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Abstract

In the article, we give several formulas for a certain zonal spherical function
on the symmetric group in terms of polynomial functions on matrices called
the alpha-determinant and wreath determinant. We also explain the relation
between these objects and the Alon-Tarsi conjecture on the enumeration of
Latin squares. In particular, we give an alternative proofs of (i) Glynn’s result
on a special case of the Alon-Tarsi conjecture, and (ii) the result due to Kumar
and Landsberg on the equivalence between a special case of Kumar’s conjecture
on plethysms and the Alon-Tarsi conjecture. Most of the results given here are
already announced in the articles [8, 9].
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1 Introduction

For a given pair of positive integers n and k, let ωn,k be the function on the symmetric
group Skn of degree kn defined by

ωn,k(g) =
1

|K|
∑

y∈K
χ(kn)(gy), g ∈ Skn,

where K = S(kn) is a Young subgroup of Skn corresponding to the partition (kn) =

(k, . . . , k) ! kn, and χ(kn) is the irreducible character of Skn corresponding to the
same partition (kn). This function is biinvariant with respect to K, that is,

ωn,k(ygy
′) = ωn,k(g), ∀g ∈ Skn, ∀y, y′ ∈ K.

We refer to the function ωn,k as a zonal spherical on Skn with respect to K. Note
that in the case where n = 2, ω2,k is indeed a zonal spherical function associated
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to the Gelfand pair (S2k,Sk × Sk) in the ordinary sense (see, e.g. Macdonald [12,
Chapter VII]).

The purpose of the article is to give several formulas for ωn,k in terms of polynomial
functions on matrices called the alpha-determinant [13, 14] (Theorem 4.1) and wreath
determinant [10] (Theorem 4.6). The alpha-determinant is a parametric deformation
of the ordinary determinant, which interpolates the determinant and permanent. The
wreath-determinant wrdetk is a polynomial function on the space Matn,kn consisting
of n by kn matrices, which is defined via the alpha-determinant (see (3.1)), and it has
a nice characterization in terms of a suitable GLkn ×K-action (see (W1)–(W3) in §3).
When k = 1, the 1-wreath determinant wrdet1 on Matn = Matn,n agrees with the
usual determinant. In this sense, our result provides a ‘quasi-determinantal’ formula
for the zonal spherical function ωn,k.

As an application of our formulas, we show that the values of ωn,k do not vanish
when k is equal to p− 1 for a certain odd prime number p. In particular, we observe
that the Alon-Tarsi conjecture on the Latin squares is true when the size of squares is
p−1 for an odd prime p. This gives an alternative proof of Glynn’s result [5]. We also
look at a conjecture on certain plethysms due to Kumar and see that the conjecture in
a special case is equivalent to the Alon-Tarsi conjecture, which is originally obtained
in [11].

Most of the results given here are already announced in the articles [8, 9].

2 Preliminaries

2.1 General conventions

The symmetric group of degree n is denoted by Sn. For σ ∈ Sn, P (σ) = (δiσ(j))
is the permutation matrix of σ. The set of m by n complex matrices is denoted by
Matm,n, and we write Matn = Matn,n for short. The identity matrix of size n is In,
and 1m,n is the m by n matrix all of whose entries are one. We write 1n to indicate
1n,n. We denote by A⊗B the Kronecker product of matrices defined by

A⊗B =




a11B . . . a1nB
...

. . .
...

am1B . . . amnB



 ∈ Matmp,nq

for A = (aij) ∈ Matm,n and B ∈ Matp,q. The general linear group of degree n is GLn.
We always work on the vector spaces and/or algebras over the complex number field
C. The cardinality of a set S is denoted by |S|.

Let xij (1 ≤ i, j ≤ n) be independent commuting variables, and put X =
(xij)1≤i,j≤n. For M = (mij) ∈ Matn such that mij ∈ Z≥0, define

xM :=
∏

i,j

x
mij

ij .

By this notation, we have

detX =
∑

σ∈Sn

sgn(σ)xP (σ)
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for instance. When p = p(x11, . . . , xnn) is a polynomial in xij ’s, we denote by [p]M
the coefficient of the monomial xM in p.

2.2 Double cosets

We fix a pair of positive integers n and k in what follows. Let Ω = (Ω1, . . . ,Ωn) be a
set partition of {1, 2, . . . , kn} given by

Ωi :=
{
m ∈ Z

∣∣∣
⌈m
k

⌉
= i

}

= {(i− 1)k + r | r = 1, 2, . . . , k} (i = 1, . . . , n)

and define
K := {g ∈ Skn | gΩi = Ωi (i = 1, . . . , n)} .

Notice that K is isomorphic to the direct product Sn
k =

n︷ ︸︸ ︷
Sk × · · ·×Sk of the n copies

of Sk. Put

mij(g) := |gΩi ∩ Ωj | (1 ≤ i, j ≤ n), M(g) := (mij(g))1≤i,j≤n

for g ∈ Skn, that is, mij(g) counts the number of elements in Ωi which are sent into
Ωj by g. For g, g′ ∈ Skn, we see that

KgK = Kg′K ⇐⇒ M(g) = M(g′)

and

|KgK| = |K|2

M(g)!
,

where M(g)! =
∏n

i,j=1 mij(g)!. Put

Mn,k :=

{
M = (mij) ∈ Matn(Z≥0)

∣∣∣∣∣

n∑

r=1

mir =
n∑

s=1

msj = k (1 ≤ i, j ≤ n)

}
.

The map
K\Skn/K * KgK +→ M(g) ∈ Mn,k

is bijective. Thus Mn,k gives a ‘coordinate system’ for the set K\Skn/K of double
cosets.

2.3 Immanants and zonal spherical functions

For each λ ! kn, define

ωλ
K(g) :=

1

|K|
∑

y∈K
χλ(gy) (g ∈ Skn), (2.1)

where χλ is the irreducible character of Skn corresponding to λ. These are K-
biinvariant functions on Skn, and hence we refer to these as zonal spherical functions.

Ƚ!8!Ƚ



Since χλ are Z-valued, the functions ωλ
K are Q-valued. Observe that ωn,k = ω(kn)

K .
The function ωλ

K is identically zero unless λ ≥ (kn) with respect to the dominance
ordering

λ ≥ µ ⇐⇒ λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, ∀i ≥ 1

on partitions of the same size.
The immanant of a matrix A = (aij) ∈ MatN associated to λ ! N ∈ Z>0 is

Immλ A =
∑

σ∈SN

χλ(σ)
N∏

i=1

aiσ(i). (2.2)

Notice that Imm(1N ) A = detA and Imm(N) A = perA, where perA is the permanent
of A. For later use, we give an expression of the value of ωλ

K in terms of immanants.

Lemma 2.1. For any A = (aij) ∈ Matn,kn, we have

Immλ(A⊗ 1k,1) =
∑

τ∈Skn

ωλ
K(τ)

kn∏

j=1

a′jτ(j), (2.3)

where a′ij = a%i/k&,j is the (i, j)-entry of A⊗ 1k,1.

Proof. Since a′y(i)j = a′ij for any y ∈ K, it follows that

Immλ(A⊗ 1k,1) =
∑

σ∈Skn

χλ(σ)
kn∏

i=1

a′iσ(i) =
1

|K|
∑

y∈K

∑

σ∈Skn

χλ(σ)
kn∏

i=1

a′y(i)σ(i)

=
1

|K|
∑

y∈K

∑

τ∈Skn

χλ(τy)
kn∏

j=1

a′jτ(j) =
∑

τ∈Skn

ωλ
K(τ)

kn∏

j=1

a′jτ(j)

as desired.

Lemma 2.2. Let λ ! kn.

(i) For g ∈ Skn,

ωλ
K(g) =

1

|K| Immλ((In ⊗ 1k)P (g)).

(ii) It holds that

Immλ(X ⊗ 1k) =
∑

τ∈Skn

ωλ
K(τ)xM(τ).

In particular,

ωλ
K(g) =

M(g)!

|K|2
[
Immλ(X ⊗ 1k)

]

M(g)

for g ∈ Skn.
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Proof. We get (i) if we set A = (In ⊗ 11,k)P (g) with g ∈ Skn in (2.3). If we set
A = X ⊗ 11,k in (2.3), then we have (ii) since a′iτ(i) = xpq when i ∈ Ωp and τ(i) ∈ Ωq

and

∑

τ∈Skn

ωλ
K(τ)xM(τ) =

∑

M∈Mn,k

∑

τ∈Skn
M(τ)=M

ωλ
K(τ)xM =

∑

M∈Mn,k

|K|2

M !
ωλ
K(gM )xM ,

where gM is an arbitrarily chosen element in Skn such that M(gM ) = M .

3 The alpha-determinant and wreath determinant

We recall the definitions and basic facts on the alpha-determinant and wreath deter-
minant. The alpha-determinant is first introduce by Vere-Jones [14] as α-permanent,
whose definition is slightly different from ours; here we follow the convention in [13].
For the wreath determinant, see [10] for the detailed information.

First we define a class function ν(·) on SN by

ν(σ) := N −
∑

i≥1

mi(σ) =
∑

i≥2

(i− 1)mi(σ)

for σ ∈ SN when the cycle type of σ is 1m1(σ)2m2(σ) . . . NmN (σ). Notice that ν(στ) =
ν(σ) + ν(τ) if σ and τ are disjoint.

Remark 3.1. For each σ ∈ SN , ν(σ) is equal to the distance between the identity e
and σ on the Cayley graph of SN whose generating set consists of all transpositions.

Remark 3.2. The value of ν(σ) for σ ∈ SN is invariant under the standard embedding
SN ↪→ SN ′ (N ′ > N) which regards σ as an element in SN ′ leaving N ′ −N letters
N +1, . . . , N ′ fixed. Namely, it would be natural to regard the function ν(·) as a class
function on the infinite symmetric group S∞ =

⋃
N≥1 SN .

The alpha-determinant of an N by N matrix A = (aij) ∈ MatN is

detα A :=
∑

σ∈SN

αν(σ)
N∏

i=1

aiσ(i).

Note that det−1 A = detA and det1 A = perA. The alpha-determinant is multilinear
in rows and columns, is invariant under the transposition, and has Laplace expansion
formula. We see that

detα(AP (σ)) = detα(P (σ)A)

for any A ∈ MatN and σ ∈ SN because ν(·) is a class function on SN , but the
equation detα(AB) = detα(BA) does not hold in general. We also note that we have

detα

(
A B
O C

)
= detα A detα C

if A and C are square matrices.
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Example 3.3. We have

detα 1N =
∑

σ∈SN

αν(σ) =
N−1∏

j=1

(1 + jα).

For an n by kn matrix A = (aij) ∈ Matn,kn, the k-wreath determinant of A is
defined by

wrdetk A := det−1/k(A⊗ 1k,1). (3.1)

Note that the 1-wreath determinant wrdet1 is the ordinary determinant. The wreath-
determinant wrdetk is characterized as a polynomial function on the space Matn,kn
by the following three conditions up to a scalar multiple (see [10] for the proof):

(W1) wrdetk is multilinear in columns.

(W2) wrdetk(QA) = (detQ)k wrdetk(A) for Q ∈ Matn and A ∈ Matn,kn.

(W3) wrdetk(AP (σ)) = wrdetk(A) for σ ∈ K and A ∈ Matn,kn. In other words, if
Ai ∈ Matn,k (i = 1, 2, . . . , n), then

wrdetk(A1P (σ1) A2P (σ2) . . . AnP (σn)) = wrdetk(A1 A2 . . . An)

for any σ1, . . . ,σn ∈ Sk.

In fact, instead of (W3), the k-wreath determinant satisfies a slightly stronger relative
invariance

(W3′) wrdetk(AP (g)) = χn,k(g) wrdetk(A) for g ∈ K ! Sn = Sn . Sk < Skn and
A ∈ Matn,kn, where χn,k is defined by

χn,k(g) = (sgn τ)k, g = (σ, τ) ∈ K!Sk. (3.2)

(W3′) means that if Ai ∈ Matn,k (i = 1, 2, . . . , n), then

wrdetk(Aτ(1) Aτ(2) . . . Aτ(n)) = (sgn τ)k wrdetk(A1 A2 . . . An)

for any τ ∈ Sn. This readily follows from (W2) by taking Q = Ik ⊗ P (τ). Here we
regard the wreath product Sn .Sk as a subgroup of Skn so that we have

P (g) = P (σ) · (Ik ⊗ P (τ)), g = (σ, τ) ∈ Sk .Sn.

Remark 3.4. The definition of the wreath determinant is a bit different from the origi-
nal one in [10], where the k-wreath determinant is defined for the kn by n rectangular
matrices.

Example 3.5. We have

wrdetk(In ⊗ 11,k) = det−1/k(In ⊗ 1k) = det−1/k





1k

1k

. . .
1k





= (det−1/k 1k)
n =

( k!

kk

)n
. (3.3)
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More generally, for A ∈ Matn, we have

wrdetk(A⊗ 11,k) = wrdetk(A · (In ⊗ 11,k)) =
( k!

kk

)n
(detA)k.

4 Formulas for zonal spherical functions

The alpha-determinant is written as a linear combination of immanants as

detα A =
1

N !

∑

λ)N
fλfλ(α) Immλ A, (4.1)

where fλ = χλ(e), e being the identity permutation, and

fλ(α) =

l(λ)∏

i=1

λi∏

j=1

(1 + (j − i)α)

is the modified content polynomial for λ. This is immediate from the well-known
expansion formula

αν(·) =
1

N !

∑

λ)N
fλfλ(α)χ

λ. (4.2)

Theorem 4.1. For g ∈ Skn, we have

ωn,k(g) =
kkn

|K| det−1/k((In ⊗ 1k)P (g))

=
(kk

k!

)n ∑

y∈K

(
−1

k

)ν(gy)
.

Proof. By (4.1) and Lemma 2.2 (i), we have

det−1/k((In ⊗ 1k)P (g)) =
|K|
(kn)!

∑

λ)kn
fλfλ(−1/k)ωλ

K(g).

Since fλ(−1/k) = 0 if λ1 > k and Immλ(A ⊗ 1k,1) = 0 unless λ ≥ (kn), only the
term for λ = (kn) survives in the righthand side of the equation above. By the hook
formula for fλ and the definition of fλ(α), we readily obtain

f (kn)f(kn)(−1/k) =
(kn)!

kkn
.

This completes the proof of the first equality. The second equality is immediate by
the definition of the alpha-determinant.

Using Theorem 4.1, we obtain the stability of ωn,k with respect to n as well as the
non-vanishingness of ωn,k when k + 1 is prime as follows.

Corollary 4.2. If m > n, then ωm,k(g) = ωn,k(g) for any g ∈ Skn, where we regard
g ∈ Skn as an element in Skm by the standard embedding.
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Proof. We regard Sm
k as a direct product Sn

k × Sm−n
k . If g ∈ Skn and (y1, y2) ∈

Sn
k × Sm−n

k , then gy1 and y2 are disjoint permutations, and hence it follows that
ν(gy1y2) = ν(gy1) + ν(y2). Thus we have

ωm,k(g) =
(kk

k!

)m ∑

(y1,y2)∈Sn
k×Sm−n

k

(
−1

k

)ν(gy1y2)

=
(kk

k!

)m ∑

y1∈Sn
k

(
−1

k

)ν(gy1) ∑

y2∈Sm−n
k

(
−1

k

)ν(y2)

=
(kk

k!

)n ∑

y1∈Sn
k

(
−1

k

)ν(gy1)

= ωn,k(g)

as desired.

Theorem 4.3. Let p be an odd prime. The function ωn,k does not vanish on Skn if
k = p− 1.

Proof. By Theorem 4.1, we have

ωn,k(g) =
( (p− 1)p−1

(p− 1)!

)n ∑

y∈K

(
− 1

p− 1

)ν(gy)
≡ 1

|K|
∑

y∈K
1 ≡ 1 (mod p)

for any g ∈ Skn, which implies the desired nonvanishingness.

Remark 4.4. In [7], the inverse of Theorem 4.3 is proved. In fact, the authors show that
if n ≥ 3 and k+1 is composite, then one can find M ∈ Mn,k such that

[
(detX)k

]
M

=
0.

We give a formula for the function ωn,k in terms of the wreath determinant.

Lemma 4.5. For A ∈ Matn,kn, we have

wrdetk A =
1

kkn
Imm(kn)(A⊗ 1k,1).

Proof. By the definition of the wreath determinant and the formula (4.1), we have

wrdetk A = det−1/k(A⊗ 1k,1)

=
1

(kn)!

∑

λ)kn
fλfλ(−1/k) Immλ(A⊗ 1k,1).

The conclusion follows from a similar discussion as in the proof of Theorem 4.1.

Theorem 4.6. For g ∈ Skn, we have

ωn,k(g) =
M(g)!

|K|
[
(detX)k

]
M(g)

=
wrdetk((In ⊗ 11,k)P (g))

wrdetk(In ⊗ 11,k)
.
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Proof. By Lemma 4.5, we see that

wrdetk(X ⊗ 11,k) =
1

kkn
Imm(kn)(X ⊗ 1k).

On the other hand, by (W2) and (3.3), we have

wrdetk(X ⊗ 11,k) = (detX)k wrdetk(In ⊗ 11,k) =
( k!

kk

)n
(detX)k.

Thus it follows that

(detX)k =
1

|K| Imm(kn)(X ⊗ 1k).

Hence, by Lemma 2.2 (ii), we have the first equality. The second equality is obtained
by Theorem 4.1 and the equation

det−1/k((In ⊗ 1k)P (g)) = wrdetk((In ⊗ 11,k)P (g)),

which follows from the definition of the wreath determinant.

As a corollary, we see that the relative invariance of the function ωn,k with respect
to the wreath product Sk .Sn.

Corollary 4.7. For any g ∈ Skn and h, h′ ∈ Sk .Sn, we have

ωn,k(hgh
′) = χn,k(hh

′)ωn,k(g).

Here χn,k is the character of Sk .Sn defined by (3.2). In particular, ωn,k is Sk .Sn-
biinvariant if k is even.

Proof. Let h = (σ, τ), h′ = (σ′, τ ′) ∈ K!Sn = Sk .Sn. Since

(In ⊗ 11,k)P (h) = (In ⊗ 11,k)P (σ)(Ik ⊗ P (τ)) = P (τ)(In ⊗ 11,k),

we have

ωn,k(hgh
′) =

wrdetk((In ⊗ 11,k)P (hgh′))

wrdetk(In ⊗ 11,k)

=
wrdetk(P (τ)(In ⊗ 11,k)P (g)P (h′))

wrdetk(In ⊗ 11,k)

= detP (τ)kχn,k(h
′)
wrdetk((In ⊗ 11,k)P (g))

wrdetk(In ⊗ 11,k)

= χn,k(hh
′)ωn,k(g)

as desired.
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5 Applications

5.1 The Alon-Tarsi conjecture on Latin squares

A Latin square of degree n is an n by n matrix whose rows and columns are permu-
tations of 1, 2, . . . , n. The set of all Latin squares of degree n is denoted by LS(n).

Example 5.1. There are twelve Latin squares of degree 3:

LS(3) =









1 2 3
2 3 1
3 1 2



 ,




1 2 3
3 1 2
2 3 1



 ,




2 3 1
1 2 3
3 1 2



 ,




2 3 1
3 1 2
1 2 3



 ,




3 1 2
1 2 3
2 3 1



 ,




3 1 2
2 3 1
1 2 3



 ,




1 3 2
2 1 3
3 2 1



 ,




1 3 2
3 2 1
2 1 3



 ,




2 1 3
1 3 2
3 2 1



 ,




2 1 3
3 2 1
1 3 2



 ,




3 2 1
1 3 2
2 1 3



 ,




3 2 1
2 1 3
1 3 2








 .

For L ∈ LS(n), we associate 2n permutations r1, . . . , rn, c1, . . . , cn ∈ Sn to it by

L =




r1(1) . . . r1(n)
...

. . .
...

rn(1) . . . rn(n)



 =




c1(1) . . . cn(1)
...

. . .
...

c1(n) . . . cn(n)



 .

Then we define

sgnL :=
n∏

i=1

sgn ri

n∏

i=1

sgn ci,

and we call L even (resp. odd) if sgnL = +1 (resp. −1). We denote by els(n) and
ols(n) the numbers of even and odd Latin squares of degree n respectively. Since the
map LS(n) * L +→ P (σ)L ∈ LS(n) for a given σ ∈ Sn is a bijection and sgn(P (σ)L) =
(sgnσ)n sgnL for L ∈ LS(n), we have els(n) = ols(n) when n is odd. When n is even,
it is conjectured that the numbers of even and odd Latin squares are always different.

Conjecture 5.2 (Alon-Tarsi conjecture). els(n) 0= ols(n) if n is even.

This conjecture originally arose from the study of colorings of graphs. Indeed, if
the Alon-Tarsi conjecture for even n is true, then we see that the Dinitz conjecture
below for n follows [1].

Proposition 5.3 (Dinitz conjecture). The line graph of the biclique (or complete
bipartite graph) Kn,n is n-choosable.

We remark that the Dinitz conjecture itself is already settled down by Galvin [4].
There are also various statements which are equivalent to or related with the Alon-
Tarsi conjecture (see, e.g. [6, 11]). The Alon-Tarsi conjecture is proved to be true in
the case where n = p+ 1 by Drisko [2] and in the case where n = p− 1 by Glynn [5],
where p is an odd prime; We also refer to [3].
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We need another statement which is equivalent to the Alon-Tarsi conjecture. De-
fine

L(n) := {σ = (σ1, . . . ,σn) ∈ Sn
n |P (σ1) + · · ·+ P (σn) = 1n} .

For σ = (σ1, . . . ,σn) ∈ L(n), the matrix

L(σ) :=
n∑

i=1

i P (σi)

is a Latin square of degree n, and every Latin square is uniquely obtained in this way.
A Latin square L = L(σ) (σ ∈ L(n)) is called symbol even (resp. symbol odd) if

symsgnL :=
n∏

i=1

sgnσi

is +1 (resp. −1). We denote by sels(n) and sols(n) the number of symbol even and
symbol odd Latin squares of degree n respectively. It is known that

sels(n)− sols(n) = (−1)n(n−1)/2(els(n)− ols(n))

for every n (see, e.g. [5]), so Conjecture 5.2 is equivalent to the

Conjecture 5.4. sels(n) 0= sols(n) if n is even.

Since

[(detX)n]1n
=

∑

σ1,...,σn∈Sn
P (σ1)+···+P (σn)=1n

n∏

i=1

(sgnσi)

=
∑

σ∈L(n)

symsgnL(σ)

=
∑

L∈LS(n)

symsgnL = sels(n)− sols(n),

we obtain the following result by Theorem 4.6.

Theorem 5.5. When n is even, the Alon-Tarsi conjecture on LS(n) is equivalent to
the following assertions.

(1) [(detX)n]1n
0= 0.

(2) wrdetn((In ⊗ 11,n)P (gn)) = wrdetn(

n︷ ︸︸ ︷
In . . . In) 0= 0.

(3) ωn,n(gn) 0= 0.

Here the permutation gn ∈ Sn2 is given by

gn((i− 1)n+ j) = (j − 1)n+ i, 1 ≤ i, j ≤ n, (5.1)

which is a product of n(n− 1)/2 disjoint transpositions and M(gn) = 1n.

Thus, Theorem 5.5 (3) together with Theorem 4.3 gives another proof of the

Corollary 5.6 (Glynn [5]). The Alon-Tarsi conjecture for Latin squares of degree n
is true if n = p− 1 for an odd prime p.
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5.2 A remark on Kumar’s conjecture on plethysms

Let k and n be positive integers as heretofore, and V be a finite dimensional vector
space over C such that dimV ≥ n. The symmetric group Sm acts on V ⊗m from the
right by

(v1 ⊗ · · ·⊗ vm) · σ := vσ(1) ⊗ · · ·⊗ vσ(m) (σ ∈ Sm).

This action linearly extends to that of the group algebra CSm. We understand that
the symmetric tensor power Sm(V ) of V is a subspace of V ⊗m spanned by the vectors
of the form

v1 · · · vm := v1 ⊗ · · ·⊗ vm · 1

m!

∑

σ∈Sm

σ =
1

m!

∑

σ∈Sm

vσ(1) ⊗ · · ·⊗ vσ(m). (5.2)

Set
H = K!Sn = Sk .Sn, K′ = Sk

n, H′ = K′ !Sk = Sn .Sk,

and

e(G) =
1

|G|
∑

g∈G
g ∈ CSkn

for G < Skn. We have then

Sn(SkV ) = V ⊗kn · e(H), Sk(SnV ) = V ⊗kn · e(H′).

Define a linear transformation τ = τk,n on V ⊗kn by

τ : V ⊗kn *

n︷ ︸︸ ︷
v11 ⊗ · · ·⊗ v1k︸ ︷︷ ︸

k

⊗ · · ·⊗ vn1 ⊗ · · ·⊗ vnk︸ ︷︷ ︸
k

+−→

k︷ ︸︸ ︷
v11 ⊗ · · ·⊗ vn1︸ ︷︷ ︸

n

⊗ · · ·⊗ v1k ⊗ · · ·⊗ vnk︸ ︷︷ ︸
n

∈ V ⊗kn,

or equivalently,

τ(v1 ⊗ v2 ⊗ · · ·⊗ vkn) = (v1 ⊗ v2 ⊗ · · ·⊗ vkn) · gn,k,

where the permutation gn,k ∈ Skn is defined by

gn,k((i− 1)n+ j) = (j − 1)k + i, 1 ≤ i ≤ k, 1 ≤ j ≤ n. (5.3)

We notice that gn,n equals gn defined in (5.1). Using this, we define a map hn,k by

hn,k := p ◦ τ ◦ i : Sn(SkV )
i
↪→ V ⊗kn τ−→ V ⊗kn p

! Sk(SnV ),

where i is the inclusion and p is the natural projection (i.e. multiplication by e(H′)
from the right as in (5.2)). Notice that hn,k(v) = v · gn,ke(H′) for v ∈ Sn(SkV ). This
map is clearly a GL(V )-intertwiner between two left GL(V )-modules Sn(SkV ) and
Sk(SnV ).
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Example 5.7.

h2,2((v1v2)(v3v4)) = (p ◦ τ)
(
v1 ⊗ v2 + v2 ⊗ v1

2
⊗ v3 ⊗ v4 + v4 ⊗ v3

2

)

=
1

4
p

(
v1 ⊗ v3 ⊗ v2 ⊗ v4 + v2 ⊗ v3 ⊗ v1 ⊗ v4

+ v1 ⊗ v4 ⊗ v2 ⊗ v3 + v2 ⊗ v4 ⊗ v1 ⊗ v3

)

=
(v1v3)(v2v4) + (v2v3)(v1v4) + (v1v4)(v2v3) + (v2v4)(v1v3)

4

Motivated by the Hadamard-Howe conjecture on the maximality of hn,k, it is con-

jectured by Kumar that kerhn,k does not containE(kn)
V , the irreducible GL(V )-module

with highest weight (kn) = (k, . . . , k), if n ≤ k and k is even (see [11, Conjecture 1.6]).
We focus on this problem below.

By the Schur-Weyl duality

V ⊗kn =
⊕

λ)kn
Eλ

V "Mλ
kn,

where Mλ
kn is the irreducible Skn-module corresponding to λ, the multiplicity of Eλ

V

in Sn(SkV ) as a left GL(V )-module is equal to dim(Mλ
kn · e(H)), which is majorated

by dim(Mλ
kn · e(K)) = Kλ(kn), the Kostka number.

Remark 5.8. Similarly, we see that the multiplicity of Eλ
V in Sk(SnV ) is majorated by

Kλ(nk). Especially, if n > k, then Sk(SnV ) does not contain E(kn)
V sinceK(kn)(nk) = 0.

Lemma 5.9. The multiplicity of E(kn)
V in Sn(SkV ) is exactly one if k is even.

Proof. Since we know that the multiplicity dim(M(kn)
kn ·e(H)) of E(kn)

V in Sn(SkV ) is
at most one, we should show that it is at least one. Take a nonzero K-invariant vector

w ∈ M(kn)
kn · e(K), which is unique up to constant multiple since dimM(kn)

kn · e(K) =
K(kn)(kn) = 1. We see that

w · g = ωn,k(g)w + w⊥(g) (5.4)

for g ∈ Skn where w⊥(g) is a certain vector in the orthocomplement of M(kn)
kn · e(K)

in M(kn)
kn with respect to the invariant inner product on M(kn)

kn . Since k is even, we
see that ωn,k(g) = 1 for g ∈ H by Corollary 4.7. Hence it follows that

w · e(H) = w · e(H)e(K) =
1

|H|
∑

g∈H
(w · g) · e(K) = w +

1

|H|
∑

g∈H
w⊥(g) · e(K) = w.

Namely, we have M(kn)
kn · e(K) ⊂ M(kn)

kn · e(H). Thus we see that

dim(M(kn)
kn · e(H)) ≥ dim(M(kn)

kn · e(K)) = K(kn)(kn) = 1

as desired.
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Remark 5.10. If k is odd, then w · g = (sgn τ)w for w ∈ M(kn)
kn and g = (σ, τ) ∈ H.

Thus, in this case, we have M(kn)
kn · e(H) = 0, and hence Sn(SkV ) does not contain

E(kn)
V .

We restrict our attention on the special case where k = n and n is even. We
have K = K′ and H = H′ in this case. The map hn,n is then a GL(V )-intertwiner

from Sn(SnV ) onto itself. Since the multiplicity of E(nn)
V in Sn(SnV ) is one, the

restriction of hn,n on E(nn)
V must be a scalar by Schur’s lemma, and the scalar is

given by ωn,n(gn) by (5.4) since hn,n(v) = v · gne(H). Therefore we obtain the

Theorem 5.11. When n is even, we have

hn,n(v) = ωn,n(gn)v

if v ∈ Sn(SnV ) belongs to the (nn)-isotypic component. In particular, kerhn,n ⊃
E(nn)

V if and only if ωn,n(gn) = 0.

As a corollary, we obtain the

Corollary 5.12 ([11, Theorem 1.9 (b)]). The Alon-Tarsi conjecture on LS(n) is

equivalent to the assertion that kerhn,n does not contain E(nn)
V .
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minant (in Japanese). RIMS Kôkyûroku, No. 2031 (2017), 218–234.

[9] K. Kimoto, The Alon-Tarsi conjecture on Latin squares and zonal spherical func-
tions on symmetric groups (in Japanese). RIMS Kôkyûroku, No. 2039 (2017),
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