for every k, then

pψ(f(x)) =
N∑

k=0

ak pBk ≡ −

⌊
N

p−1

⌋

∑

i=1

a(p−1)i (mod p). U3.3V

We give a lemma for later use.

G2KK� j.2. For any o// TrBKe p,

pk

k!
≡ 0 (mod p2)

hoH/b for k ≥ 3.

Proof. Get us denote by νp(x) the p-adic valuation of x ∈ Q \ {0}, that is,

x = pνp(x) a

b
, a, b ∈ Z, p ! a, p ! b.

It is well known that
νp(k!) =

∑

i≥1

⌊
k

pi

⌋
.

>ence we have

νp
(pk

k!

)
= k −

∑

i≥1

⌊
k

pi

⌋
≥ k −

∑

i≥1

k

pi
≥ 3

(
1− p

p− 1

)
≥ 3

2
> 1

as desired.

jX1 R2buHtb
In what follows, we fit an odd prime p, and put m = p−1

2 for short. We denote by
Hn the harmonic sum, i.e. Hn =

∑n
k=1

1
k .

h?2or2K j.j. Af p ≥ 5, ihen
m∑

k=0

(
m+ k

k

)4
(Hm+k −Hk) ≡ 0 (mod p2), U3.9V

m∑

k=0

(
m+ k

k

)6
(Hm+k −Hk) ≡ 0 (mod p2). U3.8V
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Proof. For a positive integer s, define

Fs(x) :=

(
x+m

m

)s
=

sm∑

i=0

e(s)i xi.

Lotice that the denominator of the coefficient e(s)i ∈ Q is not divisible by p for every
i. Since

F ′
s(x)

Fs(x)
= s

m∑

i=1

1

x+ i
,

we have
m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) =

1

s

m∑

k=0

F ′
s(k).

Thus it is enough to prove

1

s

m∑

k=0

F ′
s(k) ≡ 0 (mod p2)

for s = 4, 6. Lotice that

1

s
F ′
s(x) =

(
x+m

m

)s−1 m∑

i=1

1

m!

∏

1≤j≤m
j $=i

(x+ j),

so that the denominator of every coefficient ie(m)
i
s of 1

sF
′
s(x) ∈ Q[x] is not divisible by

p regardless of whether s is divisible by p or not.
For a while, we only suppose that s is even, s ≥ 4 and p ! s Unotice that s = 4, 6

satisfy this conditionV. Since

1

s
F ′
s(k) =

(
k +m

m

)s−1 m∑

i=1

1

m!

∏

1≤j≤m
j $=i

(k + j) ≡ 0 (mod ps−1)

if m+ 1 ≤ k ≤ p− 1, we have

1

s

m∑

k=0

F ′
s(k) ≡

1

s

p−1∑

k=0

F ′
s(k) (mod p2).

By U2.eV and Gemma 3.2, we have
p−1∑

k=0

F ′
s(k) = ψ(Fs(x+ p)− Fs(x))

=
sm∑

k=1

pk

k!
ψ(F (k)

s (x))

≡ pψ(F ′
s(x)) +

p2

2
ψ(F ′′

s (x)) (mod p2).
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We see that Fs(x) satisfies UBRV and UB2V with L = m+ 1. Indeed,

Fs(x) =
m∏

i=1

(x+ i)s

is

is divisible by
∏m

i=1(x+ i)3 since we assume s ≥ 4, and

Fs(−x) =

(
−x+m

m

)s
=

(
(x−m− 1) +m

m

)s
= Fs(x−m− 1)

by the relation
(−a
m

)
= (−1)m

(a−m+1
m

)
and the assumption that s is even. >ence we

have
ψ(F ′

s(x)) = 0

by Gemma 2.3. By using U3.3V, we get

pψ(F ′′
s (x)) = pψ

(sm−2∑

i=0

(i+ 2)(i+ 1)e(s)i+2x
i
)

≡ −

⌊
sm−2
2m

⌋
∑

i=1

(2im+ 2)(2im+ 1)e(s)2im+2 (mod p)

≡ −
s
2−1∑

i=1

(i− 1)(i− 2)e(s)2im+2 (mod p).

This is congruent to 0 modulo p if s ≤ 6. Thus we have
p−1∑

k=0

F ′
s(k) ≡ pψ(F ′

s(x)) +
p

2
· pψ(F ′′

s (x)) ≡ 0 (mod p2)

for s = 4, 6 as desired.

_eKarF 3.9. In general, it is noi true that
m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) ≡ 0 (mod p2)

when s is even and s %= 4, 6. When s = 2, we have
m∑

k=0

(
m+ k

k

)2
(Hm+k −Hk) ≡

p

2
ψ(F ′

2(x)) (mod p2).

We see that pψ(F ′
2(x)) ≡ 0 (mod p), but pψ(F ′

2(x)) %≡ 0 (mod p2) in general. When
s > 6, we have

m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) ≡ −1

s

s
2−1∑

i=3

(
i− 1

2

)
e(s)2im+2 (mod p2),

which is not congruent to 0 modulo p2 in general.
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*oroHH�rv j.8. For any TobBiBve even Bnie;er s, we have
m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) ≡ 0 (mod p).

Proof. By the same discussion as in the proof above, we have

m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) =

1

s

m∑

k=0

F ′
s(k) ≡

1

s

p−1∑

k=0

F ′
s(k) ≡ pψ(F ′

s(x)/s) (mod p).

When s ≥ 4, we have ψ(F ′
s(x)/s) = 0. When s = 2, we directly have

pψ(F ′
2(x)) =

2m∑

k=1

ke(2)k pBk−1 ≡ 0 (mod p).

jXk An �TTHic�tion
G2KK� j.e.

(
m+ k

k

)
≡ (−1)k

(
m

k

)(
1 + p(Hm+k −Hm)

)
(mod p2).

Proof. We have
(
m+ k

k

)
=

(
m

k

) k−1∏

j=0

m+ j + 1

m− j

= (−1)k
(
m

k

) k−1∏

j=0

1 + p
2 (j +

1
2 )

−1

1− p
2 (j +

1
2 )

−1

≡ (−1)k
(
m

k

)(
1 + p

k−1∑

j=0

1

j + 1
2

)
(mod p2).

Since

Hm+k −Hm =
k−1∑

j=0

1

m+ j + 1
≡

k−1∑

j=0

1

j + 1
2

(mod p),

we have the conclusion.

By the lemma, for any s ≥ 1, we have
(
m+ k

k

)2s
≡

(
m

k

)2s(
1 + 2sp(Hm+k −Hm)

)
(mod p2).
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>ence we have
m∑

k=0

(
m+ k

k

)2s
(Hm+k −Hk)

≡
m∑

k=0

(
m

k

)2s
(Hm+k −Hk) + 2sp

m∑

k=0

(
m

k

)2s
Hm+k(Hm+k −Hk)

− 2spHm

m∑

k=0

(
m

k

)2s
(Hm+k −Hk) (mod p2).

lsing Corollary 3.8, this implies that
m∑

k=0

(
m

k

)2s
(Hm+k −Hk) ≡ 0 (mod p), U3.eV

and hence
m∑

k=0

(
m+ k

k

)2s
(Hm+k −Hk)

≡
m∑

k=0

(
m

k

)2s
(Hm+k −Hk) + 2sp

m∑

k=0

(
m

k

)2s
Hm+k(Hm+k −Hk) (mod p2).

1specially, when s = 2, 3, Theorem 3.3 allows us to obtain the following etpressions,
Proposition j.d. qe have

m∑

k=0

(
m

k

)4
(Hm+k −Hk) ≡ −4p

m∑

k=0

(
m

k

)4
Hm+k(Hm+k −Hk) (mod p2), U3.dV

m∑

k=0

(
m

k

)6
(Hm+k −Hk) ≡ −6p

m∑

k=0

(
m

k

)6
Hm+k(Hm+k −Hk) (mod p2). U3.3V

These ethibit the p-divisibility of the sums in an etplicit manner. These formulas
could be used to reduce the analysis of the mod p2 behavior of the sums in the left-
hand sides to that of the mod p behavior of the corresponding sums in the right-hand
sides.

jXj R2H�t2d conD2ctur�H con;ru2nc2b
In the final position, we give several conDectures on congruences involving o// powers
of binomial coefficients and harmonic sums which we found by numerical etperiments.
*onD2+tmr2 j.3. Af p ≡ 1 (mod 4) an/ p > 5, ihen

m∑

k=0

(
m+ k

k

)3
(Hm+k −Hk) ≡ 0 (mod p2), U3.NV

m∑

k=0

(
m+ k

k

)5
(Hm+k −Hk) ≡ 0 (mod p2). U3.RyV
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*onD2+tmr2 j.N. Af p ≡ 3 (mod 4), ihen
m∑

k=0

(
m+ k

k

)5
(H(2)

m+k −H(2)
k − 5(Hm+k −Hk)

2) ≡ 0 (mod p2), U3.RRV

m∑

k=0

(
m+ k

k

)7
(H(2)

m+k −H(2)
k − 7(Hm+k −Hk)

2) ≡ 0 (mod p2), U3.R2V

where H(2)
n =

∑n
i=1

1
i2 .
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