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Abstract

This is nothing but a reviewing study based on the cyclic Hochschild
cohomology part of Noncommutative Geometry invented by Connes, as
the basic theory.
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1 Introduction

Following Connes [13], with minor modification only, we would like to study
the basic part of the cyclic Hochschild cohomology theory for algebras with
derivations, as cHo-cho as butterfly look like. This is a sort of Yabu-Kogi
(paving) gardening or studying in (such) a jungle bush like, to understand the
contents to some extent by some considerable effort made.

Original notations are slightly changed by our taste.
It looks similar to the original contents, but not completely the same by our

sense.
Our understanding might be shallow, narrow, and pointed like a pencil

mightier than an apple.
We would like to figure it out the Connes theory by part by our interest.
Let us go to the symmetric world of cHo-cho.
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2 The cyclic Hochschild cohomology

Let A be an algebra over C the field of complex numbers. We denote by Ln
c (A)

the space of (n + 1)-linear functionals on A such that

Ln
c (A) = {ϕ : Πn+1A → C |ϕ(a1, · · · , an, a0) = (−1)nϕ(a0, · · · , an), aj ∈ A}.

We consider the complex (Ln
c (A), b) where b : Ln

c (A) → Ln+1
c (A) is the Hochschild

coboundary map defined by that for ϕ ∈ Ln
c (A),

(bϕ)(a0, · · · , an+1) =
n∑

j=0

(−1)jϕ(a0, · · · , ajaj+1, · · · , an+1)

+ (−1)n+1ϕ(an+1a0, · · · , an).

Definition 2.1. An (algebraic) cycle of dimension n is defined to be a triple
(Ω, d,

∫
), where Ω = ⊕n

j=0Ω
j is a (differential) graded algebra over C, with d

a graded derivation of degree 1 such that d2 = 0, and
∫

: Ωn → C is a closed
graded trace on Ω.

A cycle over an algebra A over C is defined by a cycle (Ω, d,
∫

) with a
homomorphism ρ : A → Ω0.

A cycle of dimension n over A is essentially determined by its character,
which is the (n + 1)-linear function τ defined by

τ(a0, · · · , an) =
∫

ρ(a0)d(ρ(a1)) · · · d(ρ(an)), aj ∈ A.

Those functionals are exactly the elements of ker(b) ∩ Ln
c (A), to be proved

later.
Given such two cycles (Ω, d,

∫
) and (Ω′, d′,

∫ ′) of the same dimension n, their
sum cycle of dimension n is defined to be the direct sum Ω ⊕ Ω′ of differential
graded algebras Ω and Ω′, with d ⊕ d′ as a degree 1 graded derivation, and∫ ⊕ ∫ ′(ω, ω′) =

∫
ω +

∫ ′
ω′ for ω ∈ Ω and ω′ ∈ Ω′ as a graded trace.

Given two cycles (Ω, d,
∫

) and (Ω′, d′,
∫ ′) of dimension n and n′ respectively,

their tensor cycle of dimension n+n′ is defined to be the tensor product Ω⊗Ω′ of
differential graded algebras Ω and Ω′, with d⊗d′ as a degree 1 graded derivation,
and

∫ ⊗ ∫ ′
ω ⊗ ω′ = (−1)nn′ ∫

ω
∫ ′

ω′ for ω ∈ Ω and ω′ ∈ Ω′ as a graded trace.
Similarly, direct sums and tensor products of cycles over an algebra are

defined.

Example 2.2. Let M be a smooth compact manifold. Let ϕ be a closed
de Rham current of dimension q on M , with q ≤ dimM = m. Let Ωj =
C∞(M,∧jT ∗M) be the space of smooth differential forms on M of degree j,
for 0 ≤ j ≤ q. Then Ω = ⊕q

j=0Ω
j becomes a differential graded algebra with

the usual product and (graded) differentiation, with
∫

ω = ϕ(ω) for ω ∈ Ωq as
a closed graded trace.
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� May refer to [29]. Note that Ω0 = C∞(M). For f ∈ Ω0, we have the
derivation df =

∑m
j=1

∂f
∂xj

dxj ∈ Ω1 = C∞(M,T ∗M) (locally). Any element
ω of Ωj has the local form

∑
K fKdxK =

∑
k1,··· ,kj

fk1,··· ,kj dxk1 · · · dxkj with
fk1,··· ,kj ∈ C∞(M). The wedge product ω ∧ ω′ of forms ω =

∑
K fKdxK and

ω′ =
∑

K′ fK′dxK′ in Ω is the usual product

ω ∧ ω′ = ωω′ =
∑
K

fKdxK

∑
K′

fK′dxK′ =
∑
K,K′

fKfK′dxKdxK′ ,

so that ΩjΩk = Ωj+k for 0 ≤ j +k ≤ m, and also Ωj+k = {0} for j +k ≥ m+1.
Because dxj ∧ dxj = 0 and dxj ∧ dxk = −dxk ∧ dxj . It then follows that
ω ∧ ω′ = (−1)jkω′ω for ω ∈ Ωj , ω′ ∈ Ωk. For ω =

∑
K fKdxK ∈ Ωj , we have

the derivation dω =
∑

K dfKdxK . For instance, in the case of m = 2, we have
that for f = f(x, y) ∈ Ω0, with fx = ∂f

∂x ,

Ω2 � d2f = d(fxdx + fydy)
= (fxxdx + fxydy)dx + (fyxdx + fyydy)dy

= fxxdxdx + (−fxy + fyx)dxdy + fyydydy = 0.

Thus, d2 = 0 on Ω0. Also, d2ω = 0 for ω ∈ Ω1 since d2ω ∈ Ω3 = {0}. Similarly,
d2 = 0 on Ω2.

� We may have q = m. Or assume that Ωq+j = {0} for j ≥ 1.
� Define ΩjM = Hom(ΩjM,C) = (ΩjM)∗ with ΩjM = Ωj the continuous

linear dual of the space Ωj of j-forms on M . Elements of ΩjM are said to be
de Rham j-currents on M . In particular, elements of Ω0M = C∞(M)∗ are
distributions on M as the usual integrals with the usual trace property.

� Note that∫
ω ∧ ω′ = ϕ(ωω′) = ϕ((−1)deg ω deg ω′

ω′ω) = (−1)deg ω deg ω′
∫

ω′ ∧ ω.

� Why do we need to have dxdx = 0 and dxdy = −dydx? We have the
following answer by computing:

0 = d2 x2

2
= d(xdx) = dxdx,

0 = d2(xy) = d(ydx + xdy) = dydx + dxdy!

� Note also as given in [29] that

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)degωω ∧ dω′.

Example 2.3. Let M be a smooth oriented manifold. Let Γ be a discrete group
acting on M by orientation preserving diffeomorphisms ψg, where the (right)
action is written as (x, g) ∈ M × Γ �→ xg = ψg(x) ∈ M .

� Note that for g1, g2 ∈ Γ, we have

ψg1g2(x) = x(g1g2) = (xg1)g2 = ψg2(xg1) = ψg2ψg1x.
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Thus, ρg = ψg−1 does make an action since ρg1g1(x) = x(g1g2)−1 = xg−1
2 g−1

1 =
ρg1ρg2(x).

Denote by F ∗
c (M) = C∞

c (M,∧∗T ∗
C
(M)) the graded differential algebra of

smooth differential forms on M with compact support. The group Γ acts on
F ∗

c (M) by automorphisms, where the (left) action is defined by that for ω ∈
F ∗

c (M) and g ∈ Γ,
gω = ψ∗

gω = ω ◦ ψg−1 .

� Note that for g1, g1 ∈ Γ, x ∈ M ,

((g1g2)ω)(x) = ω(ψ(g1g2)−1(x)) = ω(ψg−1
2

ψg−1
1

(x))

= g2ω(ψg−1
1

(x)) = g1(g2ω)(x).

The algebraic crossed product F ∗
c (M) �ψ∗ Γ by the action ψ∗ is a graded

differential algebra Ω∗ in the following sense. As a linear space, for 0 ≤ p ≤
dimM , Ωp is the space C∞

c (M × Γ,∧pT ∗
C
M) of smooth forms with compact

support on the disconnected manifold M × Γ. Algebraically, such forms are
written as finite sums

∑
g∈Γ ωgug for ωg ∈ F ∗

c (M), where ug as symbols are
automorphisms of F ∗

c (M) such that the covariance relation ugωkug−1 = ψ∗
gωk

for g, k ∈ Γ holds. It then follows that∑
g

ωgug

∑
k

ω′
kuk =

∑
g,k

(ωg ∧ ψ∗
gω′

k)ugk

as a product rule. Moreover, the derivation of F ∗
c (M) extends to F ∗

c (M)�ψ∗Γ by
d(

∑
g ωgug) =

∑
g(dωg)ug. The graded trace on Ω∗ is defined by

∫ ∑
g ωgug =∫

M
ωe with e the unit of Γ. It follows from the invariance under diffeomorphisms

preserving the orientation of the integral of top-dimensional forms that the triple
(Ω∗, d,

∫
) defines a cycle of dimension n = dimM over the crossed product

algebra C∞
c (M) � Γ, with Ω0 = C∞

c (M) � Γ.

� Check that

d(
∑

g

ωgug

∑
k

ω′
kuk) =

∑
g,k

d(ωg ∧ ψ∗
gω′

k)ugk

=
∑
g,k

d(ωg) ∧ ψ∗
gω′

kugk +
∑
g,k

(−1)deg ωgωg ∧ d(ψ∗
gω′

k)ugk

= d(
∑

g

ωgug)
∑

k

ω′
kuk +

∑
g

(−1)deg ωgωgug

(∑
k

d(ψ∗
gω′

k)uk

)

where it seems in a moment that the second term is not equal to

(−1)deg
P

g ωgug (
∑

g

ωgug)d(
∑

k

ω′
kuk)

where deg
∑

g ωgug may not be defined if not homogeneous. That equation itself
should be a graded derivation rule in this case. Moreover, it does not hold that∑

k

d(ψ∗
gω′

k)uk = ψ∗
gd(

∑
k

ω′
kuk).

－ 24 －



Indeed, as ω′
k, for a simple form fω with f ∈ C∞

c (M) and some form ω ∈
∧∗T ∗

C
M ,

d(ψ∗
g(fω)) = d((f ◦ ψg−1)ω) = d(f ◦ ψg−1)ω

and the chain rule implies that along a local direction,

∂

∂x
(f ◦ ψg−1) =

(
f ′ ◦ ψg−1

) ∂ψg−1

∂x
= ψ∗

g (f ′)
∂ψg−1

∂x

= ψ∗
g(f ′)ψ∗

g

(
∂ψg−1

∂x
◦ ψg

)
= ψ∗

g

(
f ′

(
∂ψg−1

∂x
◦ ψg

))
with f ′ the differential on M .

Example 2.4. Let Γ be a discrete group and A = CΓ the group ring of Γ over
C. Let Ω∗(Γ) be the graded differential algebra of the spaces Ωn(Γ) = Ωn of
finite linear combinations of symbols g0dg1 · · · dgn for gj ∈ Γ, 0 ≤ j ≤ n, and
n ≥ 0, with Ω0 identified with A, where the product is given by

(g0dg1 · · · dgn)(gn+1dgn+2 · · · dgm) =
n∑

j=1

(−1)n−jg0dg1 · · · d(gjgj+1) · · · dgndgn+1 · · · dgm + (−1)ng0g1dg2 · · · dgm,

so that ΩnΩm−n−1 = Ωm−1, and the derivation d : Ωn → Ωn+1 is defined by
d(g0dg1 · · · gn) = dg0dg1 · · · dgn.

� d(1) = 0. Hence it follows that d2 = 0. Because d2(g0dg1 · · · dgn) =
d(dg0 · · · dgn) = d1dg0 · · · dgn = 0.

� Note that (g0dg1)(g2dg3) = g0d(g1g2)dg3 − g0g1dg2dg3, so that

d((g0dg1)(g2dg3)) = dg0d(g1g2)dg3 − d(g0g1)dg2dg3

= g2dg0dg1dg3 + g1dg0dg2dg3 − g1dg0dg2dg3 − g0dg1dg2dg3

= d(g0dg1)g2dg3 + (−1)deg g0dg1g0dg1d(g2dg3)

since d(gg′) = (dg)g′ + (−1)deg ggdg′ = g′dg + gdg′.
Any normalized group cocycle c ∈ Zk(Γ,C) determines a k-dimensional

cycle (Ω∗(Γ), d,
∫

) (cocycle and cycle corresponded!) with the following closed
graded trace

∫
on Ω∗(Γ) defined that

∫
g0dg1 · · · dgn = 0 unless (if not) n = k

and g0g1 · · · gn = 1, and∫
g0dg1 · · · dgk = c(g1, · · · , gk), if g0 · · · gk = 1.

Recall that the group cohomology H∗(Γ,C) is by definition the cohomology
of the classifying space BΓ. Equivalently, H∗(Γ,C) is the cohomology of the
complex (C∗, b) of the spaces Cp = Cp(Γ) of all functions γ : Γp+1 → C such
that γ(gg0, · · · , ggp) = γ(g0, · · · , gp) for any g, gj ∈ Γ, 0 ≤ j ≤ p, with

(bγ)(g0, · · · , gp+1) =
p+1∑
j=0

(−1)jγ(g0, · · · , gj−1, gj+1, · · · , gp+1).
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� If γ ∈ C0, then γ : Γ → C with γ(gg0) = γ(g0) for any g, g0 ∈ Γ. It follows
that γ(g) = γ(g−1g) = γ(1) for any g ∈ Γ, which means that any γ ∈ C0 is the
constant function! Therefore, C0 ∼= C.

� For 1 ∈ C0 as a constant function on Γ,

(b1)(g0, g1) = 1(g1) − 1(g0) = 1 − 1 = 0.

Thus, the map b = 0 on C0. Hence H0(Γ,C) = Z0(Γ,C) ∼= C.
� If γ ∈ C1, then γ(gg0, gg1) = γ(g0, g1) for any g, g0, g1 ∈ Γ. Thus,

γ(g0, g1) = γ(g−1
0 g0, g

−1
0 g1) = γ(1, g−1

0 g1).

Therefore, the function γ(g1, g2) may be identified with the function γ(1, g) for
g ∈ Γ in this sense.

� For γ ∈ C1, we have

(bγ)(g0, g1, g2) = γ(g1, g2) − γ(g0, g2) + γ(g0, g1).

� For γ ∈ C2, we have

γ(g0, g1, g2) = γ(1, g−1
0 g1, g

−1
0 g2) (h1 = g−1

0 g1)

= γ(1, h1, h1g
−1
1 g2) = γ(1, h1, h1h2) (h2 = g−1

1 g2).

The group cocycle associated to γ ∈ Ck with bγ = 0 is given by

c(g1, · · · , gk) = γ(1, g1, g1g2, · · · , g1g2 · · · gk).

The normalization required above is that c = 0 if any gj = 1 or if g1 · · · gk =
1.

Any group cocycle can be normalized without changing its cohomology class.
Because the above complex can be replaced, without altering its cohomology,
by the subcomplex of skew-symmetric cochains, such that

γσ(g0, · · · , gn) = γ(gσ(0), · · · , gσ(p)) = sign(σ)γ(g0, · · · , gp)

for gj ∈ Γ and σ ∈ Sp+1.
The differential algebra Ω∗(Γ) is independent of the choice of the cocycle c

for
∫

.
The construction of Ω∗(Γ) starting from the group ring A = CΓ is a special

case of the universal differential algebra Ω∗(A) associated to an algebra A (cf.
[1], [23]). Briefly recall it as in the following.

Proposition 2.5. Let A be an algebra over C, not necessarily unital. Let
A∼ = A ⊕ C1 be the unital algebra obtained by adjoining a unit 1 to A. Let
Ω1(A) = A∼ ⊗C A as a linear space. Then an A-bimodule structure on Ω1(A)
is defined by x((a + λ1) ⊗ b) = (xa + λx) ⊗ b, ((a + λ1) ⊗ b)y = (a + λ1) ⊗ by,
and

x((a + λ1) ⊗ b)y = (xa + λx) ⊗ by − (xab + λxb) ⊗ y
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for a, b, x, y ∈ A and λ ∈ C, and a derivation d : A → Ω1(A) is defined by
da = 1 ⊗ a ∈ Ω1(A) for a ∈ A.

Let E be an A-bimodule and δ : A → E a derivation. Then there exists a
bimodule morphism ρ : Ω1(A) → E such that δ = ρ ◦ d, so that the following
diagram commutes:

A
d−−−−→ Ω1(A)∥∥∥ ⏐⏐/ρ

A
δ−−−−→ E

in the sense that (Ω1(A), d) is the universal A-bimodule involving a derivation.

� Check that

x1(x2((a + λ1) ⊗ b)y1)y2 = x1((x2a + λx2) ⊗ by1)y2 − x1((x2ab + λx2b) ⊗ y1)y2

= (x1x2a + λx1x2) ⊗ by1y2 − (x1x2a + λx1x2)by1 ⊗ y2

− (x1x2ab + λx1x2b) ⊗ y1y2 + (x1x2ab + λx1x2b)y1 ⊗ y2

= (x1x2)((a + λ1) ⊗ b)(y1y2)!

� Note that

d(a1)a2 + a1d(a2) = (1 ⊗ a1)a2 + a1(1 ⊗ a2)
= 1 ⊗ (a1a2) − (1a1) ⊗ a2 + a1 ⊗ a2 = 1 ⊗ a1a2 = d(a1a2).

Let Ωn(A) = ⊗n
AΩ1(A) be the n-fold tensor product of the bimodule Ω1(A) =

A∼⊗CA. The universal graded differential algebra of A is defined to be Ω∗(A) =
⊕∞

n=0Ω
n(A), with a square-zero graded derivation d : Ωn(A) → Ωn+1(A), which

is extended uniquely from the differential d : A → Ω1(A), where A = Ω0(A)
may be assumed.

� Note that d2(a) = d(1 ⊗ a) = d(1) ⊗ d(a) = 0 for a ∈ A, with d(1) = 0
assumed.

� For (a0 + λ1) ⊗ a1 = a0(1 ⊗ a1) + λ(1 ⊗ a1) ∈ Ω1(A), we have

d((a0 + λ1) ⊗ a1) = da0 ⊗ da1 = da0da1 = d(a0da1).

Remark that there is a natural linear space isomorphism J from A∼⊗(⊗nA)
to Ωn(A) defined by

J((a0 + λ1) ⊗ a1 · · · ⊗ an) = a0da1 · · · dan + λda1da2 · · · dan

for a0, · · · , an ∈ A, λ ∈ C.
Note that the cohomology HΩ∗(A) of the complex (Ω∗(A), d) in all dimen-

sions are zero, including HΩ0(A) = 0 if we set Ω0(A) = A.
� Note that d : A → Ω1(A) is injective. Thus the kernel ker(d) is zero.

Hence HΩ0(A) = ker(d) = 0. The image d(A) = 1 ⊗ A. Also, the kernel
of d : Ω1(A) → Ω2(A) is 1 ⊗ A. Hence HΩ1(A) = 0. As well, the image
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d(Ω1(A)) = (1 ⊗C A) ⊗A (1 ⊗C A), which is the kernel of d on Ω2(A), so that
HΩ2(A) = 0.

The product in Ω∗(A) given in a way analogus to that in Ω∗(Γ) is defined
by

(a0da1 · · · dan)(an+1dan+2 · · · dam)

=
n∑

j=1

(−1)n−ja0da1 · · · d(ajaj+1) · · · dandan+1 · · · dam + (−1)na0a1da2 · · · dam.

� Note that (a0da1)(a2da3) = a0d(a1a2)da3 − a0a1da2da3. Thus,

d((a0da1)(a2da3)) = da0d(a1a2)da3 − d(a0a1)da2da3

= a2da0da1da3 + a1da0da2da3 − a1da0da2da3 − a0da1da2da3

= d(a0da1)a2da3 + (−1)deg a0da1a0da1d(a2da3).

Proposition 2.6. Let τ : An+1 → C be an (n + 1)-dimensional functional on
an algebra A over C. The the following conditions are equivalent:

(1) There is an n-dimensional cycle (Ω, d,
∫

) and a homomorphism ρ : A →
Ω0, namely an n-cycle over A, such that

τ(a0, · · · , an) =
∫

ρ(a0)d(ρ(a1)) · · · d(ρ(an)), a0, · · · , an ∈ A.

(2) There exists a closed graded trace tr of dimension n on Ω∗(A) such that

τ(a0, · · · , an) = tr(a0da1 · · · dan), a0, · · · , an ∈ A.

(3) It holds that τ(a1, · · · , an, a0) = (−1)nτ(a0, · · · , an) and

n∑
j=0

(−1)jτ(a0, · · · , ajaj+1, · · · , an+1) + (−1)n+1τ(an+1a0, · · · , an) = 0.

Proof. It follows from the universality of Ω∗(A) that (1) and (2) are equivalent.
� Note that there is the morphism ρ′ by universality, for which the following

diagram commutes:
A

d−−−−→ Ω1(A)∥∥∥ ⏐⏐/ρ′

A
ρ−−−−→ Ω1

so that for the cycle (Ω, d,
∫

) associated to τ , the trace is defined by

tr(a0da1 · · · dan) =
∫

ρ′(da0)d(ρ′(da1)) · · · d(ρ′(dan)),

which shows that (1) ⇒ (2). Conversely, the triple (⊕n
j=0Ω

j(A), d, τ) with τ as
a closed graded trace of dimension n is an n-dimensional cycle over A.
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Next show that (3) ⇒ (2). Given any (n+1)-linear functional ϕ on A, define
a linear functional ϕ∧ on Ωn(A) by

(ϕ∧ ◦ j)((a0 + λ01) ⊗ a1 ⊗ · · · ⊗ an) = ϕ(a0, a1, · · · , an)
= ϕ∧(a0da1 · · · dan + λ0da1 · · · dan)

for any λ0 ∈ C.
� This is defined mod ker(d) = Zn(A) ⊂ Ωn(A). Indeed, if a0 = 0, then

ϕ∧(λ0da1 · · · dan) = ϕ(0, a1, · · · , an) = 0 by linearity.
By construction, we have ϕ∧(dω) = 0 for any ω ∈ Ωn−1(A), which means

the closedness of ϕ∧.
� Note that dω ∈ Bn(A) ⊂ Zn(A).
For τ satisfying (3), we show that τ∧ is a graded trace in the following sense

that

τ∧((a0da1 · · · dak)(ak+1dak+2 · · · dan+1))

= (−1)k(n−k)τ∧((ak+1dak+2 · · · dan+1)(a0da1 · · · dak)).

By the product rule in Ω∗(A), the left-hand side is equal to

k∑
j=0

(−1)k−jτ(a0, · · · , ajaj+1, · · · , an+1)

(with j from 0!), and the right-hand side is equal to

n−k∑
j=0

(−1)k(n−k)+n−k−jτ(ak+1, · · · , ak+1+jak+1+j+1, · · · , a0, a1, · · · , ak),

where we let an+2 = a0 at the (n − k)-term. The cyclic permutation σ of
σ(l) = k + 1 + l has signature ε(σ) equal to (−1)n(k+1), so that

τσ(a0, · · · , an) = τ(aσ(0), · · · , aσ(n)) = ε(σ)τ(a0, · · · , an)

by cyclic hypothesis. Thus, the right-hand side is changed to

−
n∑

j=k+1

(−1)k−jτ(a0, · · · , ajaj+1, · · · , an+1) + (−1)k−nτ(an+1a0, a1, · · · , an)

with k +1+ j replaced with j′ from k +1 to n for j from 0 to n− k− 1, so that

(−1)k(n−k)+n−k−(j′−k−1)(−1)n(k+1) = (−1)(k+1)(n−k)−j′+(k+1)+(k+1)n

= (−1)(k+1)(2n−k+1)−j′
= (−1)1−k2−j′

= (−1)(−1)k−j′ ,

since (−1)±k2
= (−1)k because k2 = k mod 2, and

(−1)k(n−k)+n−k−(n−k)(−1)n(k+1) = (−1)2nk+n−k2
= (−1)k−n
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for the last term. Therefore, the above equality as a graded trace follows from
the second sum equality hypothesis on τ , converted to the both-hand sides.

Show that (1) ⇒ (3). We may assume that A = Ω0, so that ρ is the identity
map. Then

τ(a0, a1, · · · , an) =
∫

(a0da1)da2 · · · dan = (−1)n−1

∫
da2 · · · dan(a0da1)

= (−1)n

∫
da2 · · · dan(da0)a1 = (−1)nτ(a1, a2, · · · an, a0).

� Note that a0da1 = a0(1 ⊗ a1) = a0 ⊗ a1 and (da0)a1 = (1 ⊗ a0)a1 =
1 ⊗ a0a1 − a0 ⊗ a1. Thus, a0da1 = −(da0)a1 + 1 ⊗ a0a1 = −(da0)a1 + d(a0a1).
It does hold

∫
da2 · · · dand(a0a1) = 0 by closedness.

To prove the second equality in (3), we use the equality that
∫

aω =
∫

ωa
for ω ∈ Ωn and a ∈ A.

� We have (da1)a2 = d(a1a2) − a1da2. Also,

d(a1)d(a2)a3 = d(a1)d(a2a3) − d(a1)a2d(a3)
= d(a1)d(a2a3) − d(a1a2)d(a3) + a1d(a2)d(a3)

= (−1)d(a1a2)d(a3) + (−1)2d(a1)d(a2a3) + (−1)2a1d(a2)d(a3).

It then follows as a general case that

(da1 · · · dan)an+1 =
n∑

j=1

(−1)n−jda1 · · · d(ajaj+1) · · · dan+1 + (−1)na1da2 · · · dan+1.

Thus, the second equality in (3) follows from the above equality for a0(da1 · · · dan)an+1

as integrated with∫
a0(da1 · · · dan)an+1 =

∫
(a0da1 · · · dan)an+1 =

∫
an+1a0da1 · · · dan

and multipliying (−1)n on both sides. (The end of the proof.)

Recall now the definition of Hochschild cohomology groups Hn(A, M) of an
algebra A over C with coefficients in a bimodule M (cf. [8]). Let A ⊗ A� be
the tensor product of A with the opposite algebra A� of A with � as product
of A�. Any bimodule M over A becomes a left A ⊗ A�-module.

� For a ⊗ b ∈ A ⊗ A�, and m ∈ M , define (a ⊗ b)m = amb. Then

(a1 ⊗ b1)(a2 ⊗ b2)m = (a1 ⊗ b1)(a2mb2) = a1a2mb2b1 = (a1a2 ⊗ (b1 � b2))m.

By definition, Hn(A,M) = Extn
A⊗A�(A,M) (What’s this?) where A is

viewed as a bimodule over A so that a(m)b = amb for any a,m, b ∈ A.
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Reformulate the definition of Hn(A,M) using the standard resolution of the
bimodule A (cf. [8]).

Define the complex (Cn(A,M), b) as follows.
(a) Let Cn(A, M) be the space of n-linear maps from ⊕nA to M .
(b) The boundary bT ∈ Cn+1(A,M) for T ∈ Cn(A,M) is defined by

(bT )(a1, · · · , an+1) = a1T (a2, · · · , an+1)

+
n∑

j=1

(−1)jT (a1, · · · , ajaj+1, · · · , an+1) + (−1)n+1T (a1, · · · , an)an+1.

Definition 2.7. The Hochschild cohomology of A with coefficients in M is
defined to be the cohomology Hn(A,M) of the complex (Cn(A,M), b).

� Note that C0(A,M) = M . The boundary bm ∈ C1(A,M) for m ∈ M is
defined as that (bm)(a) = ma − am for a ∈ A. Check that

(b2m)(a1, a2) = a1(bm)(a2) − (bm)(a1a2) + (bm)(a1)a2

= a1(ma2 − a2m) − (m(a1a2) − (a1a2)m) + (ma1 − a1m)a2 = 0.

Therefore, b2 = 0 on M . Moreover, b2 = 0 on Cn(A,M).
� Since the boundary image b(Cn−1(A,M)) = Bn(A,M) ⊂ Cn(A,M) is

contained in the b-kernel Zn(A, M) ⊂ Cn(A,M), then Hn(A,M) is defined to
be the quotient Zn(A, M)/Bn(A,M).

The dual space A∗ of all linear functionals ϕ : A → C is a bimodule over A
in the sense that (aϕb)(c) = ϕ(bca), for a, b, c ∈ A.

� Check that

(a1(a2ϕb1)b2)(c) = (a2ϕb1)(b2ca1) = ϕ(b1(b2ca1)a2) = ((a1a2)ϕ(b1b2))(c).

Any n-cochain T ∈ Cn(A,A∗) is considered as an (n + 1)-linear functional
τ : ⊕n+1A → C by the following equality:

τ(a0, a1, · · · , an) = T (a1, · · · , an)(a0).

The boundary bT ∈ Cn+1(A,A∗) corresponds to the (n+2)-linear functional
bτ : ⊕n+2A → C:

(bτ)(a0, a1, · · · , an+1) =
(bT )(a1, · · · , an+1)(a0) = a1T (a2, · · · , an+1)(a0)

+
n∑

j=1

(−1)jT (a1, · · · , ajaj+1, · · · , an+1)(a0) + (−1)n+1T (a1, · · · , an)(a0)an+1

= τ(a0a1, a2, · · · , an+1)

+
n∑

j=1

(−1)jτ(a0, a1, · · · , ajaj+1, · · · , an+1) + (−1)n+1τ(an+1a0, a1, · · · , an).
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It then follows that the cyclic conditions of τ : ⊕n+1A → C by the two equal-
ities becomes that (a) τγ = ε(γ)τ for any cyclic permutation γ of {0, 1, · · · , n}
and (b) bτ = 0.

The Hochshild coboundary b does not commute with cyclic permutations.
� For T ∈ C1(A,M), we have T γ = T with γ trivial, and for γ′ = (2, 1),

(bT )γ′
(a1, a2) = (bT )(a2, a1) = a2T (a1) − T (a2a1) + T (a2)a1,

(b(T γ))(a1, a2) = a1T (a2) − T (a1a2) + T (a1)a2,

both of which look different obviously in general.
The Hochshild coboundary maps cochains satisfying (a) to cochains satisfy-

ing the same.
� For T ∈ C1(A,A∗), assume that for γ = (1, 0) with ε(γ) = −1,

−τ(a0, a1) = τγ(a0, a1) = τ(a1, a0) = T (a0)(a1).

Then, for γ′ = (1, 2, 0) with ε(γ′) = 1,

(bτ)γ′
(a0, a1, a2) = (bτ)(a1, a2, a0)

= τ(a1a2, a0) − τ(a1, a2a0) + τ(a0a1, a2)
= −τ(a0, a1a2) + τ(a2a0, a1) + τ(a0a1, a2) = (bτ)(a0, a1, a2). (!)

Define the linear map Pc : Cn(A,A∗) → Cn(A,A∗) by Pcϕ =
∑

γ∈Pc,n+1
ε(γ)ϕγ ,

where Pc,n+1 is the group of cyclic permutations of {0, 1, · · · , n}.
The range Pc(Cn(A,A∗)) is the subspace Cn

λ (A) = Pn
c (A) of Cn(A,A∗) of

cochains satisfying (a), denoted so by us.
� Note that

Pc(ϕ)γ′
=

∑
γ∈Pc,n+1

ε(γ)(ϕγ)γ′
= ε(γ′)

∑
γ∈Pc,n+1

ε(γ′γ)ϕγ′γ = ε(γ′)Pc(ϕ).

Also, if τγ = ε(γ)τ for any cyclic permutations γ, then

Pc(τ) =
∑

γ∈Pc,n+1

ε(γ)τγ =

⎛
⎝ ∑

γ∈Pc,n+1

1

⎞
⎠ τ.

Lemma 2.8. Define the operator b′ : Cn(A,A∗) → Cn+1(A,A∗) by

(b′ϕ)(x0, · · · , xn+1) =
n∑

j=0

(−1)jϕ(x0, · · · , xjxj+1, · · · , xn+1),

so that the following diagram commutes

Cn(A, A∗) b′−−−−→ Cn+1(A, A∗)

Pc

⏐⏐/ ⏐⏐/Pc

Cn(A, A∗) b−−−−→ Cn+1(A,A∗).
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Proof. We have

((Pc ◦ b′)ϕ)(x0, · · · , xn+1) =
n+1∑
k=0

n∑
i=0

(−1)i+(n+1)kϕ(xk, · · · , xk+ixk+i+1, · · · , xx−1)

with sub-indices mod n + 2 = 0 as convention. In particular, k + i is converted
to j (mod n+2). Also,

((b ◦ Pc)ϕ)(x0, · · · , xn+1) =
n∑

j=0

(−1)j(Pcϕ)(x0, · · · , xjxj+1, · · · , xn+1) + (−1)n+1(Pcϕ)(xn+1x0, · · · , xn).

For 0 ≤ j ≤ n,

(Pcϕ)(x0, · · · , xjxj+1, · · · , xn+1) =
j∑

k=0

(−1)nkϕ(xk, · · · , xjxj+1, · · · , xk−1)

+
n+1∑

k=j+2

(−1)n(k−1)ϕ(xk, · · · , xn+1, x0, · · · , xjxj+1, · · · , xk−1).

As well,

(Pcϕ)(xn+1x0, · · · , xn) = ϕ(xn+1x0, · · · , xn)

+
n∑

j=1

(−1)jnϕ(xj , · · · , xn, xn+1x0, · · · , xj−1).

We need to check equal the signs as coefficients of corresponding terms such
as ϕ(xk, · · · , xjxj+1, · · · , xk−1) of both sides of Pcb

′ϕ and bPcϕ.

� For τ ∈ C1(A,A∗),

(Pcb
′τ)(x0, x1, x2) = Pc(τ(x0x1, x2)) − Pc(τ(x0, x1x2)) =

τ(x0x1, x2) + τ(x1x2, x0) + τ(x2x0, x1)
− τ(x0, x1x2) − τ(x1, x2x0) − τ(x2, x0x1).

Also,

(bPcτ)(x0, x1, x2) = (Pcτ)(x0x1, x2) − (Pcτ)(x0, x1x2) + (Pcτ)(x2x0, x1) =
= τ(x0x1, x2) − τ(x2, x0x1) − τ(x0, x1x2) + τ(x1x2, x0)

+ τ(x2x0, x1) − τ(x1, x2x0).

Both of which shows that Pc ◦ b′ is just equal to b ◦ Pc on C1(A,A∗).

Corollary 2.9. (Pn
c (A), b) becomes a subcomplex of the Hochschild complex

(Cn(A,A∗), b).
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Proof. The above lemma implies that Pn
c (A) = Pc(Cn(A,A∗)) is mapped into

Pn+1
c (A) = Pc(Cn+1(A,A∗)) under the boundary map b.

We may denote by cHn(A) the n-th cohomology group of the complex
(Pn

c (A), b), which is called the n-th cycic cohomology group of an algebra A.
In particular, cH0(A) = Pc(Z0(A,A∗)) is exactly the linear space of traces

on A.
� Note that C0(A, A∗) = A∗. For ϕ ∈ A∗, we have (bϕ)(a) = ϕa − aϕ for

a ∈ A. If bϕ = 0, then (ϕa)(c) = ϕ(ac) is equal to (aϕ)(c) = ϕ(ca) for any
a, c ∈ A, which means that ϕ is a trace on A. It then follows that

Z0(A,A∗) = ker(b on A∗) = Tr(A)

which is the space of traces of A. Hence Pc(Z0(A,A∗)) = cZ0(A) = Tr(A).

Example 2.10. Let A = C. Then for n ≥ 0, cH2n+1(C) = 0, but cH2n(C) = C.

� Indeed, C∗ ∼= C since any ϕ ∈ C∗ is identified with the multiplication
operator by a p ∈ C, so that ϕ(z) = pz for z ∈ C. Certainly, any ϕ ∈ C∗ is a
trace on C. Therefore, cH0(C) = Tr(C) = C∗ ∼= C.

Moreover, Cn(C,C∗) ∼= C since ⊗nC ∼= C. Also, the boundary map b2n is
the zero map on C, and b2n+1 is the isomorphism on C, so that

C
b2n−1=id−−−−−−→ C2n(C,C∗) b2n=0−−−−→ C2n+1(C,C∗)

b2n+1=id−−−−−−→ C

Pc

⏐⏐/0 Pc

⏐⏐/id Pc

⏐⏐/0 Pc

⏐⏐/id

C
b2n−1=id−−−−−−→ P 2n

c (C) b2n=0−−−−→ P 2n+1
c (C)

b2n+1=id−−−−−−→ C

Because the orders of the groups Pc,2n and Pc,2n+1 of cyclic permutations of
{0, 1, · · · , 2n} and {0, 1, · · · , 2n + 1} are odd and even respectively. Therefore,

cH2n(C) = ker(b2n)/im(b2n−1) = C/{0} ∼= C,

cH2n+1(C) = ker(b2n+1)/im(b2n) = {0}/{0} ∼= {0}.
It is so checked by [29] that H0(C,C∗) ∼= C and Hn(C,C∗) ∼= 0 for any

n ≥ 1.
It then follows that the subcomplex (Pn

c (A), b) is not a retraction of the
complex (Cn(A, A∗), b).

Any homomorphism ρ : A → B of algebras induces a morphism ρ∗ :
Pn

c (B) → Pn
c (A) of complexes defined by

(ρ∗ϕ)(a0, · · · , an) = ϕ(ρ(a0), · · · , ρ(an)), a0, · · · , an ∈ A.

As well, the map ρ∗ : cHn(A) → cHn(A) is induced.
� Consider the following diagram:

Pn−1
c (B)

bn−1−−−−→ Pn
c (B) bn−−−−→ Pn+1

c (B)

ρ∗
⏐⏐/ ρ∗

⏐⏐/ ρ∗
⏐⏐/

Pn−1
c (A)

bn−1−−−−→ Pn
c (A) bn−−−−→ Pn+1

c (A).
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This diagram commutes, because for τ ∈ Pn
c (B),

(ρ∗bnτ)(a0, · · · , an+1) = τ(ρ(a0a1), ρ(a2), · · · , ρ(an+1))+
n∑

j=1

(−1)jτ(ρ(a0), · · · , ρ(ajaj+1), · · · , ρ(an+1)) + (−1)n+1τ(ρ(an+1a0), · · · , ρ(an))

= τ(ρ(a0)ρ(a1), ρ(a2), · · · , ρ(an+1))+
n∑

j=1

(−1)jτ(ρ(a0), · · · , ρ(aj)ρ(aj+1), · · · , ρ(an+1))

+ (−1)n+1τ(ρ(an+1)ρ(a0), · · · , ρ(an))
= bn(ρ∗τ)(a0, · · · , an+1).

Therefore, cZn(B) = ker(bn) is mapped into cZn(A). As well, cBn(B) =
im(bn−1) is mapped into cBn(A). Hence any class [τ ] = τ + cBn(B) ∈ cHn(B)
is mapped to ρ∗[τ ] = ρ∗τ + cBn(A) ∈ cHn(A).

For an homomorphism ρ : A → A, the induced map ρ∗ : cHn(A) → cHn(A)
depends only on the class of ρ modulo inner automorphisms of A, as shown
below.

Proposition 2.11. Let A be a unital algebra (which is stable under taking
tensor product with M2(C)). Let u be an invertible element of A. Define the
inner automorphism Ad(u) of A by u to be Ad(u)(x) = uxu−1 for x ∈ A. Then
the induced map Ad(u)∗ : cH∗(A) → cH∗(A) is the identity map.

Proof. Let t ∈ A and let tδ be the inner derivation of A by t defined by tδ(x) =
tx − xt = [t, x] for x ∈ A. Given ϕ ∈ cZn(A), a coboundary ψ ∈ cBn(A) is
defined by

ψ(a0, · · · , an) =
n∑

j=0

ϕ(a0, · · · , tδ(aj), · · · , an),

as checked in the following. Let ψt(a0, · · · , an−1) = ϕ(a0, · · · , an−1, t) so that
ψt ∈ Cn−1(A,A∗). Compute bPcψt which is the equal to Pcb

′ψt so that

(b′ψt)(a0, · · · , an) =
n−1∑
j=0

(−1)jϕ(a0, · · · , ajaj+1, · · · , an, t) =

(bϕ)(a0, · · · , an, t) − (−1)nϕ(a0, · · · , an−1, ant) + (−1)nϕ(ta0, · · · , an−1, an).

Since bϕ = 0,

Pcb
′ψt = (−1)n

{
n∑

k=0

(−1)nkϕ(tak, · · · , ak−1) −
n∑

k=0

(−1)nkϕ(ak, · · · , an+kt)

}

= (−1)n

{
n∑

k=0

ϕ(a0, · · · , ak−1, tak, · · · , an) −
n∑

k′=0

ϕ(a0 · · · , ak′t, · · · , an)

}
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with n + k = k − 1 = k′ and k = k′ + 1. Therefore, Pcb
′ψt = (−1)nψ, so that

ψ = (−1)nPcb
′ψt, which is equal to b((−1)nPcψt) ∈ cBn(A).

To prove that ϕ ∈ cZn(A) and ϕ ◦ Ad(u) for an invertible element u of A
are in the same cohomology class, we may replace A by the 2×2 matrix algebra
M2(A) over A, u by the corresponding invertible matrix

u∼ =
(

u 0
0 u−1

)
∈ GL2(A),

and ϕ by ϕ∼ ∈ cZn(M2(A)) defined by

ϕ∼(a0 ⊗ b0, a1 ⊗ b1, · · · , an ⊗ bn) = ϕ(a0, · · · , an)tr(b0 · · · bn)

for a0, · · · , an ∈ A and b0, · · · , bn ∈ M2(C). Now we have

v1v2 =
((

u 0
0 1

)(
0 −1
1 0

)(
u−1 0
0 1

))(
0 1
−1 0

)

=
((

0 −u
1 0

)(
u−1 0
0 1

))(
0 1
−1 0

)

=
(

0 −u
u−1 0

)(
0 1
−1 0

)
=

(
u 0
0 u−1

)
= u∼.

Moreover, vj = exp π
2 vj for j = 1, 2. The result follows from the above discussion

(cf. [24] for a purely algebraic proof).

� The assumption of tensor product stability by matrix algebras over C is
satisfied if A is a stable C∗-algebra in the sense that A ∼= A⊗K, where K is the
C∗-algebra of all compact operators on an infinite dimensional Hilbert space.
If the cyclic cohomology theory is stable invariant in such a sense, then such a
replacement is allowed.

� Check that

exp
(

0 π
2−π

2 0

)
=

(
1 − 1

2
π2

22 + · · · π
2 − 1

3!
π3

23 + · · ·
−π

2 + 1
3!

π3

23 − · · · 1 − 1
2

π2

22 + · · ·

)

=
(

cos π
2 sin π

2− sin π
2 cos π

2

)
=

(
0 1
−1 0

)
= v2.

As well,

exp
π

2
v1 =

(
u 0
0 1

)
exp

(
0 −π

2
π
2 0

)(
u−1 0
0 1

)

=
(

u 0
0 1

)(
cos π

2 − sin π
2

sin π
2 cos π

2

)(
u−1 0
0 1

)
= v1.

� It then follows that v = v1v2 (as well as v−1) and the identity ma-
trix of M2(A) is connected continuously by a continuous path p defined by
p(t) = exp tπ

2 v1 exp tπ
2 v2 ∈ GL2(A) for t ∈ [0, 1], as a homotopy. If the cyclic
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cohomology theory is homotopy invariant, then the cohomology class equiva-
lence desired now follows.

� M2(C)∗ is identified with M2(C) since any ϕ ∈ M2(C)∗ can be defined by
ϕ(x) = tr(xp) for any x ∈ M2(C) and some p ∈ M2(C).

� For ϕ1, ϕ2 ∈ M2(C)∗ given, ϕ1 ⊗ ϕ2 ∈ (⊗2M2(C))∗ can be defined by
(ϕ1 ⊗ ϕ2)(x1 ⊗ x2) = ϕ1(x1)ϕ2(x2).

Let us now characterize the coboundaries as the cyclic cocycles which ex-
tend to cyclic cocycles on arbitrary algebras containing an algebra A. In fact,
extendibility to a certain tensor product algebra C ⊗C A would be enough.

Following Karoubi [20], [21], let us assume that C is the algebra of infinite
complex matrices (aij)i,j∈N with aij ∈ C such that the set of complex number
entries aij is finite, and the number of nonzero aij per line or column is bounded.

For any (unital) algebra A, the algebra CA = C ⊗C A is algebraically con-
tractible in the sense that it verifies the hypothesis of the following lemma, so
that it has trivial cyclic cohomology.

Lemma 2.12. Let A be a unital algebra. Assume that there exists a homomor-
phism ρ : A → A and an invertible element x of M2(A) such that

xα(a)x−1 = x

(
a 0
0 ρ(a)

)
x−1 = β(a) =

(
0 0
0 ρ(a)

)
, a ∈ A.

It then follows that cHn(A) = 0 for all n ≥ 0.

Proof. Let ϕ ∈ cZn(A) and ϕ∼ = ϕ × tr ∈ cZn(M2(A)). By definition, α, β :
A → M2(A) are homomorphisms. Since α and β are similar by an invertible
element of GL2(A), then ϕ∼ ◦ α and ϕ∼ ◦ β are in the same cohomology class.
Since

α(a) = a ⊗
(

1 0
0 0

)
+ ρ(a) ⊗

(
0 0
0 1

)
,

we have

ϕ∼(α(a0), · · · , α(an)) = ϕ∼(α(a0), 0, · · · , 0) + · · · + ϕ∼(0, · · · , 0, α(an))

= ϕ(a0, 0, · · · , 0)tr
(

1 0
0 0

)
+ ϕ(ρ(a), 0, · · · , 0)tr

(
0 0
0 1

)
+ · · ·

+ ϕ(0, · · · , 0, an)tr
(

1 0
0 0

)
+ ϕ(0, · · · , 0, ρ(an))tr

(
0 0
0 1

)
= ϕ(a0, · · · , an) + ϕ(ρ(a0), · · · , ρ(an)).

Similarly,
ϕ∼(β(a0), · · · , β(an)) = ϕ(ρ(a0), · · · , ρ(an)).

Therefore, in cHn(A),

[ϕ∼ ◦ α] = [ϕ] + [ϕ ◦ ρ] = [ϕ∼ ◦ β] = [ϕ ◦ ρ].

Hence [ϕ] is zero.
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Definition 2.13. We say that a cycle vanishes, or it is a vanishing cycle when
the algebra Ω0 satisfies the assumption of the above lemma.

For an n-dimensional cycle (Ω, d,
∫

) and a homomorphism ρ : A → Ω0, the
(n + 1)-linear functional τ on A as its character is defined by

τ(a0, · · · , an) =
∫

ρ(a0)d(ρ(a1)) · · · d(ρ(an)).

Proposition 2.14. For τ : An+1 → C an (n + 1)-linear functional on A,
(1) τ ∈ cZn(A) if and only if τ is the character of a cycle.
(2) τ ∈ cBn(A) if and only if τ is the character of a vanishing cycle.

Proof. (1) It is shown in Proposition above that τ is the character of a cycle if
and only if τ ∈ Pn

c (A) = cCn(A) and bτ = 0.
(2) For (Ω, d,

∫
) a vanishing cycle, we have cHn(Ω0) = 0 for all n. It says

that cZn(A) = cBn(A). Therefore, τ ∈ cBn(A) as a coboundary.
Conversely, if τ ∈ cBn(A), then τ = bψ for some ψ ∈ cCn−1(A). Extend τ

to CA = C ⊗ A as an n-linear functional ψ∼ on CA so that

ψ∼(1 ⊗ a0, · · · , 1 ⊗ an−1) = ψ(a0, · · · , an−1), a0, · · · , an−1 ∈ A

and that (ψ∼)λ = ε(λ)ψ∼ for any cyclic permutation λ of {0, · · · , n − 1}. Let
ρ : A → CA be the homomorphism defined by ρ(a) = 1 ⊗ a. Then b(ψ∼) is an
n-cocycle on CA and ρ∗b(ψ∼) = τ . Since b(ψ∼) ∈ cZn(CA), it is the character
of a cycle (Ω∗(CA), d,

∫
) with Ω0 = CA, so vanishing. Therefore,

τ(a0, · · · , an) = b(ψ∼)(ρ(a0), · · · , ρ(an))

=
∫

ρ(a0)d(ρ(a1)) · · · d(ρ(an)),

Namely, τ is the character of such a vanishing cycle.

� Since ψ∼ ∈ cCn−1(CA), then b(ψ∼) ∈ cBn(CA) ⊂ cZn(CA). Since
ρ∗ : cCn(CA) → cCn(A), then ρ∗b(ψ∼) ∈ cBn(A). Moreover, b(ψ∼) = bψ = τ ,

ρ∗b(ψ∼)(a0, · · · , an) = b(ψ∼)(ρ(a0), · · · , ρ(an))
= bψ(a0, · · · , an) = τ(a0, · · · , an).

For differential graded algebras Ω∗(A) and Ω∗(B) of algebras A and B re-
spectively, the graded tensor product Ω∗(A) ⊗ Ω∗(B) is defined.

The universal property of Ω∗(A ⊗ B) of the tensor product algebra A ⊗ B
implies that there is a natural homomorphism π : Ω∗(A⊗B) → Ω∗(A)⊗Ω∗(B).

In general, Ω∗(A ⊗ B) is not equal to Ω∗(A) ⊗ Ω∗(B).
� By the universality, the following diagram commutes:

A ⊗ B
d⊗d−−−−→ Ω1(A) ⊗ Ω1(B)∥∥∥ 0⏐⏐π

A ⊗ B
d−−−−→ Ω1(A ⊗ B).
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Moreover, d ⊗ d to Ω1(A) ⊗ Ω1(B) can be replaced with d ⊗ id to Ω1(A) ⊗ B
and id ⊗ d to A ⊗ Ω1(B) as well.

For cochains ϕ ∈ Cn(A,A∗) and ψ ∈ Cm(B,B∗), define the cup product #
of ϕ and ψ by the associated equality

(ϕ#ψ)∧ = (ϕ∧ ⊗ ψ∧) ◦ π

as a graded trace on Ω∗(A ⊗ B), with ϕ∧ and ψ∧ on Ω∗(A) and Ω∗(B) respec-
tively.

Theorem 2.15. The cup product defined so above induces a homomorphism
from cHn(A) ⊗ cHm(B) into cHn+m(A ⊗ B).

The character of the tensor product of two cycles is the cup product of the
characters of the cycles.

Proof. Let ϕ ∈ cZn(A) and ψ ∈ cZm(B). Let ϕ∧ be the closed graded trace
on Ω∗(A) associated to ϕ, and ψ∧ on Ω∗(B) to ψ. Then ϕ∧ ⊗ ψ∧ is a closed
graded trace on Ω∗(A) ⊗ Ω∗(B), and (ϕ#ψ)∧ on Ω∗(A ⊗ B). Hence ϕ#ψ ∈
cZn+m(A ⊗ B).

Next, given cycles (Ω, d,
∫

) and (Ω′, d′,
∫ ′) and homomorphisms ρ : A → Ω

and ρ′ : B → Ω′, there is a commutative triangle to doubled square:

Ω∗(A ⊗ B) π−−−−→ Ω∗(A) ⊗ Ω∗(B)
ρ∼⊗(ρ′)∼−−−−−−→ Ω ⊗ Ω′∥∥∥ ⏐⏐/ρ∼⊗(ρ′)∼

⏐⏐/R ⊗ R ′

Ω∗(A ⊗ B)
(ρ⊗ρ′)∼−−−−−→ Ω ⊗ Ω′‘

R ∼
−−−−→ C

so that the character
∫ ∼ of the tensor product cycle Ω⊗Ω′ with ρ⊗ρ′ : A⊗B →

Ω ⊗ Ω′ is given by the cup product of the characters:∫ ∼
(ρ ⊗ ρ′)∼ = (

∫
ρ∼ ⊗

∫ ′
(ρ′)∼)π =

∫
ρ∼#

∫ ′
(ρ′)∼.

It remains to show that if ϕ ∈ cBn(A) as a coboundary, then ϕ#ψ is a
coboundary as ϕ#ψ ∈ cBn+m(A⊗B). This follows from the above Proposition
and the trivial fact that the tensor product of any cycle with a vanishing cycle
is vanishing.

� Note that as a possible sense,

(ϕ#ψ)∧((a0 ⊗ b0)d(a1 ⊗ b1) · · · d(an ⊗ bn)d(an+1 ⊗ bn+1) · · · d(an+m ⊗ bn+m))
= ϕ∧(a0da1 · · · d(an · · · an+m))ψ∧(b0d(b1 · · · bn+1) · · · dbn+m) + · · ·
= ϕ(a0, a1, · · · , an · · · an+m)ψ(b0, b1 · · · bn+1, · · · , bn+m) + · · ·
= (ϕ#ψ)(a0 ⊗ b0, a1 ⊗ b1, · · · , an ⊗ bn, an+1 ⊗ bn+1, · · · , an+m ⊗ bn+m).

� Note that M2(A) ⊗ B ∼= M2(C) ⊗ A ⊗ B ∼= M2(A ⊗ B). If there is a
homomorphism ρ : A → A such that x(idA ⊕ ρ)x−1 = 0 ⊕ ρ as a diagonal sum
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for some x ∈ GL2(A), then ρ ⊗ idB : A ⊗ B → A ⊗ B such that

(x(idA ⊕ ρ)x−1) ⊗ idB = (0 ⊕ ρ) ⊗ idB

= x((idA ⊗ idB) ⊕ (ρ ⊗ idB))x−1 = 0 ⊕ (ρ ⊗ idB).

Is this correct?

Corollary 2.16. The cyclic cohomology cH∗(C) is identified with a polynomial
ring with one generator σ of degree 2.

Each cyclic cohomology cH∗(A) of an algebra A is a (left or right) module
over the ring cH∗(C).

Proof. It is checked that cH2n+1(C) = 0 and cH2n(C) = C for n ≥ 0. Let
1 be the unit of C. Any ϕ ∈ cZn(C) is characterized by ϕ(1, · · · , 1), up to
multiplications by complex numbers, so that

ϕ(z0, z1, · · · , zn) = z0z1 · · · znϕ(1, · · · , 1), z0, · · · , zn ∈ C.

For ϕ ∈ cZ2m(C) and ψ ∈ cZ2m′
(C), we would like to compute the cup product

ϕ#ψ. Since 1 = 12 is an idempotent, we have

d1 = d(12) = 1d1 + (d1)1,

1(d1)1 = 1(d1)1 + 1(d1)1, 1(d1)1 = 0,

and 1(d1)2 = (d1)21 over C. Similar identities hold for 1 ⊗ 1 and π(1 ⊗ 1) ∈
Ω∗(C) ⊗ Ω∗(C).

Namely,

d(1 ⊗ 1) = (1 ⊗ 1)d(1 ⊗ 1) + d(1 ⊗ 1)(1 ⊗ 1),
0 = (1 ⊗ 1)d(1 ⊗ 1)(1 ⊗ 1).

Then

π((1 ⊗ 1)d(1 ⊗ 1)d(1 ⊗ 1)) = (1d1d1) ⊗ 1 + 1 ⊗ (1d1d1) ∈ Ω2 ⊗ Ω0 + Ω0 ⊗ Ω2

with 2 = 2 · 1 and
(
1+1
1

)
= 2!

1!1! = 2. Thus,

(ϕ#ψ)(1 ⊗ 1, · · · , 1 ⊗ 1) =
(m + m′)!

m!m′!
ϕ(1, · · · , 1)ψ(1, · · · , 1).

� We have
(
m+m′

m

)
= (m+m′)!

m!m′! . That’s it! Note that

(ϕ#ψ)(1 ⊗ 1, · · · , 1 ⊗ 1) = (ϕ#ψ)∧((1 ⊗ 1)d(1 ⊗ 1) · · · d(1 ⊗ 1))
= ϕ∧(1d1 · · · d1)ψ∧(1d1 · · · d1) + · · · = ϕ(1, · · · , 1)ψ(1, · · · , 1) + · · ·

as a possible computation. In particular, ϕ#ϕ is identified with ϕ since ϕ(1, · · · , 1) ∈
C. It then follows that cH∗(C) as an algebra by the cup product is isomor-
phic to the polynomial ring C + Cσ = C[σ] with σ2 = σ, although cH∗(C) =
⊕∞

n=0cH
2n(C) = ⊕∞

n=0C is infinite-dimensional as a vector space over C.
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Now let ϕ ∈ cZn(A). Let σ be the generator of cH2(C) = C, where σ
is the cyclic 2-cocycle of C with σ(1, 1, 1) = 1 ∈ C, identified with its class
[σ] ∈ cH2(C). The cup product implies the module action as the S-map (beyond
the night sky) by

S : cH2(C) ⊗ cHn(A)
#−−−−→ cHn+2(C⊗ A) ∼= cHn+2(A).

This formula also holds when the power 2 is replaced with 0.
Check that σ#ϕ = ϕ#σ holds as follows.
� We check this that

(ϕ#σ)(a0, · · · , an, an+1, an+2) = (ϕ∧ ⊗ σ∧)((a0 ⊗ 1)d(a1 ⊗ 1) · · · d(an+2 ⊗ 1))
= ϕ∧(a0da1 · · · d(anan+1an+2))σ∧(1d1d1) + · · · ,

(σ#ϕ)(a0, · · · , an, an+1, an+2) = (σ∧ ⊗ ϕ∧)((1 ⊗ a0)d(1 ⊗ a1) · · · d(1 ⊗ an+2))
= σ∧(1d1d1)ϕ∧(a0da1 · · · d(anan+1an+2)) + · · ·

For ϕ ∈ cZn(A), define Sϕ = σ#ϕ = ϕ#σ ∈ cZn+2(A). Then we have
S(cBn(A)) ⊂ sBn+2(A). (The end of the proof.)

We do have a definition of S as a morphism of cochain complexes as follows.

Lemma 2.17. For any cochain ϕ ∈ cCn(A), define Sϕ ∈ cCn+2(A) by Sϕ =
1

n+3Pc(σ#ϕ). Then Sϕ = σ#ϕ for ϕ ∈ cZn(A), so that this map S for cyclic
cochains extends the S-map for cyclic cocycles of A.

Also, bSϕ = n+1
n+3Sbϕ for ϕ ∈ cCn(A).

Proof. If ϕ ∈ cZn(A), then (σ#ϕ)λ = ε(λ)(σ#ϕ) for any cyclic permutation λ
of {0, 1, · · · , n + 2}.

� Thus,

Pc(σ#ϕ) =
∑

γ∈Pc,n+3

ε(γ)(σ#ϕ)γ = (n + 3)(σ#ϕ).

We have
(bPcϕ)#ψ = bPc(ϕ#ψ).

� If so, it follows that if ψ = σ, then

bSϕ =
1

n + 3
bPc(ϕ#σ) =

1
n + 3

(bPcϕ)#σ

=
n + 4
n + 3

1
n + 4

Pc(b′ϕ)#σ =
n + 4
n + 3

1
n + 4

Pc((b′ϕ)#σ) =
n + 4
n + 3

S(b′ϕ).

There is the one term difference between b′ϕ and bϕ.

For Hochschild cocycles ϕ ∈ Zn(A, A∗) and ψ ∈ Zm(B,B∗), we have the
Hochschild cocycle ϕ#ψ ∈ Zn+m(A⊗B,A∗⊗B∗), and the corresponding prod-
uct [ϕ#ψ] of cohomology classes is related to the other product ∨, so that
[ϕ#ψ] = (n+m)!

n!m! ([ϕ] ∨ [ψ]) (cf. [8]).
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Proposition 2.18. For any cocycle ϕ ∈ cZn(A), the Sϕ is a Hochschild
coboundary bψ ∈ Bn+2(A), where ψ ∈ Cn+1(A) is given by

ψ(a0, · · · , an+1) =
n+1∑
j=1

(−1)j−1ϕ∧(a0(da1 · · · daj−1)aj(daj+1 · · · dan+1)).

Proof. It is checked that the coboundary of the j-th term in the sum above is
equal to

ϕ∧(a0(da1 · · · daj−1)ajaj+1(daj+2 · · · dan+2)).

A chain of dimension n + 1 means a quadruple (Ω, ∂Ω, d,
∫

) where Ω and
∂Ω are differential graded algebras of dimensions n + 1 and n, with a surjective
morphism r : Ω → ∂Ω of degree 0, and

∫
: Ωn+1 → C is a graded trace such

that
∫

dω = 0 for any ω ∈ Ωn such that r(ω) = 0.

Ωn d−−−−→ Ωn+1

R

−−−−→ C

r

⏐⏐/ 0⏐⏐
(∂Ω)n ←−−−− 0 ←−−−− 0.

The boundary of such a chain means the cycle (∂Ω, d,
∫ ′), where the following

diagram commutes
Ωn r−−−−→ (∂Ω)n

d

⏐⏐/ ⏐⏐/R ′

Ωn+1

R

−−−−→ C

so that
∫ ′

ω′ =
∫

dω for ω ∈ Ωn with r(w) = w′ ∈ (∂Ω)n. The surjectivity of r

implies that
∫ ′ is a graded trace on ∂Ω, which is closed by construction.

� If ω′ ∈ (∂Ω)n−1, then there is ω ∈ Ωn−1 such that r(ω) = ω′ by surjectivity
of r. Then r(dω) = d(ω′) since r is a morphism. Hence∫ ′

d(ω′) =
∫

d(dω) =
∫

0 = 0,

which shows that
∫ ′ is closed. Graded traceness of

∫
implies that of

∫ ′ by
definition.

Definition 2.19. Let A be an algebra, and let ρ : A → Ω and ρ′ : A → Ω′ be
two cycles over A. We say that Ω and Ω′ are cobordant over A if there exists
a chain Ω′′ with boundary Ω ⊕ (Ω′)∼, and a homomorphism ρ′′ : A → Ω′′ such
that r ◦ ρ′′ = (ρ, ρ′), where (Ω′)∼ = Ω with

∫ ′ = − ∫
the sign changed.
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� Note that the following diagram commutes:

A A

ρ′′
⏐⏐/ ⏐⏐/(ρ,ρ′)

Ω′′ r−−−−→ ∂Ω′′ = Ω ⊕ (Ω′)∼

In this case, we may write Ω ∼cob Ω′.
Using a fiber product of algebras, it is checked that the relation of cobordism

is transitive. Namely, Ω ∼cob Ω′ and Ω′ ∼cob Ω′′ implies that Ω ∼cob Ω′′.
It is symmetric. Namely, Ω ∼cob Ω′ implies Ω′ ∼cob Ω.
It is checked that any cycle Ω over A is cobordant to itself. Namely, Ω ∼cob Ω.

Example 2.20. Let Ω0 = C∞([0, 1]) = A. Let Ω1 = C∞([0, 1], T ∗[0, 1]) be
the space of smooth 1-forms on [0, 1]. Let d be the usual differential, so that
df = df

dxdx for f ∈ A. Set ∂Ω = C⊕ C. Let
∫

be the usual integral, so that∫
df = [f(x)]1x=0 = f(1) − f(0) ∈ C.

Let r be the restriction of functions of A to the boundary set {0, 1}, so that
r(f) = (f(0), f(1)) ∈ C2 for f ∈ A. Then Ω = Ω0 ⊕ Ω1 becomes a chain of
dimension with boundary ∂Ω = (C⊕ C, d, ϕ), where ϕ(a, b) = a − b.

� Note that the following diagram commutes:

Ω0 d−−−−→ Ω1

r

⏐⏐/ ⏐⏐/R

∂Ω = C⊕ C
ϕ−−−−→ C

so that
∫ ◦d = −ϕ ◦ r.

Tensoring a given cycle Ω′ over an algebra A′ with the above chain (Ω, ∂Ω)
gives the desired cobordism.

� It says that

A′ A′

ρ′′
⏐⏐/ ⏐⏐/(ρ′,ρ′)

Ω′′ = Ω ⊗ Ω′ r−−−−→ ∂Ω′′ = ∂Ω ⊗ Ω′ = C2 ⊗ Ω′ = Ω′ ⊕ Ω′.

Equivalently, smooth functions in the above chain may be replaced by poly-
nomial functions.

It follows that cobordism is an equivalence relation.

Lemma 2.21. Let τ1, τ2 be the characters of two cobordant cycles Ω1 and Ω2

over a unital algebra A by a chain Ω with ρ : A → Ω and
∫

: Ωn+1 → C. Then
there exists a Hochschild cocycle ϕ ∈ Zn+1(A,A∗) such that τ1 − τ2 = B0ϕ,
where

(B0ϕ)(a0, · · · , an) = ϕ(1, a0, · · · , an) − (−1)n+1ϕ(a0, · · · , an, 1).
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Proof. For a0, · · · , an+1 ∈ A, let

ϕ(a0, · · · , an+1) =
∫

ρ(a0)dρ(a1) · · · dρ(an+1).

Let ω = ρ(a0)dρ(a1) · · · ρ(an) ∈ Ωn. By hypothesis we have

(τ1 − τ2)(a0, a1, · · · , an) =
∫

dω.

Since ρ(1)ρ(a0) = ρ(1a0) = ρ(a0), we have

dω = (dρ(1))ρ(a0)dρ(a1) · · · dρ(an)
+ ρ(1)dρ(a0) · · · dρ(an).

The tracial property of
∫

implies∫
dω = (−1)nϕ(a0, a1, · · · , an, 1) + ϕ(1, a0, · · · , an).

It is checked as checked before that ϕ defined in that form above is a
Hochschild cocycle so that bϕ = 0, using the tracial property of

∫
.

Lemma 2.22. Let τ1, τ2 ∈ cZn(A) such that τ1 − τ2 = B0ϕ for some ϕ ∈
Zn+1(A,A∗). Then any two cycles over A with characters τ1 and τ2 are cobor-
dant.

Proof. Let ρ : A → Ω be a cycle Ω over A with character τ . It is shown that the
cycle is cobordant with (Ω∗(A), τ∧). In the cobordism of Ω with itself above,
with restriction maps r0 and r1 both to Ω, considered is the subalgebra

{ω ∈ Ω ⊗ C∞([0, 1],C2) | r1(ω) ∈ Ω′}
where Ω′ is the graded differential subalgebra of Ω generated by ρ(A). This
defines a cobordism of Ω with Ω′.

Now the homomorphism ρ∼ : Ω∗(A) → Ω′ is surjective, and it follows that
(ρ∼)∗

∫
=

∫ ◦ρ∼ = τ∧, so that

Ω∗(A) τ∧
−−−−→ C⏐⏐/ρ∼

∥∥∥
Ω ⊃ Ω′

R

−−−−→ C.

Modifying the restriction map in the canonical cobordism of (Ω∗(A), τ∧)
with itself we obtain a cobordism of (Ω∗(A), τ∧) with Ω′.

It is shown that (Ω∗(A), τ∧
1 ) and (Ω∗(A), τ∧

2 ) are cobordant. Let μ be the
linear functional on Ωn+1(A) defined by{

μ(a0da1 · · · dan+1) = ϕ(a0, · · · , an+1),
μ(da1 · · · dan+1) = (B0ϕ)(a1, · · · , an+1).
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It is checked that μ is a graded trace on Ω∗(A). By the Hochschild cocycle
property of ϕ, as the tracial character of a cycle, it is obtained that

μ(a(bω)) = μ((bω)a), a, b ∈ A,ω ∈ Ωn+1.

It is checked that

μ(aω) = μ(ωa), ω = da1 · · · dan+1.

The right hand side is computed as

μ(ωa) = μ((da1 · · · dan+1)a)

= μ(
n∑

j=1

(−1)n+1−jda1 · · · d(ajdaj+1) · · · dan+1da)

+ μ(da1da2 · · · dand(an+1a)) + (−1)n+1μ(a1da2 · · · dan+1da)

=
n+1−j∑

j=1

(B0ϕ)(a1, · · · , ajaj+1, · · · , an+1, a)

+ (B0ϕ)(a1, a2, · · · , an+1a) + (−1)n+1ϕ(a1, a2, · · · , an+1, a)
= (−1)n((b′B0ϕ) − ϕ)(a1, a2, · · · , an+1, a).

It is checked that for an arbitrary cochain ϕ ∈ Cn+1(A,A∗),

B0bϕ + b′B0ϕ = ϕ − (−1)n+1ϕλ,

where λ is the cyclic permutation defined by λ(j) = j − 1. If ϕ is a cocycle,
then bϕ = 0, and then b′B0ϕ − ϕ = (−1)nϕλ, so that

μ(ωa) = ϕλ(a1, a2, · · · , an+1, a) = ϕ(a, a1, · · · an) = μ(aω).

It remains to check that for any a ∈ A and ω ∈ Ωn,

μ((da)ω) = (−1)nμ(ωda).

If ω ∈ dΩn−1, then this follows from the fact that B0ϕ = τ1 − τ2 ∈ cCn with
μ = B0ϕ on ω, and characters as signed traces. If ω = a0da1 · · · dan, then that
is a consequence of the cocycle property of B0ϕ. Indeed, we have bB0ϕ = 0.
Hence

b′B0ϕ(a0, a1, · · · , an, a) = (−1)nB0ϕ(aa0, a1, · · · , an),

and since b′B0ϕ = ϕ − (−1)n+1ϕλ, then

ϕ(a0, · · · , an, a) − (−1)n+1ϕ(a, a0, · · · , an) = (−1)n(B0ϕ)(aa0, a1, · · · , an),

and therefore,

μ((da)ω) = μ((da)a0da1 · · · dan)
= μ((d(aa0) − ada0)da1 · · · dan)
= μ(d(aa0)da1 · · · adn) − μ(ada0da1 · · · dan)
= (B0ϕ)(aa0, a1, · · · , an) − ϕ(a, a0, a1, · · · , an)
= (−1)nϕ(a0, · · · , an, a) = (−1)nμ(a0da1 · · · danda) = (−1)nμ(ωda).
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To end the proof of this lemma, modified is the natural cobordism between
(Ω∗(A), τ∧

1 ) and itself, given by the tensor product of Ω∗(A) with the algebra
of differential forms on [0, 1], by adding to the integral the term μ ◦ r1, with r1

the restriction map to the point {1} in [0, 1].

Corollary 2.23. Two cocycles τ1, τ2 ∈ cZn(A) as characters correspond to
cobordant cycles over A if and only if τ1 − τ2 belongs to the subspace cZn(A) ∩
B0(Zn+1(A,A∗)).

Since we have Pcτ = (n + 1)τ as cyclic anti-symmetrisation for any τ ∈
cCn(A), the subspace above is contained in B(Zn+1(A, A∗)), where B = Pc◦B0 :
Cn+1 → Cn.

Lemma 2.24. (a) We have bB = −Bb.
(b) It then follows that

cZn(A) ∩ B0(Zn+1(A,A∗)) = B(Zn+1(A, A∗)).

Proof. For any cochain ϕ ∈ Cn+1(A,A∗), we have

B0bϕ + b′B0ϕ = ϕ − (−1)n+1ϕλ

where λ is the cyclic permutation defined by λ(j) = j − 1 (mod n + 2). It then
follows that PcB0bϕ + Pcb

′B0ϕ = 0, with PcB0 = B and Pcb
′ = bPc, so that

Pcb
′B0 = bB.
� Note that

B0bϕ(a0, · · · , an+1)

= (bϕ)(1, a0, · · · , an+1) − (−1)n+2(bϕ)(a0, · · · , an+1, 1)

= ϕ(1a0, · · · , an+1) +
n+1∑
i=1

(−1)iϕ(1, · · · , ai−1ai, · · · , an+1) + (−1)n+2ϕ(an+11, · · · , an)

− (−1)n[ϕ(a0a1, · · · , 1) +
n∑

i=1

(−1)iϕ(a0, · · · , aiai+1, · · · , 1)

+ (−1)n+1ϕ(a0, · · · , an+11) + (−1)n+2ϕ(1a0, a1, · · · , an+1)].

Also,

b′B0ϕ(a0, · · · , an+1)

=
n∑

j=0

(−1)j(B0ϕ)(a0, · · · , ajaj+1, · · · , an+1)

=
n∑

j=0

(−1)j{ϕ(1, a0, · · · , ajaj+1, · · · , an+1) − (−1)n+1ϕ(a0, · · · , ajaj+1, · · · , an+1, 1)}

=
n+1∑
j=1

(−1)j−1{ϕ(1, a0, · · · , aj−1aj , · · · , an+1) − (−1)n+1ϕ(a0, · · · , aj−1aj , · · · , an+1, 1)}.

－ 46 －



It then follows that

B0bϕ(a0, · · · , an+1) − b′B0ϕ(a0, · · · , an+1)

= ϕ(1a0, · · · , an+1) + (−1)n+2ϕ(an+11, · · · , an)

− (−1)n[(−1)n+1ϕ(a0, · · · , an+11) + (−1)n+2ϕ(1a0, a1, · · · , an+1)]

= ϕ(a0, · · · , an+1) + (−1)n+2ϕ(an+1, · · · , an)
+ ϕ(a0, · · · , an+1) − ϕ(a0, a1, · · · , an+1)

= (ϕ − (−1)n+1ϕλ)(a0, · · · , an+1)

checking completed!
(b) By (a) we have BZn+1(A,A∗) ⊂ cZn(A).
� Note that B = PcB0 : Cn+1 → Cn, so that the image is in cCn. Thus,

bB = −Bb : Zn+1 → −B{0} = {0}. Hence BZn+1 is contained in cZn(A).
It is shown that BZn+1(A,A∗) ⊂ B0Z

n+1(A,A∗). Let β ∈ BZn+1(A,A∗),
so that β = Bϕ for some ϕ ∈ Zn+1(A,A∗).

Constructed in a canonical way is a cochain ψ ∈ Cn(A, A∗) such that 1
n+1β =

B0(ϕ − bψ).
Let θ = B0ϕ − 1

n+1β. Then Pcθ = 0.
� Pcθ = Bϕ − 1

n+1Pcβ = β − 1
n+1 (n + 1)β = 0.

It then follows that there exists a canonical ψ such that ψ−ε(λ)ψλ = θ, where
λ is the cyclic permutation generator of {0, 1, · · · , n} defined as λ(i) = i − 1.

� It seems to have that Pc(ψ−ε(λ)ψλ) = 0. The kernel of Pc may have such
elements canonically. The converse is also true?

It then holds that B0bψ = θ. We use the equality B0bψ−b′B0ψ = ψ−ελψλ,
so that we need to show that b′B0ψ = 0. We have

B0ψ(a0, · · · , an−1)
= ψ(1, a0, · · · , an−1) − (−1)nψ(a0, · · · , an−1, 1)

= (−1)n−1(ψ − ε(λ)ψλ)(a0, · · · , an−1, 1)

= (−1)n−1θ(a0, · · · , an−1, 1)

= (−1)n−1{ϕ(1, a0, · · · , an−1, 1) − (−1)n+1ϕ(a0, · · · , an−1, 1, 1)}
+

1
n + 1

β(a0, · · · , an−1, 1).

－ 47 －



It then follows that

b′B0ψ(a0, · · · , an)

= (−1)n−1
n−1∑
j=0

(−1)j{ϕ(1, a0, · · · , ajaj+1, · · · , an, 1) + (−1)nϕ(a0, · · · , ajaj+1, · · · , an, 1, 1)}

+
1

n + 1
(−1)n

n−1∑
j=0

(−1)jβ(a0, · · · , ajaj+1, · · · , an, 1)

= (−1)n{bϕ(1, a0, · · · , an, 1) − ϕ(a0, · · · , an, 1)}
− {bϕ(a0, · · · , an, 1, 1) − (−1)nϕ(a0, · · · , an, 1)}
+

1
n + 1

(−1)nbβ(a0, · · · , an, 1) = 0

since bϕ = 0, cancellation, and bβ = bBϕ = −Bbϕ = 0.

Corollary 2.25. (1) The image of B : Cn+1 → Cn is equal to cCn = PcC
n.

(2) cBn(A) ⊂ B0Z
n+1(A,A∗).

Proof. (1). Let ϕ ∈ cCn. There is a linear functional ϕ0 : A → C with
ϕ0(1) = 1. Let

ψ(a0, · · · , an+1) =
ϕ0(a0)ϕ(a1, · · · , an+1) + (−1)nϕ((a0 − ϕ0(a0)1), a1, · · · , an)ϕ0(an+1).

Then we have ψ(1, a0, · · · , an) = ϕ(a0, · · · , an) and

ψ(a0, · · · , an, 1) = ϕ0(a0)ϕ(a1, · · · , an, 1)

+ (−1)nϕ(a0, a1, · · · , an) + (−1)n+1ϕ0(a0)ϕ(1, a1, · · · , an)
= (−1)nϕ(a0, · · · , an)

by the cyclic property of ϕ and cancellation. Thus,

B0ψ(a0, · · · , an) = ψ(1, a0, · · · , an) − (−1)n+1ψ(a0, · · · , an, 1)

= ϕ(a0, · · · , an) − (−1)n+1(−1)nϕ(a0, · · · , an) = 2ϕ(a0, · · · , an).

Thus, B 1
2(n+1)ψ = Pc

1
2(n+1)B0ψ = Pc

1
n+1ϕ = ϕ.

(2). By (1), bϕ for ϕ ∈ cCn has the form b(Bψ) = −Bbψ for some ψ ∈ Cn+1.
Then −Bbψ ∈ BZn+2(A, A∗), which is equal to cZn+1(A)∩B0Z

n+2(A,A∗) by
the lemma above. It then follows that cBn+1(A) is contained in B0Z

n+2(A, A∗)
(certainly corrected slightly). Hence, cBn(A) ⊂ B0Z

n+1(A,A∗) obtained.

Corollary 2.26. We have a well-defined map B from the Hochschild cohomol-
ogy group Hn+1(A,A∗) to cHn(A).
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Proof. Note that Hn+1(A.A∗) = Zn+1/Bn+1 with Bn+1 = bCn. For any [ϕ] =
ϕ + bCn ∈ Hn+1, we have

B([ϕ]) = B(ϕ + bCn) = Bϕ + BbCn = Bϕ + bBCn ⊂ Bϕ + b(cCn−1),

with Bϕ ∈ cZn(A). Therefore, B([ϕ]) = [Bϕ] ∈ cHn(A).

Theorem 2.27. Two cycles over a unital algebra A are cobordant if and only if
the classes [τ1], [τ2] ∈ cHn(A) of their characters differ by a class of the image
BHn+1(A,A∗) ⊂ cHn(A).

Proof. It is shown above that such characters τ1 and τ2 have the difference
τ1 − τ2 = B0ϕ for some ϕ ∈ Zn+1(A,A∗). Thus, Pcτ1 − Pcτ2 = PcB0ϕ = Bϕ.
Then

[Pcτ1] − [Pcτ2] = [Bϕ] = B([ϕ]) ∈ cHn(A)

with [Pcτj ] = [τj ] for j = 1, 2.

The direct sum Ω1 ⊕ Ω2 of two cycles over A is a cycle over A. Cobordism
classes of cycles over A make a group M∗(A) by the direct sum.

� Note that the following diagram commutes:

A A

(ρ′′
1 ,ρ′′

2 )

⏐⏐/ ⏐⏐/(ρ1,ρ′
1,ρ2,ρ′

2)

Ω′′
1 ⊕ Ω′′

2
r−−−−→ ∂Ω′′

1 ⊕ ∂Ω′′
2 = Ω1 ⊕ (Ω′

1)
∼ ⊕ Ω2 ⊕ (Ω′

2)
∼.

The tensor product Ω1⊗Ω2 of cycles over A and B gives a natural map from
M∗(A) × M∗(B) to M∗(A ⊗ B).

� Note that the following diagram commutes:

A ⊗ B A ⊗ B

ρ′′
1 ⊗ρ′′

2

⏐⏐/ ⏐⏐/(ρ1,ρ′
1)⊗(ρ2,ρ′

2)

Ω′′
1 ⊗ Ω′′

2
r−−−−→ ∂Ω′′

1 ⊗ ∂Ω′′
2 = (Ω1 ⊕ (Ω′

1)
∼) ⊗ (Ω2 ⊕ (Ω′

2)
∼).

Furthermore, more restriction to be continued seems to be needed.
The group M∗(C) is identified with cH∗(C) = C[σ] as a ring.
� Because the map B is zero in this case.
Thus, the groups M∗(A) are M∗(C)-modules, C[σ]-modules, and so vector

spaces. It follows from the theorem above that the vector space M∗(A) is
isomorphic to the quotient space cH∗(A)/im(B).

Moreover, the group M∗(A) has the following interpretation related:

Theorem 2.28. There is an isomorphism of cHn(A)/im(B) with the quotient
of the space of closed graded traces of degree n on the differential algebra Ω∗(A)
by those of dtμ = μ ◦ d for μ graded traces on Ω∗(A) of degree n + 1, where dt

denotes the natural differential induced on graded traces.
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Proof. It is shown that for τ ∈ cZn(A) given, we have τ∧ = dtμ for some
a graded trace μ if and only if τ belongs to the image of B containing cBn.
Assume that τ∧ = dtμ. Then we have τ = B0ϕ, where ϕ ∈ Zn+1(A,A∗) is the
Hochschild cocylce defined by

ϕ(a0, a1, · · · , an+1) = μ(a0da1 · · · dan+1)

as shown that τ1 − τ2 =
∫ ◦d = B0ϕ. Thus, τ = 1

n+1PcB0ϕ = 1
n+1Bϕ ∈ im(B).

Conversely, if τ ∈ im(B), then we have τ = B0ϕ for some ϕ ∈ Zn+1(A, A∗)
since BZn+1 is equal to B0Z

n+1 ∩ cZn. Define the linear functional μ on
Ωn+1(A) by

μ(a0da1 · · · dan+1) = ϕ(a0, · · · , an+1), μ(da1 · · · dan+1) = (B0ϕ)(a1, · · · , an+1)

as before. Then, obtained is a graded trace such that

μ(da0da1 · · · dan) = τ(a0, · · · , an)

so that μ(dω) = dtμ(ω) = τ∧(ω) for ω ∈ Ωn(A).

It follows that M∗(A) is the homology of the complex of graded traces on
Ω∗(A) with the differential dt = ◦d. This theory is dual to the theory obtained
as the cohomology of the quotient of the complex (Ω∗(A), d) by the subcomplex
of commutators. It also appears independently in the work of M. Karoubi [22]
as a natural range for the higher Chern character defined on all the Quillen
algebraic K-theory groups. Therefore, the theorem above and the analogous
dual statement imply that the pairing with K-theory group of degree zero and
one is extended to all the algebraic K-groups by applying results of Karoubi,
and as well, the cohomology of the complex (Ω∗(A)/[∗, ∗], d) is computed by
applying results below.

The Connes complex (cCn(A), b) is by construction a subcomplex of the Hochschild
complex (Cn(A, A∗), b) with the indentity inclusion map I as a morphism of
complexes, so that there is an exact sequence of complexes

0 → cCn I−−−−→ Cn q−−−−→ Cn/cCn = Qn → 0.

There corresponds to this a long exact sequence of cohomology groups.
It is proved that the cohomology Hn(C/cC) = Hn(Qn) of the complex C/cC

is equal to Hn−1(cC) = cHn−1(A).
Therefore, the long exact sequence takes the following form:

0 → cC0(A) I−−−−→ H0(A, A∗)
q−−−−→ H0(Q0) = cH−1(A) ∂−−−−→ cH1(A)

I−−−−→ H1(A, A∗)
q−−−−→ H1(Q1) = cH0(A) ∂−−−−→ cH2(A)

I−−−−→ · · · q−−−−→ · · · ∂−−−−→ cHn(A)
I−−−−→ Hn(A,A∗)

q−−−−→ Hn(Qn) = cHn−1(A) ∂−−−−→ cHn+1(A) · · ·
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On the other hand, constructed above are morphisms S and B of cochain
complexes inducing morphisms of cyclic cohomology and H cohomology

cHn−1(A) S−−−−→ cHn+1(A), Hn(A,A∗) B−−−−→ cHn−1(A).

It is proved that the long exact sequence above is changed into the following
form by B and S:

· · · I−−−−→ Hn−1(A,A∗) B−−−−→ cHn(A) S−−−−→ cHn(A)
I−−−−→ Hn(A,A∗) B−−−−→ cHn−1(A) S−−−−→ cHn+1(A) · · ·

There corresponds to the pair (b,B) of morphisms of complexes a double
complex defined by Cn,m = Cn−m(A,A∗), where the first differential is given
by the Hochschild coboundary b

b : Cn,m = Cn−m → Cn−m+1 = Cn+1−m = Cn+1,m

with b2 = 0, and the second by the operator B

B : Cn,m = Cn−m → Cn−m−1 = Cn−(m+1) = Cn,m+1

with B2 = 0.
� Because the image of Cn,m = Cn−m by B is cCn−m−1, so that B0cC

n−m−1 =
{0}.

Thus, since we have bB = −Bb, the graded commutative exact diagram is
obtained so that for n > m, with (n,m) as the coordinate in the plane,

Cn,n = C0

...

B

0⏐⏐
Cn,m+1 = Cn−m−1 b−−−−→ Cn+1.m+1 = Cn−m

B

0⏐⏐ 0⏐⏐B

Cm,m = C0 · · · b−−−−→ Cn,m = Cn−m b−−−−→ Cn+1,m = Cn+1−m

By construction, the cohomology of this double complex depends only on
the parity of n even or odd. It is proved that the sum of the even and odd
groups is canonically isomorphic to

cH∗(A) ⊗cH∗(C) C = H∗(A),

where cH∗(C) acts on C by evaluation at σ = 1.
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� Note that even and odd groups are located on the anti-diagonal from top
left to down right.

C2n−1 b−−−−→ C2n

B

0⏐⏐ 0⏐⏐B

C2n b−−−−→ C2n+1 b−−−−→ C2n+2

B

0⏐⏐ B

0⏐⏐
C2n+2 b−−−−→ C2n+3

The second filtration of that double complex by

F q =
∑
m≥q

Cn,m =
∑
m≥q

Cn−m = Cn−q ⊕ Cn−(q+1) ⊕ · · · ⊕ (Cn−n = C0)

yields the same filtration of H∗(A) as the filtration by dimensions of cycles.
The associated spectral sequence is convergent, and coincides with the spec-

tral sequence coming from the above exact couple.
These results are based on the next two lemmas.

Lemma 2.29. Let ψ ∈ Cn(A,A∗) such that bψ ∈ cCn+1(A). Then Bψ ∈
cZn−1(A) and SBψ = n(n + 1)bψ in cHn+1(A).

� Note that it says that

Cn(A,A∗) b−−−−−−−→
(assumed)

cCn+1(A)

B

⏐⏐/ ⏐⏐/n(n+1)

cZn−1(A) S−−−−→ cHn+1(A)

Proof. We have Bψ = PcB0ψ ∈ cCn−1. Since bψ ∈ cCn+1(A), we have

b(Bψ) = −Bbψ = −PcB0bψ = −Pc0 = 0.

Thus, Bψ ∈ cZn−1. Also, bψ ∈ cZn+1 since b(bψ) = 0.
Let ϕ = Bψ ∈ cZn−1. Then we have Sϕ = bψ′ ∈ Bn+1 as shown above,

where

ψ′(a0, · · · , an) =
n∑

j=1

(−1)j−1ϕ∧(a0(da1 · · · daj−1)aj(daj+1 · · · dan)).

It is shown that there exists ψ′′ ∈ Cn such that ψ′′ − ψ ∈ Bn and

ψ′ − ε(λ)(ψ′)λ = n(n + 1)(ψ′′ − ε(λ)(ψ′′)λ)

where λ(i) = i − 1 for i ∈ {1, · · · , n} and λ(0) = n.
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It is checked that

(ψ′ − ε(λ)(ψ′)λ)(a0, · · · , an) = (−1)n−1(n + 1)ϕ(ana0, a1, · · · , an−1).

We have

(ψ′)λ(a0, · · · , an) =
n∑

j=1

(−1)j−1ϕ∧(an(da0 · · · daj−2)aj−1(daj · · · dan−1))

=
n∑

j=1

(−1)j−1+0(n−2)ϕ∧((da0 · · · daj−2)aj−1(daj · · · dan−1)an) (j − 1 = j′)

=
n−1∑
j′=0

(−1)j′
ϕ∧((da0 · · · daj′−1)aj′(daj′+1 · · · dan−1)an).

Let ωj = a0(da1 · · · daj−1)aj(daj+1 · · · dan−1)an. Then

dωj = (da0 · · · daj−1)aj(daj+1 · · · dan−1)an

+ (−1)j−1a0(da1 · · · daj · · · dan−1)an

+ (−1)na0(da1 · · · daj−1)aj(daj+1 · · · dan).

Thus, for j ∈ {1, · · · , n − 1}, by closedness we have

0 = ϕ∧(dωj) = ϕ∧((da0 · · · daj−1)aj(daj+1 · · · dan−1)an)

+ (−1)j−1ϕ∧(a0(da1 · · · daj · · · dan−1)an)
+ (−1)nϕ∧(a0(da1 · · · daj−1)aj(daj+1 · · · dan)).

Therefore, multiplying ε(λ)(−1)j−1 = (−1)n(−1)j−1

0 = ε(λ)(−1)j−1ϕ∧((da0 · · · daj−1)aj(daj+1 · · · dan−1)an)
+ (−1)nϕ∧(a0(da1 · · · daj · · · dan−1)an)

+ (−1)j−1ϕ∧(a0(da1 · · · daj−1)aj(daj+1 · · · dan)).

It then follows that

(−1)n−1(−1)n(n−n)ϕ∧(ana0(da1 · · · daj · · · dan−1))

= (−1)j−1ϕ∧(a0(da1 · · · daj−1)aj(daj+1 · · · dan))

− ε(λ)(−1)jϕ∧((da0 · · · daj−1)aj(daj+1 · · · dan−1)an)

as a part of ψ′ − ε(λ)(ψ′)λ. Taking into account the cases j = 0 for (ψ′)λ and
j = n for ψ′ gives checking completed.

Now determined is the desired ψ′′ such that ψ′′ − ψ ∈ Bn(A,A∗) and

(ψ′′ − ε(λ)(ψ′′)λ)(a0, · · · , an) =
(−1)n−1

n
ϕ(ana0, · · · , an−1).
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Let θ = B0ψ. Write θ = θ1 +θ2 with Pcθ1 = 0, θ2 ∈ cCn−1(A) so that θ2 = 1
nϕ.

� Let θ2 = 1
nPcθ = 1

nBψ = 1
nϕ ∈ cCn−1(A) and let θ1 = θ − θ2. Then

θ = θ1 + θ2 with Pcθ1 = Pcθ − Pcθ2 = nθ2 − nθ2 = 0.
Since Pcθ1 = 0, there exists a canonical ψ1 ∈ Cn−1 such that θ1 = Dψ1,

where Dψ1 = ψ1−ε(λ)(ψ1)λ, which is certainly constructed and obtained above.
As shown in the proof of b ◦ Pc = Pc ◦ b′, checked is that D ◦ b = b′ ◦ D.
� Check indeed that for f ∈ C1(A,A∗), with ε(λ(0, 1, 2)) = 1,

(D ◦ b)(f)(a0, a1, a2) = (bf − ε(λ)(bf)λ)(a0, a1, a2)
= f(a0a1, a2) − f(a0, a1a2) + f(a2a0, a1) − (bf)(a2, a0, a1)
= f(a0a1, a2) − f(a0, a1a2) + f(a2a0, a1)
− f(a2a0, a1) + f(a2, a0a1) − f(a1a2, a0)

= f(a0a1, a2) − f(a0, a1a2) + f(a2, a0a1) − f(a1a2, a0).

On the other hand, with ε(λ(0, 1)) = −1,

(b′ ◦ D)(f)(a0, a1, a2) = (Df)(a0a1, a2) − (Df)(a0, a1a2)
= f(a0a1, a2) + f(a2, a0a1) − f(a0, a1a2) − f(a1a2, a0).

Therefore, D ◦ b = b′ ◦ D in this case.
It then follows that D(bψ1) = b′(Dψ1) = b′θ1.
Let ψ′′ = ψ − bψ1. It then follows that ψ′′ − ψ = −bψ1 ∈ Bn.
As checked before, we have D = B0b + b′B0. Hence

Dψ = B0bψ + b′B0ψ = b′B0ψ = b′θ = b′θ1 + b′θ2

since bψ ∈ cCn+1(A) so that B0bψ = 0. Therefore,

Dψ′′ = Dψ − Dbψ1 = b′θ1 + b′θ2 − b′θ1 = b′θ2 =
1
n

b′ϕ.

Since bϕ = b(Bψ) = 0, we have

b′ϕ = (−1)n−1ϕ(ana0, a1, · · · , an−1)

since

(bϕ)(a0, · · · , an) = (b′ϕ)(a0, · · · , an) + (−1)nϕ(ana0, a1 · · · , an).

Thus,

Dψ′′ = (−1)n−1 1
n

ϕ(ana0, a1, · · · , an−1).

Summing up we obtain

[ψ] = [ψ + (ψ′′ − ψ)] = [ψ′′],

2[bψ′] = [b(ψ′ − ε(λ)(ψ′)λ)]

= n(n + 1)[b(ψ′′ − ε(λ)(ψ′′)λ)]
= 2n(n + 1)[bψ′′] = 2n(n + 1)[bψ]
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(possibly in this sense). Therefore, it follows that

[SBψ] = [Sϕ] = [bψ′] = [n(n + 1)bψ] ∈ cHn+1(A).

� Note that

(bτ)λ(a0, a1, a2) = (bτ)(a2, a0, a1)
= τ(a2a0, a1) − τ(a2, a0a1) + τ(a1a2, a0),

− b(τ)λ(a0, a1, a2) = −τλ(a0a1, a2) + τλ(a0, a1a2) − τλ(a2a0, a1)
= −τ(a2, a0a1) + τ(a1a2, a0) + τ(a2a0, a1)

if τ has graded traceness as does ψ′.

Corollary 2.30. The image of the map S : cHn−1(A) → cHn+1(A) is the
kernel of the map I : cHn+1(A) → cHn+1(A,A∗).

Proof. Since BCn = cCn−1, we have S[BCn] = S[cCn−1] the image of S, which
is equal to b[Cn] by the lemma above. By exactness of the long exact sequence
with respect to C∗(A,A∗), we have b[Cn] zero in Hn+1(A,A∗), which is viewed
as [bCn] in cHn+1(A) mapped to zero by the map I, namely the kernel of I.

Lemma 2.31. There is the natural bijective map

im(B) ∩ ker(b)
b(im(B))

→ ker(B) ∩ ker(b)
b(ker(B))

at cZn+1(A) as well as Zn+1(A,A∗), as cHn+1(A).

� Note that
Cn+2(A,A∗) B−−−−→ cCn+1(A)

b

⏐⏐/ ⏐⏐/b

Cn+3(A,A∗) B−−−−→ cCn+2(A)

Proof. Let ϕ ∈ im(B) ∩ ker(b). Let ϕ ∈ cZn+1(A). Assume ϕ ∈ b(ker(B)), say
ϕ = bψ with ψ ∈ ker(B). Since n(n + 1)bψ = SBψ = S(0) = 0 in cH∗, then
ϕ ∈ cBn+1(A), so that ϕ ∈ b(im(B)), with this B : Cn+1 → cCn onto. Thus,
the injectivity is shown.

Let ϕ ∈ Zn+1(A,A∗), Bϕ = 0 and a canonical ψ ∈ Cn(A,A∗), with ψ −
ε(λ)ψλ = B0ϕ. As above, we have B0bψ = B0ϕ since β = Bϕ = 0. It follows
that ϕ′ = ϕ − bψ ∈ cZn+1(A) since bϕ′ = 0 − 0 = 0 and

Dϕ′ = B0bϕ
′ + b′B0ϕ

′ = B00 + b′(B0ϕ − B0bϕ) = 0

which implies cyclic property.
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It is shown that Bψ ∈ b(cCn−2). Since

Dψ = ψ − ε(λ)ψλ = B0ϕ = B0bψ,

with D = B0b + b′B0, we have b′B0ψ = 0.
It is checked that (b′)2 = 0 and that the cohomology on Cn(A,A∗) by b′ is

trivial.
If b′ϕ1 = 0, namely, ϕ1 ∈ Zn, then b′ϕ1(a0, · · · , an, 1) = 0, that is, ϕ1 =

b′ϕ2, namely ϕ1 ∈ Bn, where

ϕ2(a0, · · · , an−1) = (−1)n−1ϕ1(a0, · · · , an−1, 1).

� Note that

0 = b′ϕ1(a0, · · · , an, 1) =
n∑

j=0

(−1)jϕ1(a0, · · · , ajaj+1, · · · , 1)

= ϕ1(a0a1, · · · , 1) − · · · + (−1)nϕ1(a0, · · · , an, 1).

On the other hand,

b′ϕ2(a0, · · · , an) =
n−1∑
j=0

(−1)jϕ2(a0, · · · , ajaj+1, · · · , an)

=
n−1∑
j=0

(−1)j(−1)n−1ϕ1(a0, · · · , ajaj+1, · · · , an, 1)

= (−1)n−1ϕ1(a0a1, · · · , an, 1) + · · · + ϕ1(a0, · · · , an−1an, 1).

It then follows that

ϕ1(a0, · · · , an, 1) = b′ϕ2(a0, · · · , an).

Thus, since b′(B0ψ) = 0, then B0ψ = b′θ for some θ ∈ Cn−2 by b′ cohomol-
ogy triviality, and

Bψ = PcB0ψ = Pcb
′θ = bPcθ ∈ b(cCn−2).

Since cCn−2 = im(B), we have Bψ = bBθ1 for some θ1 ∈ Cn−1. Hence,

B(ψ + bθ1) = Bψ + Bbθ1 = Bψ − bBθ1 = 0.

Thus, ψ + bθ1 ∈ ker(B), so that bψ ∈ b(ker(B)). As ϕ− bψ ∈ cZn+1, this shows
the end of the proof for surjectivity.

Corollary 2.32. We have S = n(n + 1)bB−1 as the map from cHn−1(A) to
cHn+1(A). Namely, S(Bψ) = bψ up to constant.
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Proof. Given ϕ ∈ cZn−1(A), we have ϕ ∈ im(B), and thus ϕ = Bψ for some ψ.
This uniquely determines

bψ ∈ ker(b) ∩ ker(B)
b(ker(B)

= cHn+1(A).

Moreover, bψ is equal to 1
n(n+1)Sϕ by choosing ψ as

ψ(a0, · · · , an) =
1

n(n + 1)

n∑
j=1

(−1)j−1ϕ∧(a0(da1 · · · daj−1)aj(daj+1 · · · dan)).

Hence,
Sϕ = SBψ = n(n + 1)bψ = n(n + 1)bB−1ϕ.

Theorem 2.33. There is the long exact sequence involving B, S, and I

· · · B−−−−→ cHn−1(A) S−−−−→ cHn+1(A) I−−−−→ Hn+1(A,A∗)
B−−−−→ cHn(A) S−−−−→ cHn+2(A) I−−−−→ Hn+2(A,A∗)

Proof. It is shown above that im(S) is equal to ker(I) at cHk. As well, ker(S)
is equal to im(B) at cHk−2.

� If bψ = 0, then ψ ∈ Zn, and then Bψ ∈ im(B) and S(Bψ) = 0 = bψ.
Next, B ◦ I = 0 since B is zero on cC. Thus im(I) is contained in ker(B).

If ϕ ∈ Zn(A, A∗) and Bϕ ∈ cBn−1, then Bϕ = bBθ for some θ ∈ Cn−1, so that

ϕ + bθ ∈ ker(B) ∩ ker(b) ⊂ im(I) + b(ker(B))

by the above lemma.
� We have

B(ϕ + bθ) = Bϕ + Bbθ = Bϕ − bBθ = 0.

As well, b(ϕ + bθ) = 0 + 0 = 0.
Note that im(I) is identified with cZn, which may be identified with im(B).

Corollary 2.34. For

0 → cC
i−−−−→ C

q−−−−→ C/cC → 0.

the exact sequence of complexes, the morphism ∂ : C/cC → C of complexes
induces an isomorphism from Hn(C/cC) to cHn−1(A) and identifies the long
exact sequence derived by the exact sequence of complexes with that by B-S-I.
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Proof. This follows from the Five Lemma applied to

Hn(cC) i−−−−→ Hn(C)
q−−−−→ Hn(C/cC) ∂−−−−→

+1
Hn+1(cC) i−−−−→ Hn+1(C)∥∥∥ ∥∥∥ −1

⏐⏐/∂∼
∥∥∥ ∥∥∥

cHn(A) I−−−−→ Hn(A, A∗) B−−−−→ cHn−1(A) S−−−−→ cHn+1(A) I−−−−→ Hn+1(A,A∗)∥∥∥
Hn−1(cC)

with a consideration as for ∂∼ as the boundary map of degree −1.

Corollary 2.35. (a) Two cycles with characters τ1 and τ2 are cobordant if and
only if Sτ1 = Sτ2 in cH∗(A).

(b) We have a canonical isomorphism M∗(A) ⊗M∗(C) C
∼= H∗(A).

(c) The canonical filtration FnH∗(A) corresponds under that isomorphism
to the filtration of the left side by the dimension of the cycles.

Proof. (a) � We have

Hk(A,A∗) B−−−−→ cHk−1(A) S−−−−→ cHk+1(A).

It is shown by cobordism that [τ1] − [τ2] ∈ BHk(A,A∗) ⊂ cHk−1. Hence,

S[τ1] − S[τ2] = [Sτ1] − [Sτ2] = [0] ∈ SBHk(A, A∗) ⊂ cHk+1(A).

(b) Both sides are identical with the inductive limit of the system (cHn(A), S).
� We have M∗(A) is isomorphic to cH∗(A)/im(B), as well as M∗(C) is equal

to cH∗(C) = C[σ]. Since S = n(n + 1)bB−1 as σ, then it follows.
(c) � Note that

F qHn−m(A) =
∑
m≥q

Hn−m(A) = Hn−q ⊕ Hn−(q+1) ⊕ · · · (Hn−n = H0).

Also,

F qMn−m(A) =
∑
m≥q

Mn−m(A) = Mn−q ⊕ Mn−(q+1) ⊕ · · · (Mn−n = M0).

We may normalize the differentials b and B (b-B) to the following differen-
tials d1 and d2 of the doubled complex C∗,∗ so that the S map is given by d1d

−1
2

simply. Define
(a) Cn,m = Cn−m(A,A∗) for n,m ∈ Z, with C−k = {0} k positive.
(b) d1ϕ = (n − m + 1)bϕ ∈ Cn+1,m for ϕ ∈ Cn,m.
(c) d2ϕ = 1

n−mBϕ ∈ Cn,m+1, with as zero if n = m.
Note that d1d2 = −d2d1 follows from Bb = −bB.
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� We check that for ϕ ∈ Cn,m with Bϕ ∈ Cn,m+1, bϕ ∈ Cn+1,m,

d1d2ϕ = d1
1

n − m
Bϕ =

1
n − m

(n − (m + 1) + 1)bBϕ = bBϕ,

d2d1ϕ = d2(n − m + 1)bϕ = (n − m + 1)
1

n + 1 − m
Bbϕ = Bbϕ.

Therefore, d1d2+d2d1 = 0 follows. As well, for Bϕ = ψ ∈ Cn,m+1 = Cn−m−1 =
Ck−1,

d1d
−1
2 ψ = d1(n − m)ϕ = (n − m)(n − m + 1)bϕ

= (k + 1)(k + 2)bB−1ψ = Sψ.

Theorem 2.36. (a) The initial term E2 of the spectral sequence associated to
the filtration FpC =

∑
n≥p Cn,m in the first variable n by b is equal to zero.

(b) For the second filtration F qC =
∑

m≥q Cn,m by B, we have Hp(F qC) =
cHn(A) for n = p − 2q.

(c) The cohomology of the double complex C = C∗,∗ is given by

Hn(C) =

{
Heven(A) = Hev(A), if n is even,
Hodd(A) = Hod(A), if n is odd.

(d) The spectral sequence associated to the second filtration is convergent,
and it converges to the associated graded∑

F qH∗(A)/F q+1H∗(A)

and it coincides with the spectral sequence associated with the exact couple by
B, S, I. In particular, its initial term E2 is given by

ker(I ◦ B)/im(I ◦ B).

Proof. (a) We consider the exact sequence of complexes of cochains

0 → im(B) −−−−→ ker(B) −−−−→ ker(B)/im(B) → 0

where the coboundary is given by Hochschild b. As shown above, the first map
from im(B) to ker(B) induces an isomorphism in cohomology. Thus, the b
cohomology of the complex ker(B)/im(B) is zero.

(b) Let ϕ ∈ (F qC)p =
∑

m≥q,n+m=p Cn,m, satisfy dϕ = 0, where d = d1+d2.
Then it is cohomologus in F qC to an element ψ of Cp−q,q = Cp−2q, by (a). Then
dψ = 0 means ψ ∈ ker(b) ∩ ker(B), and ψ ∈ im(d) means ψ ∈ b(ker(B)). Thus,

(ker(b) ∩ ker(B))/b(ker(B)) ∼= (im(B) ∩ ker(b))/b(im(B)) = cHp−2q(A).

(c) By the computation of S as d1d
−1
2 , the map from Hp(F qC) to Hp(F q−1C)

with p − 2(q − 1) = p − 2q + 2 is given by the map −S from cHp−2q(A) to
cHp−2q+2(A).
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� For n = p − 2q, if p is even, then so is n with q any, and if p is odd, then
so is n with q any.

(d) The convergence of the spectral sequence by the second variable is ob-
vious, because Cn,m = Cn−m = 0 for m > n, with n − m < 0. The filtration
of Hn(C) given by Hn(F qC) coincides with the natural filtration of H∗(A),
as given in (c). Therefore, the limit of the spectral sequence is the associated
graded {∑

q F qHev(A)/F q+1Hev(A), for n even,∑
q F qHod(A)/F q+1Hod(A), for n odd.

� Note that F qC/F q+1C = Cn,q = Cn−q.
� As well, that means F q

∑
l≥q Hn−2l/F q+1

∑
l≥q+1 Hn−2l = Hn−2q in this

sense (possibly).
The initial term E2 by B is given by ker(I ◦B)/im(I ◦B). It is checked that

it coincides with the spectral sequence of the exact couple by B-S-I.
� Note that Hev(A) and Hod(A) are invariant under S, so that I ◦S ◦B can

be shorten as I ◦ B.

Remark 2.37. For n = p − 2q, the cyclic cohomology cHn(A) is identified
with Hp(F qC) in the (d1, d2) bicomplex by the following sign convention by S
or −S that ϕ ∈ cZn(A) corresponds to (−1)[

n
2 ]ϕ ∈ Cp−q,q = Cp−2q. This sign

is used in comparing the expressions for the pairing of cyclic cohomology with
K-theory.

There is the following product of Cartan-Eilenberg [8]

∨ : Hn(A,M1) ⊗ Hm(A,M2) → Hn+m(A,M1 ⊗A M2).

It then follows that H∗(A,A) becomes a graded commutative algebra by using
A ⊗A A = A as an A-bimodule, and it acts on H∗(A,A∗) since A ⊗A A∗ = A∗.
In particular, any derivation δ of A defines an element of H1(A,A), denoted as
[δ]. The explicit formula for the product ∨ of [8] gives

(ϕ ∨ δ)(a0, a1, · · · , an+1) = ϕ(δ(an+1)a0, a1, · · · , an), ϕ ∈ Zn(A, A∗)

at the cochain level. It is checked that the class of ϕ ∨ δ coincides with that of

(δ#ϕ)(a0, a1, · · · , an+1)

=
1

n + 1

n+1∑
j=1

(−1)jϕ∧(a0(da1 · · · adj−1)δ(aj)(daj+1 · · · dan+1))

at the level of cohomology. It then follows that

δ∗ϕ(a0, · · · , an) =
n∑

i=1

ϕ(a0, · · · , δ(ai), · · · , an) ai ∈ A

= (I ◦ B)(δ#ϕ) + δ#((I ◦ B)ϕ) ∈ Hn+1(A,A∗).
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This is the natural extension of the basic formula in differential geometry such
that ∂X = diX + iXd, expressing the Lie derivative with respect to a vector field
X on a manifold.

Let A be a unital algebra, B a locally convex topological algebra, and ϕ ∈
cZn(B) a continuous cocycle. Let (ρt)t∈[0,1] be a family of homomorphisms
ρt : A → B such that the function ρt(a) for t ∈ [0, 1] and a ∈ A, defined as
t �→ ρt(a), belongs to the algebra C1([0, 1], B) of C1-maps from [0, 1] to B. Then
the cocycles ρ∗0ϕ = ϕ ◦ ρ0 and ρ∗1ϕ = ϕ ◦ ρ1 has the images by S coincide.

To prove this, the Hochschild cocycle ϕ#ψ on B ⊗ C1([0, 1]) giving the
cobordism of ϕ with itself, where ψ(f0, f1) =

∫ 1

0
f0df1 for f0, f1 ∈ C1([0, 1]) is

extended (identically) to a Hochshild cocycle on C1([0, 1], B). Then the map
ρ : A → C1([0, 1], B) defined as (ρ(a))(t) = ρt(a) defines a chain over A giving a
cobordism of ρ∗0ϕ with ρ∗1ϕ, and thus, the same mod the image of B, and hence
the same class by S, since S ◦ B is zero, with B = PcB0. It then follows that
ρ∗0 = ρ∗1 : H∗(B) → H∗(A) if restricted to continuous cocycles.

The cyclic cohomology theory cH∗(A) is defined as the cohomology of a
complex (cCn, b). Also, for pairs of algebras A and B with a surjective homo-
morphism π : A → B, a relative cH∗ theory cH∗(A,B) can be developed. To
the exact sequence of complexes:

0 → cCn(B) π∗
−−−−→

(·)◦π
cCn(A)

q−−−−→ cCn(A)/cCn(B) = cCn(A, B) → 0

corresponds a long exact sequence of cohomology groups. Using the Five Lemma,
the statements on the absolute cohomology groups can be extended to the rel-
ative cohomology groups, provided that the Hochschild theory H∗(A,A∗) is
extended up to the relative version.

Characterized by M. Wodzicki [30] are non-unital algebras which satisfy
excision in Hochschild homology and cyclic homology by the property H-U.

An algebra over C is defined to be H-unital if and only if the b′ complex is
acyclic.

Also, it is shown by J. Cuntz and D. Quillen [14] that excision holds in full
generality in periodic cyclic cohomology.

3 Examples

The first example (α)
Let V be a compact smooth manifold and A = C∞(V ) the algebra of smooth

functions on V , endowed with the natural Fréchet space topology. The topology
of A is given by the semi-norms defined by pn(f) = sup|α|≤n |∂αf | using local
charts in V .

We consider only continuous multilinear forms on A with respect to the
topology. As a locally convex vector space, C∞(V ) is nuclear, namely, its topo-
logical tensor products are uniquely defined. Therefore, the n-fold topological
tensor product ⊗nC∞(V ) is isomorphic to C∞(V n).
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In particular, the algebra B = A⊗Aopp is isomorphic to C∞(V 2) by commu-
tativity. Thus, A viewed as an A-bimodule corresponds to theB-module given
by the diagonal inclusion Δ : V → V × V , Δ(p) = (p, p), p ∈ V . A projective
resolution of the diagonal in V × V is used to obtain that [10]

Proposition 3.1. Let A = C∞(V ) be the locally convex topological algebra of
smooth functions on a smooth compact manifold V .

Then there is a canonical isomorphism of the continuous Hochschild coho-
mology group Hk(A,A∗) of classes [ϕ] with the space Dk of k-dimensional de
Rham currents Cϕ on V , defined by

〈Cϕ, f0df1 ∧ · · · ∧ dfk〉 =
1
k!

∑
σ∈Sk

ε(σ)ϕ(f0, fσ(1), · · · , fσ(k))

for f0, · · · , fk ∈ C∞(V ).
Moreover, the operator

I ◦ B : Hk(A,A∗) B−−−−→ cH(A)k−1 I−−−−→ Hk−1(A,A∗)

is given by under the isomorphism the de Rham boundary dt = (·)◦d for currents
k times multiplied.

The analogous statement for the algebra of polynomials on an affine variety
is due to Hochschild-Kostant-Rosenberg [19].

The de Rham complex of the manifold V is recovered from that proposition.
If A is replaced with the matrix algebra Mq(A) = Mq(C)⊗A of matrices over

A, then commutativity as well as the exterior algebra are lost, but the cohomol-
ogy groups Hk(A,A∗) make sense, using the Morita invariance of Hochschild
cohomology to yield the same result, as for k = 1. In this case, the Hochschild
cocycle class associated to a current C ∈ Dk is given by the following formula:

ϕC(f0 ⊗ μ0, f1 ⊗ μ1, · · · , fk ⊗ μk)
= 〈C, f0df1 ∧ · · · ∧ dfk〉tr(μ0 · · ·μk), fj ∈ C∞(V ), μj ∈ Mq(C).

Theorem 3.2. [10]. For A = C∞(V ) the locally convex topological algebra, we
have

(1) For each k,

cHk(A) ∼= ker(b) ⊕ Hk−2(V,C) ⊕ Hk−4(V,C) ⊕ · · · ⊕ H0(V,C)

where H∗(V,C) is the usual de Rham homology of V , and b is the de Rham
boundary, with ker(b) ⊂ Dk.

(2) With filtration by dimension,

H∗(A) ∼= H∗(V,C).
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Proof. Let ϕ ∈ cHk(A). Then the current C = CI(ϕ) associated to I(ϕ) ∈
Hk(A,A∗) is given by

〈C, f0df1 ∧ · · · ∧ dfk〉 =
1
k!

∑
σ∈Sk

ϕ(f0, fσ(1), · · · , fσ(k)).

� Because ϕ = Pcϕ as well as cyclic property to do.
That is closed since B(I(ϕ)) = 0. Thus, the cochain ϕ∼ defined by

ϕ∼(f0, f1, · · · , fk) = 〈C, f0df1 ∧ · · · ∧ dfk〉

belongs to cZk(A). The class of ϕ − ϕ∼ in cHk(A) determined is in the kernel
of I by construction. Then there exists by exactness ψ ∈ cHk−2(A) such that
Sψ = ϕ − ϕ∼, and ψ is unique modulo the image of B. Thus, the homology
class of the closed current C(I(ψ)) is well determined. Moreover, the class of
ψ−ψ∼ in cHk−2(A) is determined, similarly. Repeating this process we obtain
the sequence of homology classes ωj ∈ Hk−2j(V,C) for j ≥ 1. By construction,
ϕ is in the same class in cHk(A) as C∼+

∑
j≥1 ω∼

j (with Sjω∼
j = C∼ corrected),

ω∼
j (f0, f1, · · · , fk−2j) = 〈ωj , f0df1 ∧ · · · ∧ dfk−2j〉

for any closed current ωj in the class. This shows that the map constructed so
is injection of cHk(A) to the direct sum as in the statement.

Surjectiveness of the map is obvious.
� For ω = C +

∑
j≥1 ωj in the direct sum, we define

ϕω = ϕC+
P

j≥1 ωj
= ϕC +

∑
j≥1

ϕωj

where each term may have cyclic property by composing with Pc (Pc-zation) if
necessary, and as well have extended trivially to by the domain of C.

By the construction of the isomorphism for (1), the map S : cHk(A) →
cHk+2(A) associates to each C ∈ ker(b) its homology class. Thus the inclusion
for (2) follows. In this example, the spectral sequence by B-S-I is degenerate.
Its E2 term is the de Rham homology of V .

It follows from the theorem above that the periodic cyclic cohomology of
C∞(V ) with natural filtration is the de Rham homology of the manifold V .

Let [S1] be the fundamental class of the circle S1. The image Sk[S1] ∈
cH2k+1(C∞(S1)) under the peridicity operator extends to the algebra Cα(S1)
of Hölder continuous functions f of exponent α > 1

2k+1 , so that

|f(x) − f(y)| ≤ Cd(x, y)α

where d is the usual metric on S1.

Proposition 3.3. Let Cα
c (R) be the algebra of Hölder continuous functions of

exponent α > 1
2k+1 , with compact support.
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(a) The following cyclic cocycle τk ∈ cH2k+1(Cα
c (R)) is defined:

τk(f0, f1, · · · , f2k+1)

=
∫

f0(x0)
f1(x1) − f1(x0)

x1 − x0

f2(x2) − f2(x1)
x2 − x1

· · · f2k(x2k) − f2k(x2k−1)
x2k − x2k−1

f2k+1(x0) − f2k+1(x2k)
x0 − x2k

Π2k
i=0dxi.

(b) The restriction of τk to C∞
c (R) is equal to ckSkτ0 in cH2k+1, where τ0

is the homology fundamental class of R defined by τ0(f0, f1) =
∫

f0df1, and

ck =
(2πi)2k

2k(2k + 1)(2k − 1) · · · 3 · 1 =
(−2)kπ2k

(2k + 1)!!
.

The multiple integral in the statement above makes sense since each of the
gradient terms has the large O form

fj(xj) − fj(xj−1)
xj − xj−1

= O(|xj − xj−1|α−1).

� Note that∣∣∣∣fj(xj) − fj(xj−1)
xj − xj−1

∣∣∣∣ ≤ Cj |xj − xj−1|α
|xj − xj−1| = Cj |xj − xj−1|α−1.

Also, ∣∣∣∣
∫

f0(x0)C1|x1 − x0|α−1C2k+1|x0 − x2k|α−1dx0

∣∣∣∣
≤

∫
supp(f0)

M0C1C2k+1|x1 − x0|α−1|x0 − x2k|α−1dx0.

It seems that the integral certainly exists when α ≥ 1. As well,∫
C1|x1 − x0|α−1C2|x2 − x1|α−1dx1

≤
∫

C1C2|x2
1 − (x0 + x2)x1 + x0x2|α−1dx1.

It is checked that τk as in (a) is a cyclic cocycle, satisfying (b).
A similar formula for Sk[S1] ∈ cH2k+1(Cα(S1)) is also obtained.
Using this formula, the following explicit formula for the push-forward ψ∗[S1]

by the map ψ : S1 → V , Hölder continuous of exponent α > 1
2k+1 :

ψ∗[S1](f0, · · · , f2k+1) = τk(ψ∗f0, ψ
∗f1, · · · , ψ∗f2k+1)

for f0, · · · , f2k+1 ∈ C∞(V ), where ψ∗fj = fj ◦ ψ.
This gives a cyclic cocycle ψ∗[S1] ∈ cH2k+1(C∞(V )).
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The formula
∫

S1 ψ∗f0d(ψ∗f1) may make sense if the functions gj = ψ∗fj on
S1 belong to the Sobolev space W

1
2 by the finiteness of

∑
n|g∧(n)|2, where g∧

is the Fourier transform of g. Thus, it may not for ψ∗f , for f ∈ C∞(V ), only
Höler continuous of exponent α < 1

2 .
In the periodic cyclic cohomology of C∞(V ), the above cocycle coincides

with Skψ′
∗[S

1], where ψ′ is smooth and homotopic to ψ.

Remark 3.4. Let A = C∞(V ) and assume that the Euler characteristic of V
vanishes, to simplify. Let TC(V ) be the complexified tangent bundle on V . Let
p2 : V ×V → V be the second projection and p∗2TC(V ) the pull-back of TC(V ) by
p2. Let X be a non-vanishing section of the vector bundle on V × V , such that
X(a, b) coincides with the real tangent vector exp−1

b (a) for (a, b) ∈ V × V close
enough to the diagonal of V × V , where expb : Tb(V ) → V is the exponential
map associated to a given Riemann metric on V .

Let Ek be the complex vector bundle on V × V defined as the pull-back
of the exterior power ∧kT ∗

C
(V ) by the second projection p2. The contraction

iX by the section X gives a well-defined complex of C∞(V × V )-modules, as
C∞(V )-bimodules, such that

C∞(V ) Δ∗
←−−−−
(·)◦Δ

C∞(V × V ) iX←−−−−
〈X,·〉

C∞(V × V,E1)

←−−−− · · · ←−−−−
〈X,··· 〉

C∞(V × V,En) ← 0,

where n = dimV and Δ : V → V × V the diagonal map.
This gives an explicit projective resolution M ′ of the A-bimodule A, and as

well a proof for the first proposition ([10]).
Let M be the standard resolution of the bimodule A, by Mk = (A ⊗ A�) ⊗

(⊗kA), with the boundary bk : Mk → Mk−1 given by

bk(1 ⊗ a1 ⊗ · · · ⊗ ak) = (a1 ⊗ 1) ⊗ (a2 ⊗ · · · ⊗ ak)

+
k−1∑
j=1

(−1)j(1 ⊗ 1) ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ak

+ (−1)k(1 ⊗ aop
k ) ⊗ (a1 ⊗ · · · ⊗ ak−1).

� Note that

b3(1 ⊗ a1 ⊗ a2 ⊗ a3) = (a1 ⊗ 1) ⊗ (a2 ⊗ a3)
− (1 ⊗ 1) ⊗ a1a2 ⊗ a3 + (1 ⊗ 1) ⊗ a1 ⊗ a2a3 − (1 ⊗ aop

3 ) ⊗ a1 ⊗ a2.

As well,

b2(1 ⊗ a1 ⊗ a2) = (a1 ⊗ 1) ⊗ a2

− (1 ⊗ 1) ⊗ a1a2 + (1 ⊗ aop
2 ) ⊗ a1.
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Therefore,

(b2 ◦ b3)(1 ⊗ a1 ⊗ a2 ⊗ a3)
= (a1a2 ⊗ 1) ⊗ a3 − (a1 ⊗ 1) ⊗ a2a3 + (a1 ⊗ aop

3 ) ⊗ a2

− (a1a2 ⊗ 1) ⊗ a3 + (1 ⊗ 1) ⊗ a1a2a3 − (1 ⊗ aop
3 ) ⊗ a1a2

+ (a1 ⊗ 1) ⊗ a2a3 − (1 ⊗ 1) ⊗ a1a2a3 + (1 ⊗ (a2a3)op) ⊗ a1

− (a1 ⊗ aop
3 ) ⊗ a2 + (1 ⊗ aop

3 ) ⊗ a1a2 − (1 ⊗ (aop
3 � aop

2 )) ⊗ a1

= 0!

by cancellation.
The explicit homotopy of the resolutions M ′ and M is given by F : M ′ → M

defined as

(Fω)(a, b, x1, · · · , xk) = 〈X(x1, b) ∧ · · · ∧ X(xk, b), ω(a, b)〉
for ω ∈ M ′

k = C∞(V 2, Ek) and a, b, x1, · · · , xk ∈ V , so that Fω ∈ Mk =
(C∞(A) ⊗ C∞(V )�) ⊗ C∞(V k).

For any given cyclic cocycle ϕ ∈ cHq(C∞(V )), the following formula

ϕ = ω0 +
∑
j≥1

ωj ∈ cHq(C∞(V ))

with ω0 = Sjωj (corrected), is yielded by explicit closed currents ωj of dimension
q − 2j, by working out the homotopy formulae explicitly.

Let W be a submanifold of V . Let i∗ : C∞(V ) → C∞(W ) be the restriction
map by the inclusion map i : W → V . There is the corresponding exact sequence
of algebras:

0 → ker(i∗) → C∞(V ) i∗−−−−→ C∞(W ) → 0.

For the ordinary homology groups, we have the long exact sequence:

· · · → Hq(W ) i∗−−−−→ Hq(V ) → Hq(V,W ) ∂−−−−→
−1

Hq−1(W ) → · · ·

with the connecting map ∂ of degree −1.
As well, from a cochain complex:

0 −−−−→ cCn(C∞(W ))
(i∗)∗−−−−→ cCn(C∞(V ))

−−−−→ cCn(C∞(V ), C∞(W )) cCn(C∞(V ))/cCn(C∞(W )) → 0

there is the long exact sequence

· · · → cHq(C∞(W ))
(i∗)∗−−−−→ cHq(C∞(V ))

→ cHq(C∞(V ), C∞(W )) ∂−−−−→
+1

cHq+1(C∞(W )) →

with the connecting map ∂ of degree +1.
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On the other hand, the connecting map for the long exact sequence of
Hochschild cohomology groups is zero, since any current on W (such as in
C∞(W )∗) mapped to zero in V (as in C∞(V )∗) is zero. Thus, im(∂) = ker((i∗)∗)
is zero. Then the zero im(∂) may be contained in cHq−1(C∞(W )).

Only trivial cyclic cocycles on C∞(V ) extend continuously to the C∗-algebra
C(V ) of continuous functions on a compact manifold V . In fact, for any compact
space X, the continuous Hochschild cohomology of A = C(X) with coefficients
in the bimodule A∗ is trivial in dimension ≥ 1. Therefore, the cyclic cohomology
of A is given by {

cH2n(C(X)) = cH0(C(X)),
cH2n+1(C(X)) = 0.

This remark is extended to arbitrary nuclear C∗-algebras.
� Note that for A = C(X),

H1(A, A∗) = 0 B−−−−→ cH0(A) S−−−−→∼=
cH2(A) I−−−−→ 0 = H2(A, A∗)

and for any n ≥ 0 and in particular n = 2j and n = 2j + 1,

Hn+1(A, A∗) = 0 B−−−−→ cHn(A) S−−−−→∼=
cHn+2(A) I−−−−→ 0 = Hn+2(A,A∗)

Moreover,

cH−1(A) = 0 S∼
−−−−→

0
cH1(A) I−−−−→ 0 = H1(A,A∗),

which should hold in this sense with S∼ or another, only by I.

The next example (γ)
Let X be a topological space and G a compact group acting continuously on

X.
The G-equivariant cohomology H∗

G of X is defined as the cohomology of
the homotopy quotient XG = X ×G EG, where EG is the total space of the
universal principal G-bundle over the classifying space BG.

In particular, H∗
G(X) is a module over H∗

G(point) = H∗(BG) in a natural
manner.

Example 3.5. Let G = T = S1 the 1-dimensional torus. Then BS1 = P∞(C)
and H∗

S1({p}) = H∗(BS1) = H∗(P∞(C)) is a polynomial ring in one generator
of degree 2.

The formal analogy between cyclic cohomology and S1-equivariant cohomol-
ogy is given by the equality BΛ = BS1, where Λ is the small category which
governs cyclic cohomology by the equality cH∗(A) = Ext∗Λ(A�,C�) where the
function � from algebra A to Λ-modules A� gives the appropriate linearization
of the non-abelian category of algebras (cf. [11]).

� The cyclic category Λ is the small category with one object Λn for each
n ∈ N and with morphisms f ∈ Hom(Λn,Λm) as the homotopy classes of
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continuous increasing (in some sense) maps ϕ from S1 to S1, of degree one and
such that ϕ(Zn+1) ⊂ Zm+1, with Zn = Z/nZ.

� There is a covariant functor from Λ to k-vector spaces. Let A be a unital
algebra over a field k. For each f ∈ Hom(Λn,Λm), the action f� is given by

f�(x0 ⊗ · · · ⊗ xn) = y0 ⊗ · · · ⊗ ym

for x0 ⊗ · · · ⊗ xn ∈ ⊗n+1A = A�
n, where yj = Πl∈f−1(j)xl. This covariant

functor defines a k(Λ)-module whose underlying vector space is ⊕∞
n=0A

�
n, which

is denoted by A�.
Let Γ be a countable discrete group and A = CΓ the group ring of Γ as an

algebra over C.
It follows from the following theorem of D. Burghelea [7] that there is a

natural S1-space, the S1-equivariant cohomology with complex coefficients for
which is the cyclic cohomology of A.

Recall that the free loop space Y S1
of a topological space Y is defined to be

the space C(S1, Y ) of continuous maps from S1 to Y with the compact-open
topology.

� The compact-open topology for C(S1, Y ) is generated by the subsets
V (K,U) of functions f of Y S1

for compact subsets K of S1 and open subsets U
of Y such that f(K) ⊂ U , as sub-open-basis for the topology, as ∩n

j=1V (Kj , Uj)
as open subsets in which.

This map space is an S1-space by the natural action of the group S1 on the
domain S1 by rotations.

Theorem 3.6. ([7]). Let Γ be a discrete group and A = CΓ.
(a) The Hochschild cohomology H∗(A, A∗) is isomorphic to the cohomology

H∗((BΓ)S1
,C) of the free loop space (BΓ)S1

of the classifying space BΓ.
(b) Thy cyclic cohomology cH∗(A) is isomorphic to the S1-equivariant coho-

mology H∗
S1((BΓ)S1

,C).

Moreover, the isomorphism in (b) is compatible with the module structure
over H∗(BΛ) = H∗(BS1). As well, the long exact sequence by B-S-I under the
isomorphism in (a) and (b) becomes the Gysin exact sequence relating coho-
mology H∗ to equivariant cohomology H∗

S1
.

As the following corollary, obtained is that the cyclic cohomology of CΓ is
computed in terms of the cohomology of the subgroups of Γ as follows.

For any g ∈ Γ, let Cg = {h ∈ Γ | gh = hg} be the centralizer of g in Γ.
For any g ∈ Γ, let Ng = Cg/gZ be the quotient of Cg by the central subgroup

gZ = 〈g〉 generated by g.
Let 〈Γ〉 be the set of conjugacy classes of Γ.
� Namely,

〈Γ〉 = Γ/Inn(Γ)

where Inn(Γ) means the group of inner automorphisms of Γ defined as ad(h)(g) =
[h, g] = hgh−1 for g, h ∈ Γ.
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Let 〈Γ〉f be the set of conjugacy classes of elements of Γ of finite order and
〈Γ〉cf its complement in 〈Γ〉.

The groups Cg and Ng only depend upon the conjugacy class [g] ∈ 〈Γ〉 of
g ∈ Γ.

� Note that if k ∈ [g], then there is x ∈ Γ such that k = xgx−1. If h ∈ Cg,
then k(xhx−1) = xghx−1 and (xhx−1)k = xhgx−1, and thus xhx−1 ∈ Ck.
Hence, h ∈ ad(x−1)Ck.

Corollary 3.7. ([7]). It is obtained that

H∗(CΓ, (CΓ)∗) ∼= Π[g]∈〈Γ〉H∗(Cg,C).

Moreover,

cH∗(CΓ) ∼= Π[g]∈〈Γ〉f
(H∗(Ng,C) ⊗ cH∗(C)) × Π[g]∈〈Γ〉c

f
H∗(Ng,C).

The structure of cH∗(C) as an cH∗(C)-module is the decomposition over the
finite conjugacy classes, with the operator S on cH∗(C), and another structure
is the decomposition over the ininite conjugacy classes, with the operator S the
product given by the 2-cocycle ωg ∈ H2(Ng,C) of the central extension:

0 → Z = 〈g〉 → Cg → Ng → 1

where there are the inclusion Z ⊂ C and the map H2(Ng,Z) → H2(Ng,C) used.
In particular, the infinite conjugacy classes may contribute non-trivially to

the periodic cyclic cohomology H∗(CΓ).
For the proof of the theorem above, with A = CΓ, the associated cyclic

vector space c(A) is defined to be the linear space of the following cyclic set
(Yn, dj

n, sj
n, tn), whose faces, degeneracies, and permutations are given respec-

tively by the maps of which,

Yn = Γn+1 = {(g0, g1, · · · , gn) | g0, · · · , gn ∈ Γ},
dj

n(g0, · · · , gn) = (g0, · · · , gjgj+1, · · · , gn) ∈ Yn−1, 0 ≤ j ≤ n − 1,

dn
n(g0, · · · , gn) = (gng0, g1, · · · , gn−1) ∈ Yn−1,

sj
n(g0, · · · , gn) = (g0, · · · , gj , 1, gj+1, · · · , gn) ∈ Yn+1,

tn(g0, · · · , gn) = (gn, g0, · · · , gn−1) ∈ Yn.

It then follows that the Hochschild and cyclic H cohomology of A = CΓ is
the cohomology and S1-equivariant cohomology of the geometric realization |Y |
of Y . Namely,

H∗(A, A∗) = H∗(|Y |,C), cH∗(A) = H∗
S1(|Y |)

where the cyclic structure of Y allows |Y | endowed with a canonical action of
S1.

� The geometric realization |X| of a simplicial set X = ∪n≥0Xn is the
quotient of the topological space X × Δ:

X ×Δ Δ = ∪n≥0(Xn ×Δn Δn)
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by the equivalence relation which identifies (x, α∗(y)) with (α∗(x), y) for any
morphism α of Δ, where Δ is the small category whose objects are the totally
ordered finite sets {0 < 1 < · · · < n} = Δn, n ∈ N and whose morphisms are
the increasing maps.

The S1-space |Y | is S1-equivariantly homeomorphic to the space CS1(Γ) =
cf(S1,Γ) of Γ-valued configurations of the oriented circle.

A Γ-valued configuration on S1 is a map α : S1 → Γ such that α(θ) = 1Γ

except on, a finite subset of S1, called the support denoted by supp(α).
The topology of the configuration space cf(S1, Γ) is generated by the open

sets

U(I1, · · · , Ik, g1, · · · , gk)

= {α ∈ cf(S1,Γ) | supp(α) ⊂ ∪k
j=1Ij , Πθ∈Ij α(θ) = gj ∈ Γ(1 ≤ j ≤ k)},

where Ij are open intervals of S1, and the product is the time-ordered product
of the values of α at the times θ1 < · · · < θk, where supp(α)∩Ij = {θ1, · · · , θk}.

There is the natural homeomorphism h : |Y | → cf(S1, Γ) defined as follows.
At the set theoretic level, we have the decomposition

|Y | = ∪∞
n=0(Yn \ deg(Yn)) × int(Δn),

where the degeneracy deg(Yn) is the union of the images of the maps si
n−1 :

Yn−1 → Yn, and int(Δn) is the interior of the n-simplex

Δn = (λ0, · · · , λn) |λi ≥ 0(0 ≤ i ≤ n),
n∑

i=0

λi = 1}.

� Note that Δ0 = {1}, int(Δ0) = ∅, and

Δ1 = {(λ0, λ1) |λ0, λ1 ≥ 0, λ0 + λ1 = 1},
which is homeomorphic to the closed interval [0, 1], so that int(Δ1) ≈ (0, 1) the
open interval. As well, Δ2 is homeomorphic to 2-dimensional closed ball, and
hence int(Δ2) ≈ (0, 1)2.

For ((gi)n
i=0, (λi)n

i=0) ∈ (Yn \ deg(Yn)) × int(Δn), the image under h is the
configuration α with support contained in the set

{0, λ0, λ0 + λ1, · · · , λ0 + · · · + λn−1}
and such that

α(0) = g0, α(λ0) = g1, α(
i−1∑
k=0

λk) = gi(2 ≤ i ≤ n).

Since (gi) ∈ Yn \ deg(Yn), we have gi �= 1Γ for i �= 0, but g0 may be 1Γ. This is
the case where the cardinality of the support of the configuration α is equal to
n.

It is then checked that the map h : |Y | → cf(S1, Γ) is an S1-equivariant
homeomorphism.
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Proposition 3.8. (due to J. Milnor and G. Segal). The configuration space
cf(S1,Γ) is S1-equivariantly weakly homotopy equivalent to the free loop space
(BΓ)S1

= C(S1, BΓ).

That theorem above follows from this proposition.
Let I = S1 \ {0} ⊂ S1 = R/Z be the open interval. Then cf(I,Γ) is

canonically homeomorphic to BΓ.
The above weak homotopy equivalence J associated to a configuration α ∈

cf(S1,Γ) the loop β = J(α), where β(θ) for θ is equal to the restriction to I of
α◦Rθ, that is in cf(I,Γ) ≈ BΓ, where Rθ is the rotation defined by Rθ(t) = t+θ
for t ∈ S1 = R/Z.

The classifying space BΓ is defined to be the geometric realization |X| of
the simplicial set X = ∪n≥1Xn, given by

Xn = Γn = {(g1, · · · , gn) | g1, · · · , gn ∈ Γ},
d0

n(g1, · · · , gn) = (g2, · · · , gn), dn
n(g1, · · · , gn) = (g1, · · · , gn−1) ∈ Xn−1

di
n(g1, · · · , gn) = (g1, · · · , gigi+1, · · · , gn) ∈ Xn−1, 1 ≤ i ≤ n − 1,

si
n(g1, · · · , gn) = (g1, · · · , gi, 1Γ, gi+1, · · · , gn) ∈ Xn+1, 0 ≤ i ≤ n.

The natural homeomorphism cf(I,Γ) ≈ |X| associates to a configuration α
on I = (0, 1) with supp(α) = {t1, · · · , tn} with ti < ti+1 and α(ti) = gi, the
following element of (Xn \ deg(Xn)) × int(Δn):

(g1, · · · , gn) × (t1, t2 − t1, t3 − t2, · · · , tn − tn−1, 1 − tn).

� Note that t1 > 0, ti+1 − ti > 0, 1 − tn > 0, and

t1 + (t2 − t1) + (t3 − t2) + · · · + (tn − tn−1) + (1 − tn) = 1.

For the proof of the proposition above, we compares the two row fibrations
in the following diagram:

Γ −−−−→ cf(S1, Γ) ≈ |Y | res−−−−→ cf(I = S1 \ {0},Γ)⏐⏐/ J

⏐⏐/ ⏐⏐/
Ω(BΓ) = (BΓ)[0,1],0,1,� −−−−→ (BΓ)S1

= C(S1, BΓ) ev−−−−−−→
at 0 and 1

BΓ ≈ |X|

where for α ∈ cf(S1,Γ), its restriction res(α) to I determines α up to the value
α(0) ∈ Γ, as the first row fibration. In the second row fibration, ΩBΓ is the loop
space of BΓ, that is, C([0, 1], BΓ)0,1,� of all continuous closed paths on BΓ with
the same point � at 0 and 1 fixed. The vertical side arrows cf(I,Γ) → BΓ and
Γ → ΩBΓ are weak homotopy equivalences, and thus so is the middle arrow J .
The last example (δ)

Let V be a smooth manifold and Γ a discrete group acting on V by dif-
feomorphisms. Let A = C∞

c (V ) � Γ the crossed product algebra. The cyclic
cohomology of A is described in the following.
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The analogues of the above results of Burghelea are obtained by Feigin and
Tsygan [15], Nistor [26], and Brylinski [5], [6]. It is obtained by Connes [12]
the periodic cyclic cohomology H∗(A) contains the twisted cohomology groups
H∗

τ (VΓ,C) as a direct factor.
Let VΓ be the homotopy quotient V ×Γ EΓ, where EΓ → BΓ is the universal

principal Γ-bundle over the classifying space BΓ, with Γ as fibers. Let τ be the
real vector bundle on VΓ associated to the Γ-equivariant tangent bundle TV of
V .

The crossed product algebra A = C∞
c (V )�Γ is defined to be the convolution

algebra C∞
c (V ×Γ)∗ of smooth functions with compact support on V ×Γ. The

convolution product is defined by

(f1f2)(x, q) = (f1 ∗ f2)(x, g) =
∑

g1g2=g

f1(x, g1)f2(xg1, g2),

for f1, f2 ∈ A, (x, g) ∈ V × Γ.
� Note that since g2 = g−1

1 g and g1 = h ∈ Γ is arbitrary,

(f1 ∗ f2)(x, g) =
∑
h∈Γ

f1(x, h)f2(xh, h−1g).

Associativity is checked as

((f1 ∗ f2) ∗ f3)(x, g) =
∑
h∈Γ

(f1 ∗ f2)(x, h)f3(xh, h−1g)

=
∑
h∈Γ

∑
k∈Γ

f1(x, k)f2(xk, k−1h)f3(xh, h−1g),

(f1 ∗ (f2 ∗ f3))(x, g) =
∑
k∈Γ

f1(x, k)(f2 ∗ f3)(xk, k−1g)

=
∑
k∈Γ

f1(x, k)
∑
h∈Γ

f2(xk, h)f3(xkh, h−1k−1g), kh = l ∈ Γ,

=
∑
k∈Γ

f1(x, k)
∑
l∈Γ

f2(xk, k−1l)f3(xl, l−1g),

so that (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3) holds.
The group Γ acts on V from the right so that the action V × Γ � (x, g) �→

xg ∈ V satisfies that x(g1g2) = (xg1)g2. The action is free if each action by
g ∈ Γ, g �= 1 has no fixed point. The action is proper if the map from V × Γ to
V × V defined by (x, g) �→ (x, xg) is proper.

If Γ acts on V , to be free and proper, then the quotient space X = V/Γ
is Hausforff and is a manifold of dimension equal to dimV . In this case, the
crossed product C∗-algebra C0(V ) � Γ is strongly Morita equivalent to C0(X),
due to Rieffel [28].

When V is compact, for g ∈ G, define the element ug ∈ C∞
c (V × Γ)∗ by

ug(x, k) =

{
0, k �= g,

1, k = g
x ∈ V, k ∈ Γ.
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When V is not compact, this element is not defined in A, but in a multiplier of
A.

In both cases, any element f of A can be uniquely written as a finite sum

f =
∑

fgug, fg ∈ C∞
c (V ).

� Since Γ is a discrete group, then a compact subset of Γ is a finite set.
There is the following algebraic rule

(ughug−1)(x) = h(xg), h ∈ C∞
c (V ), x ∈ V, g ∈ Γ.

� Note that for h ∈ C∞
c (V × Γ),

ug(hug−1)(x, s) =
∑
h∈Γ

ug(x, h)(hug−1)(xh, h−1s)

= ug(x, g)(hug−1)(xg, g−1s)

= 1
∑
k∈Γ

h(xg, k)ug−1(xgk, k−1g−1s), k−1g−1s = g−1,

= h(xg, g−1sg)ug−1(xsg−1, g−1)

= h(xg, g−1sg).

Since the homotopy quotient VΓ is the geometric realization of a simplicial
manifold, the twisted cohomology H∗

τ (VΓ) can be described as the cohomology
of a double complex [2, Theorem 4.5].

More explicitly, the space EΓ can be viewed as the geometric realization of
the simplicial set Γ∞, where Γ∞

n = Γn+1 with

di(g0, · · · , gn) = (g0, · · · , gi−1, gi+1, · · · , gn) ∈ Γ∞
n−1,

sj(g0, · · · , gn) = (g0, · · · , gj , gj , · · · , gn) ∈ Γ∞
n+1.

The group Γ acts on both V and Γ∞ from the right. It then follows from [2,
Theorem 4.5] that the τ -twisted cohomology H∗

τ (VΓ,C) is the cohomology of
the bicomplex of Γ-invariant simplicial τ -twisted forms on V × Γ∞.

A twisted form on V is now viewed as the same thing as a smooth de Rham
current in the following sense. To the twisted form ω, associated is the smooth
current C with values

C(α) =
∫

V

α ∧ ω, deg(α) + deg(ω) = dimV

for any differential form α with compact support and degree condition above.
The double complex (C∗, d1, d2) is used in computing H∗

τ (VΓ,C) in terms of
currents on V rather than twisted forms, to be more convenient to describe.

Let Cn,m = {0} for n < 0 or m > 0 or m < −dimV . Otherwise, let Cn,m

be the space of totally anti-symmetric maps γ from Γn+1 to Ω′
−m(V ) the (dual)
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space of de Rham currents of dimension −m on V , 0 ≤ −m ≤ dimV , which
satisfy

γ(g0g, g1g, · · · , gng) = γ(g0, · · · , gn)g, g, g1, · · · , gn ∈ Γ.

The coboundary d1 : Cn,m → Cn+1,m is given by

(d1γ)(g0, · · · , gn+1) = (−1)m
n+1∑
j=0

(−1)jγ(g0, · · · , gj−1, gj+1, · · · , gn+1).

� Note that for γ ∈ C1,m,

d1(d1γ)(g0, g1, g2, g3) = (−1)m(d1γ)(g1, g2, g3) − (−1)m(d1γ)(g0, g2, g3)
+ (−1)m(d1γ)(g0, g1, g3) − (−1)m(d1γ)(g0, g1, g2)

= (−1)mγ(g2, g3) − (−1)mγ(g1, g3) + (−1)mγ(g1, g2)
− (−1)mγ(g2, g3) + (−1)mγ(g0, g3) − (−1)mγ(g0, g2)
+ (−1)mγ(g1, g3) − (−1)mγ(g0, g3) + (−1)mγ(g0, g1)
− (−1)mγ(g1, g2) + (−1)mγ(g0, g2) − (−1)mγ(g0, g1)

= 0!

The coboundary d2 : Cn,m → Cn,m+1 is the de Rham (dual) boundary

(d2γ)(g0, · · · , gn) = dt(γ(g0, · · · , gn)) = γ(g0, · · · , gn) ◦ d,

where d is the usual differential boundary as

d : Ω−(m+1)(V ) → Ω−(m+1)+1(V ) = Ω−m(V ).

� Note that for γ : Γn+1 → Ω′
−m(V ),

γ(g0, · · · , gn) ◦ d ∈ Ω′
−m−1(V ) = Ω′

−(m+1)(V ).

It then follows that

Proposition 3.9. The twisted cohomology H∗
τ (VΓ,C) is isomorphic to the co-

homology of the bicomplex (C∗, d1, d2) above, with d2 as a shift in dimension of
dimV , and with d1 as an alternative degeneration on Γ∗, where we may let

C∗ = C∗,∗ = Mapasy(Γ∗, Ω′
−∗(V )).

This holds without regard to the regularity imposed on the currents.
Note that the filtration of the cohomology of the bicomplex, given by the

maximal value of n − m on the support of cocycles γn,m ∈ Cn,m does depend
on the regularity.
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Example 3.10. Let V = S1, Γ = Z, and that Γ acts on V by a diffeomorphism
ϕ ∈ Dif+(S1) (preserving the orientation), with a Liouville rotation number,
but not C∞-conjugate to a rotation (cf. [18]). The homotopy quotient VΓ is the
mapping torus, that is, the quotient of V ×R by the diffeomorphism ϕ∼ defined
by

ϕ∼(x, s) = (ϕ(x), s + 1), x ∈ V = S1, s ∈ R.

By construction, it is a 2-torus with S1 as fibers over BΓ = R/Z. Its cohomotopy
group π1(VΓ) has another generator given by a continuous map VΓ → V = S1.
There is the corresponding cocycle in the bicomplex (C∗, d1, d2) to be computed.
Since the group Γ preserves the orientation, then the twisting by τ is ignored.
Thus, there is a canonical map from π1(VΓ) to H1

τ (VΓ,C). By using arbitrary
currents, the corresponding cocycle is described as follows. It is given by the
following element of C0,0 = Mapasy(Γ, Ω′

0(V )), that is, γ0 ∈ Ω′
0 the unique Γ-

invariant probability measure on V = S1. This measure is zero dimensional,
with d1γ = d2γ = 0.

� Note that
(d1γ)(g0, g1) = γ(g1) − γ(g0).

Moreover, it holds by the invariance that

γ(g1) = γ(g1)g−1
1 g0 = γ(g1g

−1
1 g0) = γ(g0).

Also, (d2γ)(g0) = γ(g0) ◦ d = 0, because of the zero dimensionality killing forms
with dimension more than zero.

Since ϕ is not C∞-conjugate to a rotation, the current γ0 is not smooth. We
have to describe a smooth cocycle γ′ in the above bicomplex belonging to the
same cohomology class.

Let γ′
0 ∈ Ω′

0 be any smooth 0-dimensional current such that 〈1, γ′
0〉 = 1. It

is not ϕ-invariant, but the equation

ϕγ′
0 − γ′

0 = dtγ′
1 = γ′

1 ◦ d

is solved by γ′
1 a smooth 1-dimensional current on V = S1. This yields the

desired smooth cocycle γ′.
The current γ0 gives rise to a trace on the crossed product A = C∞

c (V )�Γ,
while the cocycle γ′ gives rise to a cyclic 2-cocycle on A, with the same class in
periodic cyclic cohomology.

Described in full generality is a morphism Φ of bicomplexes from (C∗, d1, d2)
to the (b,B) bicomplex of the algebra A. This implies the desired map from
H∗

τ (VΓ,C) to the periodic cyclic cohomology of A.
The construction of the morphism Φ is applied also to smooth groupoids for

which the maps r and s are étale, but in the case of G = V �Γ, there are special
features due to the total anti-symmetry of the cochains γ(g0, · · · , gn).

Let us introduce an auxiliary graded differential algebra exploiting. As an
algebra, that is the crossed product B �α Γ, where B is the graded tensor
product

B = A∗(V ) ⊗ ∧∗CΓ′ = B1 ⊗ B2
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of the graded algebra A∗(V ) of smooth compactly supported differential forms
on V by the exterior algebra ∧∗CΓ′ of the linear space CΓ′ with the basis of δg

for g ∈ Γ, with δe = 0 for e the unit of Γ, as CΓ′ = C0Γ. The action α of Γ on B
by automorphisms is defined by the tensor product such that αg = α1,g ⊗ α2,g

for g ∈ Γ.
The action α1 of Γ on B1 = A∗(V ) is the natural action commuting with

the differential, defined as

α1,g(f)(x) = f(xg), f ∈ C∞
c (V ), x ∈ V, g ∈ Γ

and extended.
� For g1, g2 ∈ Γ, x ∈ V ,

α1,g1(α1,g2(f))(x) = α1,g2(f)(xg1)
= f((xg1)g2) = f(x(g1g2)) = α1,g1g2(f)(x).

The action α2 of Γ on B2 = ∧∗CΓ′ is given by the equality

α2,gδk = δkg−1 − δg−1 , g, k ∈ Γ,

and it preserves the subspace CΓ′ = ∧1CΓ′.
� For g1, g2, k ∈ Γ,

α2,g1(α2,g2(δk)) = α2,g1(δkg−1
2

− δg−1
2

)

= δkg−1
2 g−1

1
− δg−1

2 g−1
1

= δk(g1g2)−1 − δ(g1g2)−1 = α2,g1g2(δk).

Also, if g = e, then α2,e(δk) = δk − δe = δk for any k ∈ Γ. If g = k, then
α2,k(δk) = δe − δk−1 = −δk−1 . If α2,g(δk) = 0, then kg−1 = g−1. Thus, k = e.

Since the action α = α1 ⊗ α2 of Γ on B = B1 ⊗ B2 preserves the bi-grading
of B, the crossed product B �α Γ has a canonical bi-grading.

Any generic element of B �α Γ is written as a finite sum
∑

g∈Γ bgug for
bg ∈ B.

The algebra B is endowed with the differential d = d1 ⊗ d2 defined by

d(ω ⊗ ε) = dω ⊗ ε, ω ∈ B1 = A∗(V ), ε ∈ B2,

where dω = d1ω is the usual differential of forms, and B2 is endowed with the
zero differential d2 = 0.

The differential d of the crossed product algebra B �α Γ is defined by

d(bug) = (db)ug + (−1)deg bbugδg, b ∈ B, g ∈ Γ,

where this is defined for b homogeneous in B and extended by linearity with
degrees.

Lemma 3.11. The crossed product B �α Γ is a graded differential algebra by
the differential d above.
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Proof. By the construction above, B �α Γ is a bigraded algebra.
It is shown that the two components d2 and d1 of d given by

d2(bug) = (−1)deg bbugδg, d1(bug) = (db)ug

for b ∈ B (homogeneous), g ∈ Γ are derivations of B �α Γ such that

d2
2 = d2

1 = d2d1 + d1d2 = 0

so that d2 = 0.
It is clear that d1 is a derivation with d2

1 = 0, since d2
1(bug) = (d2b)ug = 0.

� For b, b′ ∈ B and g, h ∈ Γ,

d1((bug)(b′uh)) = d1(b(ugb
′ug−1)ugh)

= d(b(ugb
′ug−1))ugh

= d(b)(ugb
′ug−1)ugh + bd(ugb

′ug−1)ugh

= d1(bug)b′uh + bugug−1d(ugb
′ug−1)uguh.

Moreover, as a possible equation,

ug−1d(ugb
′ug−1)uguh = d(b′)uh = d1(b′uh).

Namely, Adg−1 ◦ d ◦ Adg = d is required. That is, Adg = αg commutes with d,
as a question? But it seems that α1,g(d(f))(x) = d(f)(xg) and d(α1,g(f))(x) =
d(f(·g))(x) are slightly different?

To check that d2 is a derivation, we need to show that for g1, g2 ∈ Γ,

d2(ug1g2) = (d2ug1)ug2 + ug1d2ug2 .

� This means that

ug1g2δg1g2 = ug1δg1ug2 + ug1ug2δg2 .

On the other hand,

ug1δg1ug2 = ug1g2ug−1
2

δg1ug2

= ug1g2αg−1
2

δg1 = ug1g2(δg1g2 − δg2),

which shows the derivation rule of d2 above.
Since δ2

g = 0, we have d2
2 = 0.

� Note that

d2
2(bug) = d2((−1)deg bbugδg)

= (−1)deg bd2(b(ugδgug−1)ug)

= (−1)deg bd2(b(δgg−1 − δg−1)ug)

= (−1)1+deg b(−1)deg(bδg−1 )bδg−1ugδg.
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Moreover,

δg−1ugδg = δg−1αg(δg)ug = δg−1(δgg−1 − δg−1)ug = 0!

Finally,

(d2 ◦ d1)(bug) = d2((db)ug) = (−1)deg db(db)ugδg

= (−1)deg b+1(db)αg(δg)ug = (−1)deg b+2(db)δg−1ug,

(d1 ◦ d2)(bug) = d1((−1)deg bbugδg) = (−1)deg bα1(bαg(δg)ug)

= (−1)deg bα1b(δgg−g − δg−1)ug) = (−1)deg b+1α1(bδg−1ug)

= (−1)deg b+1(db)δg−1ug,

which implies d2d1 + d1d2 = 0.

Let γ ∈ Cn,m = Mapasy(Γn+1, Ω−m(V )′) be a cochain in the bicomplex
(C∗, d1, d2). We associate to γ a linear form γ∼ on B �α Γ defined by

γ∼(ω ⊗ (δg1 · · · δgn) = 〈ω, γ(1, g1, · · · , gn)〉, gj ∈ Γ, ω ∈ A−m(V ) = Ω−m(V ),

and γ∼(bug) = 0 for g �= 1Γ or for b �∈ A−m(V ) ⊗ ∧n.
The relation between the coboundaries d1 and d2 of C∗ and the derivations

d2 and d1 of B �α Γ that are replaced by c2 and c1 is given by,

Lemma 3.12. For γ ∈ Cn,m, the following holds that for a1, a2, a ∈ B �α Γ,
(a) γ∼(a1a2 − (−1)deg a1 deg a2a2a1) = (−1)deg a1(d1γ)∼(a1c2(a2)),
(b) γ∼(da) = γ∼(c1(a)) = (d2γ)∼(a), where d can be replaced with c1.

Proof. (a) We may assume that aj = bjugj with bj ∈ B for j = 1, 2, and that
g1g2 = 1, so that g2g1 = 1.

� Note that
(b1ug1)(b2ug2) = b1(αg1(b2))ug1g2 .

If g1g2 �= 1, then its value under γ∼ is zero.
Then a1a2 = b1αg1(b2) and

(−1)deg a1 deg a2a2a1 = (−1)deg a1 deg a2b2αg2(b1)
= αg2(b1αg1(b2)) = αg2(b1)αg1g2(b2) = αg2(b1)b2

by using graded commutativity of B, with deg aj = deg bj in this case.
On the other hand,

a1c2(a2) = b1ug1(−1)deg a2b2ug2δg2 = (−1)deg a2b1αg1(b2)δg2

Thus, with b = b1αg1(b2)), it is enough to show that for g ∈ Γ, b ∈ B,

γ∼(b − αg(b)) = (−1)deg b(d1γ)∼(bδg).

We may assume that b = ω⊗δg1 · · · δgn with gj ∈ Γ, ω ∈ A−m(V ) = Ω−m(V ),
so that deg b = n − m (not n + m).
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We have αg(b) = α1,g(ω) ⊗ α2,g(δg1 · · · δgn
) and

α2,g(δg1 · · · δgn) = (δg1g−1 − δg−1) · · · (δgng−1 − δg−1) = · · ·

which can be expanded term by term. The equation claimed above follows from
the invariance of γ by Γ-action and the definition of d1.

� Consider the case of b = ω ⊗ δg1 . Then, with −m = 1 = deg b,

γ∼(b − αg(b)) = γ∼(ω ⊗ δg1 − αg(ω) ⊗ (δg1g−1 − δg−1))

= 〈ω, γ(1, g1)〉 − 〈αg(ω), γ(1, g1g
−1) − γ(1, g−1)〉,

(d1γ)∼(bδg) = (d1γ)∼(ω ⊗ δg1δg) = 〈ω, (d1γ)(1, g1, g)〉
= 〈ω,−γ(g1, g) + γ(1, g) − γ(1, g1)〉.

Moreover, it should hold that

〈αg(ω), γ(1, g1g
−1) − γ(1, g−1)〉

= 〈ω, γ(1, g1g
−1)g − γ(1, g−1)g〉

= 〈ω, γ(g, g1) − γ(g, 1)〉 = 〈ω, γ(g1, g) − γ(1, g)〉

by the symmetry. Hence the case is proved.
(b) We may assume a = bug with g �= 1. Then

γ∼(da) = γ∼((db)ug + (−1)deg bbugδg) = γ∼(c1(a)) + γ∼(c2(a))

= γ∼({(db) + (−1)deg bbαg(δg)}ug) = 0 = 0 + 0.

On the other hand,

(d2γ)∼(a) = (γ ◦ d)∼(a) = γ∼(da).

Note that d = c1 on B, while c2 = 0 on B.

Theorem 3.13. (A general construction of cyclic cocycles of A = C∞
c (V ) � Γ [12]).

(a) There is the following morphism Φ of the bicomplex (C∗, d1, d2) to the
(b,B) bicomplex of A. For γ ∈ Cn,m = Mapasy(Γn+1, Ω′

−m(V )), with l =
n − m + 1, the Φ(γ) is the l-linear form on A given by

Φ(γ)(x0, · · · , xl) = λn,m

l∑
j=0

(−1)j(l−j)γ∼(dxj+1 · · · dxlx0dx1 · · · dxj)

for xj ∈ A, with λn,m = n!
(l+1)! = n!

(n−m)! .
(b) The corresponding map in cohomology groups gives a canonical inclusion

map Φ∗ : H∗
τ (VΓ,C) → H∗(A) of H∗

τ (VΓ,C) as a direct factor of the periodic
cyclic cohomology of A.
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Proof. (a) We compute b(Φ(γ))(x0, · · · , xl+1).
Consider the functional ρj

(x0, · · · , xl) �→ γ∼(dxj+1 · · · (dxl)x0dx1 · · · dxj).

The Hochschild coboundary of this functional gives

(−1)jγ∼(ajxj+1 − xj+1aj), aj = dxj+2 · · · (dxl+1)x0dx1 · · · dxj .

� Note that for j = 1, l = 1 for ρ1,

(bρ1)(x0, x1, x2) = ρ(x0x1, x2) − ρ(x0, x1x2) + ρ(x2x0, x1)
= γ∼(x0x1dx2) − γ∼(x0d(x1x2)) + γ∼(x2x0dx1)
= −γ∼(x0(dx1)x2) + γ∼(x2x0dx1)

= (−1)jγ∼((x0dx1)x2 − x2(x0dx1)), with x0dx1 = a1.

Therefore, it follows from the lemma (a) above that

b(Φ(γ))(x0, · · · , xl+1) = (−1)lλn,m

l∑
j=0

(−1)j(l−j+1)(d1γ)∼(ajc2(xj+1)).

Since d2
1 = 0, (d1γ)∼ is a graded trace on B �α Γ by the lemma above.

We can rewrite the equation above as

bΦ(γ)(x0, · · · , xl+1) = λn,m

l∑
j=0

(d1γ)∼(x0dx1 · · · dxjc2(xj+1)dxj+2 · · · dxl+1).

By using dxk = c2(xk) + c1(xk), consider the product

x0dx1 · · · dxl+1 = x0(c2(x1) + c1(x1)) · · · (c2(xl+1) + c1(xl+1))

and the terms with c2 appearing n + 1 times. Then

bΦ(γ)(x0, · · · , xl+1) = (n + 1)λn,m(d1γ)∼(x0dx1 · · · dxl+1).

� Note that

(d1γ)∼(x0dx1) = (d1γ)∼(x0(c2(x1) + c1(x1))
= (d1γ)∼(x0(c2(x1)) + (d1γ)∼(x0c1(x1)).

Since (d1γ)∼ is a graded trace on B �α Γ, we have

Φ(d1γ)(x0, · · · , xl+1) = λn+1,m(l + 2)(d1γ)∼(x0dx1 · · · dxl+1).

� With l = n − m + 1,

λn+1,m(l +2) =
(n + 1)!

((n + 1) − m + 2)!
(n−m+3) = (n+1)

n!
(l + 1)!

= (n+1)λn,m.
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It then follows that Φ(d1γ) = bΦ(γ).
� Note that it is shown above that the following diagram commutes:

Cn,m Φ−−−−→ Cl=n−m+1

d1

⏐⏐/ ⏐⏐/b

Cn+1,m Φ−−−−→ Cl+1=(n+1)−m+1

We next compute BΦ(γ). We have

B0Φ(γ)(x0, · · · , xl−1) = λn,m

l∑
j=0

(−1)j(l−j)γ∼(dxj · · · dxl−1dx0 · · · dxj−1).

� Recall that

B0Φ(γ)(x0, · · · , xl−1) = Φ(γ)(1, x0, · · · , xl−1) − (−1)lΦ(γ)(x0, · · · , xl−1, 1).

Hence, the second term is zero since d1 = 0, and x0 is replaced by 1 in the first
term for Φ(γ).

Thus we have

BΦ(γ)(x0, · · · , xl−1) = (l + 1)λn,m

l−1∑
j=0

(−1)j(l−1)γ∼(dxj · · · dxl−1dx0 · · · dxj−1)

since B = PcB0.
By the lemma (b) above, we have the above equation equal to

(l + 1)λn,m

l−1∑
j=0

(−1)(j−1)(l−j)(d2γ)∼(dxj · · · (dxl−1)x0dx1 · · · dxj−1).

Therefore, BΦ(γ) = Φ(d2γ) is obtained.
� Note that it is shown above that the following diagram commutes:

Cn,m Φ−−−−→ Cl=n−m+1

d2

⏐⏐/ ⏐⏐/B

Cn,m+1 Φ−−−−→ Cl−1=n−(m+1)+1

(b) A natural retraction λ : H∗(A) → H∗
τ (VΓ,C) using localization may be

described in the context of foliations.
The conclusion then follows from the equality λ ◦ Φ∗ = id.
� Note that the following is commutative:

H∗
τ (VΓ,C) Φ∗−−−−→ H∗(A)

id

⏐⏐/ ∥∥∥
H∗

τ (VΓ,C) λ←−−−− H∗(A)
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Remark 3.14. (a) In the case of V as a point, the above construction gives
a cycle ((∧∗CΓ′) � Γ, d, γ∼) on the algebra A = CΓ, for any group cocycle
γ ∈ Zn(Γ,C) represented by a totally anti-symmetric right invariant cochain
γ : Γn+1 → C with d1γ = 0. The algebra (∧∗CΓ′) � Γ is a non-trivial quotient
of the universal differential algebra ΩCΓ.

(b) There is the analogue of the above construction to be explained below,
in the general case of smooth groupoids G such that r and s are étale maps.

The bicomplex (C∗, d1, d2) is now the bicomplex of twisted differential forms
on the simplicial manifold Mr(G) which is the nerve of the small category G.

� The nerve Mr(C) of a small category C is a simplicial set, elements of
which are the composable n-tuples of morphisms belonging to C, where the
faces di and the degeneracies sj are obtained by using composition of adjacent
morphisms and the identity morphism. Namely,

d0(f1, · · · , fn) = (f2, · · · , fn), dn(f1, · · · , fn) = (f1, · · · , fn−1),
di(f1, · · · , fn) = (f1, · · · , fifi+1, · · · , fn), (1 ≤ i ≤ n − 1), and
si(f1, · · · , fn) = (f1, · · · , fi, 1, fi+1, · · · , fn).

The classifying space BC of a small category C is defined to be the geometric
realization of the simplicial set Mr(C).

This is applied to discrete groups viewed as small categories with a single
object.

Described is the bicomplex in terms of currents, so that Cn,m is the space
of de Rham currents of dimension −m on the manifold

G(n) = {(γ1, · · · , γn) ∈ Gn | s(γi) = r(γi+1), 1 ≤ i ≤ n − 1}.

The first coboundary d1 is given by the simplicial d1 = (−1)m
∑n

j=0(−1)jd∗j ,
where

d0(γ1, · · · , γn) = (γ2, · · · , γn), dn(γ1, · · · , γn) = (γ1, · · · , γn−1),
dj(γ1, · · · , γn) = (γ1, · · · , γjγj+1, · · · , γn), (1 ≤ j ≤ n − 1).

Note that in the formula above, currents are pulled back. This is possible
because of only using étale maps.

The second coboundary d2 is the de Rham dt = ◦d, transposed as in the
formula before.

We may restrict to the normalized subcomplex of currents which vanish if
any γj is a unit of G the groupoid, of if γ1 · · · γn is a unit.

There is the analogue of the bigraded differential algebra (B �α Γ, c2, c1).
As a linear space, the space Cn,m of elements of (∧∗CΓ′) � Γ of bidegree

(n,m) corresponds to the quotient space of the space of compactly supported
smooth differential forms of degree m on G(n+1) by the subspace of such forms
with support in the set

{(γ0, · · · , γn) ∈ Gn+1 | γj is a unit of G for some j �= 0}.
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The differential c1 in this case is given by the ordinary differential of forms.
The product is given by

(ω1ω2)(γ0, · · · , γn1 , · · · , γn1+n2)

=
∑

γγ′=γn1

ω1(γ0, · · · , γn1−1, γ) ∧ ω2(γ′, γn1+1, · · · , γn1+n2)

+
n1−2∑
j=0

(−1)n1−j−1
∑

γγ′=γj

ω1(γ0, · · · , γj−1, γ, γ′, · · · , γn1−1) ∧ ω2(γn1 , · · · , γn1+n2),

where the étale maps r, s : G → G(0) are used to identify the corresponding
cotangent spaces and perform the wedge product.

The differential c2 is given by

(c2ω)(γ0, · · · , γn+1) =

{
0, unless γ0 is a unit of G groupoid,
ω(γ1, · · · , γn+1), if γ0 is a unit.

For γ a cochain of Cn,m in the bicomplex (C∗, d1, d2) as a current, associated
is the linear map γ∼ on Cn,m, obtained from the push-forward of the current
by the map

G(n) � (γ1, · · · , γn) �→ ((γ1 · · · γn)−1, γ1, · · · , γn) ∈ G(n+1).

Then the lemma above for the relation under γ∼ holds, but the part (a) only
holds for a2 ∈ C0,0 = C∞

c (G) as an important difference. This is because of the
loss of the total anti-symmetry of cochains.

The map Φ is defined as in the theorem above, and this theorem still holds
because its proof only uses the weaker form of the lemma above.

Many concrete examples of cyclic cocycles on C∞
c (G) may be constructed

by using the map Φ.
For a complete description of the cyclic H cohomology for crossed product

algebras, we may refer to [15], [26], [6], and [16].

4 Groupoids and the more somepoids

A few or some added below to remember the dream.
A groupoid is a set G with a distinguished subset G(0) as the set of units of

G, two range and source maps r, s : G → G(0), and a law of composition ◦:

◦ : G(2) = {(γ1, γ2) ∈ G × G | s(γ1) = r(γ2)} → G

such that
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(1) s(γ1 ◦ γ2) = s(γ2), r(γ1 ◦ γ2) = r(γ1), (γ1, γ2) ∈ G(2),

(2) s(x) = r(x) = x, x ∈ G(0),

(3) γ ◦ s(γ) = γ, r(γ) ◦ γ = γ, γ ∈ G,

(4) (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3),

(5) γ ◦ γ−1 = r(γ), γ−1 ◦ γ = s(γ)

where each γ ∈ G has a two-sided inverse γ−1 ∈ G.

γ = γ1 ◦ γ2 s(γ) = s(γ2)
γ2−−−−→ r(γ2) = s(γ1)

γ1−−−−→ r(γ) = r(γ1).

Let X be a set and R ⊂ X ×X an equivalence relation so that it holds that
(x, x) ∈ R for any (x, x) ∈ X2, if (x, y) ∈ R, then (y, x) ∈ R, and if (x, y), (y, z) ∈
R, then (x, z) ∈ R. A groupoid by an equivalence relation is obtained by letting
G = R, G(0) the diagonal of X ×X contained in R, r(x, y) = x (identified with
(x, x)), s(x, y) = y for any γ = (x, y) ∈ R ⊂ X2, and

(x, y) ◦ (y, z) = (x, z), (x, y)−1 = (y, x).

� Check that

(1) s((x, y) ◦ (y, z)) = z = s(y, z), r((x, y) ◦ (y, z)) = x = r(x, y),
(2) s(x, x) = x = r(x, x) = (x, x),
(3) (x, y) ◦ y = (x, y) ◦ (y, y) = (x, y), x ◦ (x, y) = (x, y),
(4) ((x, y) ◦ (y, z)) ◦ (z, w) = (x,w) = (x, y) ◦ ((y, z) ◦ (z, w)),
(5) (x, y) ◦ (y, x) = (x, x) = r(x, y), (y, x) ◦ (x, y) = (y, y) = s(x, y).

A groupoid by a group Γ is defined by taking G = Γ, G(0) = {e} the unit of
Γ, and the law of composition by the group law.

� Check that for g, g1, g2, g3 ∈ Γ,
(1) s(g1g2) = e = s(g2), r(g1g2) = e = r(g1), (2) s(e) = r(e) = e, (3)

ge = g = eg, (4) (g1g2)g3 = g1(g2g3), (5) gg−1 = e = g−1g.
Suppose now that a group Γ acts on a set X by an action α such that

α : X × Γ → X, α(x, g) = xg, and (xg1)g1 = x(g1g2) for x ∈ X, g, g1, g2 ∈ Γ.
A groupoid by a group action on a space is defined by taking G = X × Γ,

G(0) = X × {e}, and r(x, g) = x, s(x, g) = xg for (x, g) ∈ X × Γ, and

(x, g1)(xg1, g2) = (x, g1g2), and (x, g)−1 = (xg, g−1).

This groupoid is said to be the semi-direct product of X by Γ, and is denoted
by X � Γ.
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� Check that

(1) s((x, g1)(xg1, g2)) = s(x, g1g2) = xg1g2 = s(xg1, x2),
r((x, g1)(xg1, g2)) = r(x, g1g2) = x = r(x, g1),

(2) s(x, e) = x = r(x, e),
(3) (x, g)xg = (x, g)(xg, e) = (x, g),

x(x, g) = (x, e)(x, g) = (x, g),
(4) ((x, g1)(xg1, g2))(xg1g2, g3) = (x, g1g2)(xg1g2, g3) = (x, (g1g2)g3),

(x, g1)((xg1, g2))(xg1g2, g3)) = (x, g1)(xg1, g2g3) = (x, g1g2g3),

(5) (x, g)(x, g)−1 = (x, g)(xg, g−1) = (x, e) = x = r(x, g),

(x, g)−1(x, g) = (xg, g−1)(x, g) = (xg, e) = xg = s(x, g).

There is a natural locally compact topology for all such groupoids G given
above such that the fibers Gx = r−1(x) for x ∈ G(0) as the inverse images by
the map r are discrete.

This what allows us to define the convolution algebra of certain functions
f, h on G with convolution defined as

(f ∗ h)(γ) =
∑

γ1◦γ2=γ

f(γ1)h(γ2).

We may refer to [27], [3], [4] for the general case of locally compact groupoids.
A smooth groupoid is defined to be a groupoid G with a differential structure

on G and G(0) such that the maps r, s : G → G(0) are submersions, and the
inclusion map G(0) → G is smooth, as is the composition map G(2) → G.

The general notion is due to C. Ehresmann.
The specific definition is due to J. Prodines. It is proved that in a smooth

groupoid G, all the maps

s : Gx = {γ ∈ G | r(γ) = x} → G(0)

are subimmersions.
� Recall from [25] some basic for manifolds in the following.
A Cr-class (Kyu) map f : M → N of manifolds is said to be immersion if for

any p ∈ M , the differential linear map (df)p : Tp(M) → Tf(p)(N) is one-to-one
(or injective).

Let f : R → R2 be defined by f(θ) = (cos θ, sin θ). Then the Jacobi matrix
for f is

Jf =
(− sin θ

cos θ

)
, dfθ(v

d

dx
) = −v sin θ

∂

∂x
+ v cos θ

∂

∂y
.

Since sin2 θ + cos2 θ = 1, then Jf �= (0, 0)t. Thus, dfθ is one-to-one and onto.
A Cr-class map f : M → N of manifolds is said to be submersion if for

any p ∈ M , the differential linear map (df)p : Tp(M) → Tf(p)(N) is onto (or
surjective). In other words, by definition, any point of M is regular, so that
there are no critical points of M .
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Let f : R2 → R be defined by f(p) = f(x, y) = x2 + y2. Then the Jacobi
matrix for f is Jf = (fx, fy) = (2x, 2y), and the differential df is given by

Tp(R2) � v1
∂
∂x + v2

∂
∂y

dfp−−−−→
Jf

Jf

(
v1

v2

)
d
dx = 2(xv1 + yv2) d

dx ∈ Tf(p)(R).

It then follows that any nonzero point (x, y) �= (0, 0) of R2 is regular, but the
origin (0, 0) only is a critical point.

A subimmersion may be defined to be a map which is immersion and sub-
mersion.

A continuous map f : M → N of manifolds is said to be proper if compact
is the inverse image f−1(K) for any compact subset K of N .

The convolution algebra of a smooth groupoid G is defined by the notion of
a 1

2 -density on a smooth manifold.

Let Ω
1
2 be the line bundle over G, with the fiber Ω

1
2
γ at γ ∈ G with r(γ) = x

and s(γ) = y, given by the linear space of maps

ρ : (∧kTγ(Gx)) ⊗ (∧kTγ(Gy)) → C

such that ρ(λv) = |λ| 12 ρ(v) for λ ∈ R, where

Gy = {γ ∈ G | s(γ) = y},

and k = dimTγ(Gx) = dimTγ(Gy) is the dimension of the fibers of the submer-
sions r : G → G(0) and s : G → G(0).

The linear space C∞
c (G, Ω

1
2 ) of compactly supported smooth sections of Ω

1
2

over G is then endowed with the convolution product

(a ∗ b)(γ) =
∫

γ1◦γ2=γ

a(γ1)b(γ2), a, b ∈ C∞
c (G, Ω

1
2 ),

where the integral makes sense since it is the integral of a 1-density, for a(γ1)b(γ−1
1 γ)

on the manifold Gx with x = r(γ) = r(γ1 ◦ γ2) = r(γ1).
Example (α). Let M be a compact manifold and G = M ×M the groupoid

where r and s are the two coordinate projections

G → M = G(0) = {(x, x) ∈ G |x ∈ M},

and the composition is given by (x, y) ◦ (y, z) = (x, z) for x, y, z ∈ M . The
convolution algebra is then the algebra of smoothing kernels on the manifold
M .

Example (β). Let G be a Lie group, as a groupoid with G(0) trivial, in a
trivial way. Then the convolution algebra C∞

c (G, Ω
1
2 ) is of smooth 1-densities

on G.
� In this case, Gx = Ge = Gy = Ge = G since r, s : G → G(0) = {e}.
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Proposition 4.1. Let G be a smooth groupoid and let A = C∞
c (G, Ω

1
2 ) be the

convolution algebra of compactly supported smooth 1
2 -densities, with involution

defined by f∗(γ) = f(γ−1) for f ∈ A.
Then for each x ∈ G(0), an involutive representation πx of A in the Hilbert

space L2(Gx) is defined by

(πx(f)ξ)(γ) =
∫

f(γ1)ξ(γ−1
1 γ), γ ∈ Gx, ξ ∈ L2(Gx).

The completion of A by the supreme operator norm ‖f‖ = supx∈G(0) ‖πx(f)‖
over G(0) defines a C∗-algebra, denoted by C∗

r (G), named as the reduced groupoid
C∗-algebra of G.

We may refer to [9], [27] for the proof.
As well, as in the case of discrete groups, the full groupoid C∗-algebra C∗(G)

of a smooth groupoid G is defined to be the completion of the involutive algebra
C∞

c (G, Ω
1
2 ) by the maximal norm

‖f‖max = sup
π

‖π(f)‖, π : C∞
c (G, Ω

1
2 ) → Hπ

involutive representations on Hilbert spaces Hπ.
There is the canonical surjective homomorphism from C∗(G) to C∗

r (G).
The coincidence between the full and reduced groupoid C∗-algebras is related

to the notion of amenability for G. We may refer to [27] on this topic.
The tangent groupoid G of a manifold M is defined as follows.
Let G = (M ×M × (0, 1])∪TM , where TM is the total space of the tangent

bundle over M .
Let G(0) = M × [0, 1] with inclusion of G defined by

M × (0, 1] � (x, ε) �→ (x, x, ε) ∈ M × M × (0, 1],
M × {0} � (x, 0) �→ x ∈ M ⊂ TM

where the last inclusion is given as the zero section (x, 0) on M . The range and
source maps are given by respectively

r(x, y, ε) = (x, ε), r(x,Xx) = (x, 0), Xx ∈ Tx(M),
s(x, y, ε) = (y, ε), s(x, Xx) = (x, 0).

The composition is defined by

(x, y, ε) ◦ (y, z, ε) = (x, z, ε),
(x, Xx) ◦ (x, Yx) = (x,Xx + Yx), Xx, Yx ∈ Tx(M).

The groupoid G is the union

G1 ∪ G2 = (M × M × (0, 1])) ∪ TM
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as a union groupoid of groupoids, with G1 the product of the groupoid M ×M
of Example (α) by the set (0, 1] as a set groupoid such as H = H(0) and with
G2 = TM = ∪x∈MTxM the groupoid as a union groupoid of the tangent spaces
Tx(M) as groups.

The decomposition G = G1 ∪G2 is a disjoint union as true set theoretically,
but not at the manifold level.

Let G be endowed with the manifold structure by its identification with
the space obtained by blowing up the diagonal Δ = M in the cartesian square
M × M .

The topology of G is defines as that G1 is an open subset of G and a sequence
(xn, yn, εn) of elements of G1 = M × M × (0, 1] with ε → 0 + 0 as n → ∞
converges to a tangent vector (x,Xx), Xx ∈ Tx(M) if and only if both xn and
yn converge to x, and xn−xn

εn
→ Xx.

The last limit makes sense in any local chart around x independently of any
choice. In this way, a manifold with boundary is obtained, and a local chart
around a boundary point (x,Xx) ∈ TM is provided by a choice of Rieman
metric on M and the following map of an open subset of TM × [0, 1] to G,
defined as

ψ(x,Xx, ε) = (x, exp(−εX), ε) ∈ M × M × (0, 1], ε > 0,

ψ(x,X, 0) = (x,Xx) ∈ TM.

Proposition 4.2. The groupoid G with the the above manifold structure is a
smooth one on.

� Note that

Jr(x, y, ε) =
(

1 0 0
0 0 1

)
, Js(x, y, ε) =

(
0 1 0
0 0 1

)
and

Jr(x, y, ε)

⎛
⎝v1

v2

v3

⎞
⎠ =

(
v1

v3

)
, Js(x, y, ε)

⎛
⎝v1

v2

v3

⎞
⎠ =

(
v2

v3

)
,

which implies that r, s : G → G(0) are submersions (locally).
The tangent groupoid of the manifold M is denoted by GM,TM .
The algebraic structure of the C∗-algebra of this groupoid GM,TM is ob-

tained from the inclusion of G2 = TM as a closed subgroupoid of GM,TM with
complement G1 = M × M × (0, 1].

Proposition 4.3. (1) To the decomposition GM,TM = G1∪G2 as a union of an
open subgroupoid and a closed subgroupoid corresponds the short exact sequence
of C∗-algebras

0 → C∗(G1) → C∗(GM,TM ) σ−−−−→ C∗(G2) → 0.

(2) The groupoid C∗-algebra C∗(G1) is isomorphic to C0((0, 1]) ⊗K, where
K is the elementary C∗-algebra of all compact operators on a Hilbert space.
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(3) The groupoid C∗-algebra C∗(G2) is isomorphic to C0(T ∗M) on the dual
tangent bundle T ∗M over M , by the group Fourier transform from C∗(TxM)
to C0(T ∗

x M) for each x ∈ M by the duality.

Corollary 4.4. The grouppoid C∗-algebra C∗(G1) is contractible to zero.

Proof. The C∗-algebra C0((0, 1]) is contractible in the sense that there is a
pointwise norm continuous family θλ of endomorphisms for λ ∈ [0, 1] such that
θ0 is the identity map and θ1 is the zero map. It then follows that the tensor
product of C0((0, 1]) with any C∗-algebra is also contractible.

Corollary 4.5. There are the K-theory isomorphisms

Kj(C∗(GM,TM )) ∼= Kj(C∗(G2)) ∼= Kj(T ∗M), j = 0, 1.

Proof. There is the six-term exact sequence of K-theory groups as in the follow-
ing:

K0(C∗(G1)) −−−−→ K0(C∗(GM,TM )) σ∗−−−−→ K0(C∗(G2))0⏐⏐ ⏐⏐/
K1(C∗(G2))

σ∗←−−−− K1(C∗(GM,TM )) ←−−−− K1(C∗(G1))

with Kj(C∗(G2)) ∼= 0.
As well, the K-theory Kj (of stable equivalent classes of projections and

unitaries of matrix algebras) of the C∗-algebra C0(T ∗M) of continuous complex-
valued functions on T ∗M vanishing at infinity is identified with the topological
K-theory Kj (of stable isomorphism classes of complex vector bundles) of the
dual tangent (or cotangent) space T ∗M .

Let C∗(GM,TM ) → K ∼= C∗(M × M) be the transpose of the inclusion map
from M×M to GM,TM defined by sending (x, y) ∈ M2 to (x, y, 1) ∈ M2×(0, 1].

Lemma 4.6. The Atiyah-Singer analytic index map is given by

indexa = ρ∗ ◦ (σ∗)−1 : K0(T ∗M)
σ−1
∗−−−−→ K0(C∗(GM,TM ))

ρ∗−−−−→ K0(K) = Z.

The quotient map σ : C∗(GM,TM ) → C∗(G2) ∼= C0(T ∗M) is the same as the
symbol map of the pseudodifferential calculus for asymptotic pseudodifferential
operators (cf. [17]).
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théorie algébrique, Current trends in algebraic topology, Part I, pp. 19-27,
CMS Conf. Proc. 2, AMS, (1982).

[23] M. Karoubi, Homologie cyclique et K-théorie, Astérisque No. 149 (1987).
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