WREATH DETERMINANTS, ZONAL SPHERICAL FUNCTIONS ON SYMMETRIC GROUPS AND THE ALON-TARSI CONJECTURE*

Kazufumi Kimoto

Abstract

In the article, we give several formulas for a certain zonal spherical function on the symmetric group in terms of polynomial functions on matrices called the alpha-determinant and wreath determinant. We also explain the relation between these objects and the Alon-Tarsi conjecture on the enumeration of Latin squares. In particular, we give an alternative proofs of (i) Glynn's result on a special case of the Alon-Tarsi conjecture, and (ii) the result due to Kumar and Landsberg on the equivalence between a special case of Kumar's conjecture on plethysms and the Alon-Tarsi conjecture. Most of the results given here are already announced in the articles [8, 9].

2020 Mathematics Subject Classification. Primary 20C30, 13A50; Secondary 05B15.

Key words and phrases. Symmetric groups, zonal spherical functions, alphadeterminants, wreath determinants, Latin squares, plethysms.

1 Introduction

For a given pair of positive integers n and k, let $\omega_{n,k}$ be the function on the symmetric group \mathfrak{S}_{kn} of degree kn defined by

$$\omega_{n,k}(g) = \frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \chi^{(k^n)}(gy), \quad g \in \mathfrak{S}_{kn},$$

where $\mathcal{K} = \mathfrak{S}_{(k^n)}$ is a Young subgroup of \mathfrak{S}_{kn} corresponding to the partition $(k^n) = (k, \ldots, k) \vdash kn$, and $\chi^{(k^n)}$ is the irreducible character of \mathfrak{S}_{kn} corresponding to the same partition (k^n) . This function is biinvariant with respect to \mathcal{K} , that is,

$$\omega_{n,k}(ygy') = \omega_{n,k}(g), \qquad \forall g \in \mathfrak{S}_{kn}, \ \forall y, y' \in \mathfrak{K}.$$

We refer to the function $\omega_{n,k}$ as a zonal spherical on \mathfrak{S}_{kn} with respect to \mathcal{K} . Note that in the case where n = 2, $\omega_{2,k}$ is indeed a zonal spherical function associated

^{*}Received November 30, 2021.

to the Gelfand pair $(\mathfrak{S}_{2k}, \mathfrak{S}_k \times \mathfrak{S}_k)$ in the ordinary sense (see, e.g. Macdonald [12, Chapter VII]).

The purpose of the article is to give several formulas for $\omega_{n,k}$ in terms of polynomial functions on matrices called the *alpha-determinant* [13, 14] (Theorem 4.1) and *wreath determinant* [10] (Theorem 4.6). The alpha-determinant is a parametric deformation of the ordinary determinant, which interpolates the determinant and permanent. The wreath-determinant wrdet_k is a polynomial function on the space Mat_{n,kn} consisting of n by kn matrices, which is defined via the alpha-determinant (see (3.1)), and it has a nice characterization in terms of a suitable $GL_{kn} \times \mathcal{K}$ -action (see (W1)–(W3) in §3). When k = 1, the 1-wreath determinant wrdet₁ on Mat_n = Mat_{n,n} agrees with the usual determinant. In this sense, our result provides a 'quasi-determinantal' formula for the zonal spherical function $\omega_{n,k}$.

As an application of our formulas, we show that the values of $\omega_{n,k}$ do not vanish when k is equal to p-1 for a certain odd prime number p. In particular, we observe that the Alon-Tarsi conjecture on the Latin squares is true when the size of squares is p-1 for an odd prime p. This gives an alternative proof of Glynn's result [5]. We also look at a conjecture on certain plethysms due to Kumar and see that the conjecture in a special case is equivalent to the Alon-Tarsi conjecture, which is originally obtained in [11].

Most of the results given here are already announced in the articles [8, 9].

2 Preliminaries

2.1 General conventions

The symmetric group of degree n is denoted by \mathfrak{S}_n . For $\sigma \in \mathfrak{S}_n$, $P(\sigma) = (\delta_{i\sigma(j)})$ is the permutation matrix of σ . The set of m by n complex matrices is denoted by $\operatorname{Mat}_{m,n}$, and we write $\operatorname{Mat}_n = \operatorname{Mat}_{n,n}$ for short. The identity matrix of size n is I_n , and $\mathbf{1}_{m,n}$ is the m by n matrix all of whose entries are one. We write $\mathbf{1}_n$ to indicate $\mathbf{1}_{n,n}$. We denote by $A \otimes B$ the Kronecker product of matrices defined by

$$A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{pmatrix} \in \operatorname{Mat}_{mp,nq}$$

for $A = (a_{ij}) \in \operatorname{Mat}_{m,n}$ and $B \in \operatorname{Mat}_{p,q}$. The general linear group of degree n is GL_n . We always work on the vector spaces and/or algebras over the complex number field \mathbb{C} . The cardinality of a set S is denoted by |S|.

Let x_{ij} $(1 \leq i, j \leq n)$ be independent commuting variables, and put $X = (x_{ij})_{1 \leq i, j \leq n}$. For $M = (m_{ij}) \in \text{Mat}_n$ such that $m_{ij} \in \mathbb{Z}_{\geq 0}$, define

$$x^M := \prod_{i,j} x_{ij}^{m_{ij}}.$$

By this notation, we have

$$\det X = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) x^{P(\sigma)}$$

-6-

for instance. When $p = p(x_{11}, \ldots, x_{nn})$ is a polynomial in x_{ij} 's, we denote by $[p]_M$ the coefficient of the monomial x^M in p.

2.2 Double cosets

We fix a pair of positive integers n and k in what follows. Let $\Omega = (\Omega_1, \ldots, \Omega_n)$ be a set partition of $\{1, 2, \ldots, kn\}$ given by

$$\Omega_i := \left\{ m \in \mathbb{Z} \mid \left\lceil \frac{m}{k} \right\rceil = i \right\}$$
$$= \left\{ (i-1)k + r \mid r = 1, 2, \dots, k \right\} \quad (i = 1, \dots, n)$$

and define

$$\mathcal{K} := \{ g \in \mathfrak{S}_{kn} \, | \, g\Omega_i = \Omega_i \, (i = 1, \dots, n) \}$$

Notice that \mathcal{K} is isomorphic to the direct product $\mathfrak{S}_k^n = \overbrace{\mathfrak{S}_k \times \cdots \times \mathfrak{S}_k}^n$ of the *n* copies of \mathfrak{S}_k . Put

$$m_{ij}(g) := |g\Omega_i \cap \Omega_j| \quad (1 \le i, j \le n), \qquad \mathsf{M}(g) := (m_{ij}(g))_{1 \le i, j \le n}$$

for $g \in \mathfrak{S}_{kn}$, that is, $m_{ij}(g)$ counts the number of elements in Ω_i which are sent into Ω_j by g. For $g, g' \in \mathfrak{S}_{kn}$, we see that

$$\mathfrak{K}g\mathfrak{K} = \mathfrak{K}g'\mathfrak{K} \iff \mathsf{M}(g) = \mathsf{M}(g')$$

and

$$|\mathcal{K}g\mathcal{K}| = \frac{|\mathcal{K}|^2}{\mathsf{M}(g)!},$$

where $\mathcal{M}(g)! = \prod_{i,j=1}^{n} m_{ij}(g)!$. Put

$$\mathcal{M}_{n,k} := \left\{ M = (m_{ij}) \in \operatorname{Mat}_n(\mathbb{Z}_{\geq 0}) \, \middle| \, \sum_{r=1}^n m_{ir} = \sum_{s=1}^n m_{sj} = k \ (1 \le i, j \le n) \right\}.$$

The map

$$\mathfrak{K} \setminus \mathfrak{S}_{kn} / \mathfrak{K} \ni \mathfrak{K} g \mathfrak{K} \mapsto \mathsf{M}(g) \in \mathfrak{M}_{n,k}$$

is bijective. Thus $\mathcal{M}_{n,k}$ gives a 'coordinate system' for the set $\mathcal{K} \setminus \mathfrak{S}_{kn} / \mathcal{K}$ of double cosets.

2.3 Immanants and zonal spherical functions

For each $\lambda \vdash kn$, define

$$\omega_{\mathcal{K}}^{\lambda}(g) := \frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \chi^{\lambda}(gy) \quad (g \in \mathfrak{S}_{kn}),$$
(2.1)

where χ^{λ} is the irreducible character of \mathfrak{S}_{kn} corresponding to λ . These are \mathcal{K} biinvariant functions on \mathfrak{S}_{kn} , and hence we refer to these as zonal spherical functions.

Since χ^{λ} are \mathbb{Z} -valued, the functions $\omega_{\mathcal{K}}^{\lambda}$ are \mathbb{Q} -valued. Observe that $\omega_{n,k} = \omega_{\mathcal{K}}^{(k^n)}$. The function $\omega_{\mathcal{K}}^{\lambda}$ is identically zero unless $\lambda \geq (k^n)$ with respect to the dominance ordering

$$\lambda \ge \mu \iff \lambda_1 + \dots + \lambda_i \ge \mu_1 + \dots + \mu_i, \quad \forall i \ge 1$$

on partitions of the same size.

The *immanant* of a matrix $A = (a_{ij}) \in \operatorname{Mat}_N$ associated to $\lambda \vdash N \in \mathbb{Z}_{>0}$ is

$$\operatorname{Imm}^{\lambda} A = \sum_{\sigma \in \mathfrak{S}_{N}} \chi^{\lambda}(\sigma) \prod_{i=1}^{N} a_{i\sigma(i)}.$$
(2.2)

Notice that $\operatorname{Imm}^{(1^N)} A = \det A$ and $\operatorname{Imm}^{(N)} A = \operatorname{per} A$, where $\operatorname{per} A$ is the permanent of A. For later use, we give an expression of the value of $\omega_{\mathcal{K}}^{\lambda}$ in terms of immanants.

Lemma 2.1. For any $A = (a_{ij}) \in Mat_{n,kn}$, we have

$$\operatorname{Imm}^{\lambda}(A \otimes \mathbf{1}_{k,1}) = \sum_{\tau \in \mathfrak{S}_{kn}} \omega_{\mathcal{K}}^{\lambda}(\tau) \prod_{j=1}^{kn} a'_{j\tau(j)}, \qquad (2.3)$$

where $a'_{ij} = a_{\lceil i/k \rceil, j}$ is the (i, j)-entry of $A \otimes \mathbf{1}_{k, 1}$.

Proof. Since $a'_{y(i)j} = a'_{ij}$ for any $y \in \mathcal{K}$, it follows that

$$\operatorname{Imm}^{\lambda}(A \otimes \mathbf{1}_{k,1}) = \sum_{\sigma \in \mathfrak{S}_{kn}} \chi^{\lambda}(\sigma) \prod_{i=1}^{kn} a'_{i\sigma(i)} = \frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \sum_{\sigma \in \mathfrak{S}_{kn}} \chi^{\lambda}(\sigma) \prod_{i=1}^{kn} a'_{y(i)\sigma(i)}$$
$$= \frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \sum_{\tau \in \mathfrak{S}_{kn}} \chi^{\lambda}(\tau y) \prod_{j=1}^{kn} a'_{j\tau(j)} = \sum_{\tau \in \mathfrak{S}_{kn}} \omega_{\mathcal{K}}^{\lambda}(\tau) \prod_{j=1}^{kn} a'_{j\tau(j)}$$

as desired.

Lemma 2.2. Let $\lambda \vdash kn$.

(i) For $g \in \mathfrak{S}_{kn}$,

$$\omega_{\mathcal{K}}^{\lambda}(g) = \frac{1}{|\mathcal{K}|} \operatorname{Imm}^{\lambda}((I_n \otimes \mathbf{1}_k)P(g)).$$

(ii) It holds that

$$\operatorname{Imm}^{\lambda}(X \otimes \mathbf{1}_{k}) = \sum_{\tau \in \mathfrak{S}_{kn}} \omega_{\mathcal{K}}^{\lambda}(\tau) x^{\mathcal{M}(\tau)}.$$

In particular,

$$\omega_{\mathcal{K}}^{\lambda}(g) = \frac{\mathsf{M}(g)!}{\left|\mathcal{K}\right|^{2}} \left[\operatorname{Imm}^{\lambda}(X \otimes \mathbf{1}_{k})\right]_{\mathsf{M}(g)}$$

for $g \in \mathfrak{S}_{kn}$.

Proof. We get (i) if we set $A = (I_n \otimes \mathbf{1}_{1,k})P(g)$ with $g \in \mathfrak{S}_{kn}$ in (2.3). If we set $A = X \otimes \mathbf{1}_{1,k}$ in (2.3), then we have (ii) since $a'_{i\tau(i)} = x_{pq}$ when $i \in \Omega_p$ and $\tau(i) \in \Omega_q$ and

$$\sum_{\tau \in \mathfrak{S}_{kn}} \omega_{\mathfrak{K}}^{\lambda}(\tau) x^{\mathcal{M}(\tau)} = \sum_{M \in \mathfrak{M}_{n,k}} \sum_{\substack{\tau \in \mathfrak{S}_{kn} \\ \mathcal{M}(\tau) = M}} \omega_{\mathfrak{K}}^{\lambda}(\tau) x^{M} = \sum_{M \in \mathfrak{M}_{n,k}} \frac{|\mathfrak{K}|^2}{M!} \omega_{\mathfrak{K}}^{\lambda}(g_M) x^{M},$$

where g_M is an arbitrarily chosen element in \mathfrak{S}_{kn} such that $\mathsf{M}(g_M) = M$.

3 The alpha-determinant and wreath determinant

We recall the definitions and basic facts on the alpha-determinant and wreath determinant. The alpha-determinant is first introduce by Vere-Jones [14] as α -permanent, whose definition is slightly different from ours; here we follow the convention in [13]. For the wreath determinant, see [10] for the detailed information.

First we define a class function $\nu(\cdot)$ on \mathfrak{S}_N by

$$\nu(\sigma) := N - \sum_{i \ge 1} m_i(\sigma) = \sum_{i \ge 2} (i-1)m_i(\sigma)$$

for $\sigma \in \mathfrak{S}_N$ when the cycle type of σ is $1^{m_1(\sigma)}2^{m_2(\sigma)} \dots N^{m_N(\sigma)}$. Notice that $\nu(\sigma\tau) = \nu(\sigma) + \nu(\tau)$ if σ and τ are disjoint.

Remark 3.1. For each $\sigma \in \mathfrak{S}_N$, $\nu(\sigma)$ is equal to the distance between the identity eand σ on the Cayley graph of \mathfrak{S}_N whose generating set consists of all transpositions. Remark 3.2. The value of $\nu(\sigma)$ for $\sigma \in \mathfrak{S}_N$ is invariant under the standard embedding $\mathfrak{S}_N \hookrightarrow \mathfrak{S}_{N'}$ (N' > N) which regards σ as an element in $\mathfrak{S}_{N'}$ leaving N' - N letters $N+1, \ldots, N'$ fixed. Namely, it would be natural to regard the function $\nu(\cdot)$ as a class function on the infinite symmetric group $\mathfrak{S}_\infty = \bigcup_{N>1} \mathfrak{S}_N$.

The alpha-determinant of an N by N matrix $A = (a_{ij}) \in Mat_N$ is

$$\det_{\alpha} A := \sum_{\sigma \in \mathfrak{S}_N} \alpha^{\nu(\sigma)} \prod_{i=1}^N a_{i\sigma(i)}.$$

Note that $\det_{-1} A = \det A$ and $\det_{1} A = \operatorname{per} A$. The alpha-determinant is multilinear in rows and columns, is invariant under the transposition, and has Laplace expansion formula. We see that

$$\det_{\alpha}(AP(\sigma)) = \det_{\alpha}(P(\sigma)A)$$

for any $A \in \operatorname{Mat}_N$ and $\sigma \in \mathfrak{S}_N$ because $\nu(\cdot)$ is a class function on \mathfrak{S}_N , but the equation $\det_{\alpha}(AB) = \det_{\alpha}(BA)$ does not hold in general. We also note that we have

$$\det_{\alpha} \begin{pmatrix} A & B \\ O & C \end{pmatrix} = \det_{\alpha} A \, \det_{\alpha} C$$

if A and C are square matrices.

- 9 -

Example 3.3. We have

$$\det_{\alpha} \mathbf{1}_{N} = \sum_{\sigma \in \mathfrak{S}_{N}} \alpha^{\nu(\sigma)} = \prod_{j=1}^{N-1} (1+j\alpha).$$

For an n by kn matrix $A = (a_{ij}) \in \operatorname{Mat}_{n,kn}$, the k-wreath determinant of A is defined by

$$\operatorname{wrdet}_{k} A := \operatorname{det}_{-1/k}(A \otimes \mathbf{1}_{k,1}).$$

$$(3.1)$$

Note that the 1-wreath determinant wrdet₁ is the ordinary determinant. The wreathdeterminant wrdet_k is characterized as a polynomial function on the space $Mat_{n,kn}$ by the following three conditions up to a scalar multiple (see [10] for the proof):

- (W1) wrdet_k is multilinear in columns.
- (W2) wrdet_k(QA) = $(\det Q)^k$ wrdet_k(A) for $Q \in Mat_n$ and $A \in Mat_{n,kn}$.
- (W3) wrdet_k($AP(\sigma)$) = wrdet_k(A) for $\sigma \in \mathcal{K}$ and $A \in Mat_{n,kn}$. In other words, if $A_i \in Mat_{n,k}$ (i = 1, 2, ..., n), then

$$\operatorname{wrdet}_k(A_1P(\sigma_1) \ A_2P(\sigma_2) \ \dots \ A_nP(\sigma_n)) = \operatorname{wrdet}_k(A_1 \ A_2 \ \dots \ A_n)$$

for any $\sigma_1, \ldots, \sigma_n \in \mathfrak{S}_k$.

In fact, instead of (W3), the k-wreath determinant satisfies a slightly stronger relative invariance

(W3') wrdet_k(AP(g)) = $\chi_{n,k}(g)$ wrdet_k(A) for $g \in \mathfrak{K} \rtimes \mathfrak{S}_n = \mathfrak{S}_n \wr \mathfrak{S}_k < \mathfrak{S}_{kn}$ and $A \in \operatorname{Mat}_{n,kn}$, where $\chi_{n,k}$ is defined by

$$\chi_{n,k}(g) = (\operatorname{sgn} \tau)^k, \qquad g = (\sigma, \tau) \in \mathfrak{K} \rtimes \mathfrak{S}_k.$$
 (3.2)

(W3') means that if $A_i \in Mat_{n,k}$ (i = 1, 2, ..., n), then

wrdet_k
$$(A_{\tau(1)} A_{\tau(2)} \dots A_{\tau(n)}) = (\operatorname{sgn} \tau)^k \operatorname{wrdet}_k(A_1 A_2 \dots A_n)$$

for any $\tau \in \mathfrak{S}_n$. This readily follows from (W2) by taking $Q = I_k \otimes P(\tau)$. Here we regard the wreath product $\mathfrak{S}_n \wr \mathfrak{S}_k$ as a subgroup of \mathfrak{S}_{kn} so that we have

$$P(g) = P(\sigma) \cdot (I_k \otimes P(\tau)), \qquad g = (\sigma, \tau) \in \mathfrak{S}_k \wr \mathfrak{S}_n.$$

Remark 3.4. The definition of the wreath determinant is a bit different from the original one in [10], where the k-wreath determinant is defined for the kn by n rectangular matrices.

Example 3.5. We have

$$\operatorname{wrdet}_{k}(I_{n} \otimes \mathbf{1}_{1,k}) = \operatorname{det}_{-1/k}(I_{n} \otimes \mathbf{1}_{k}) = \operatorname{det}_{-1/k}\begin{pmatrix} \mathbf{1}_{k} & & \\ & \mathbf{1}_{k} & \\ & & \ddots & \\ & & & \mathbf{1}_{k} \end{pmatrix}$$
$$= (\operatorname{det}_{-1/k} \mathbf{1}_{k})^{n} = \left(\frac{k!}{k^{k}}\right)^{n}.$$
(3.3)

More generally, for $A \in Mat_n$, we have

wrdet_k(A
$$\otimes$$
 1_{1,k}) = wrdet_k(A \cdot (I_n \otimes 1_{1,k})) = $\left(\frac{k!}{k^k}\right)^n (\det A)^k$.

4 Formulas for zonal spherical functions

The alpha-determinant is written as a linear combination of immanants as

$$\det_{\alpha} A = \frac{1}{N!} \sum_{\lambda \vdash N} f^{\lambda} f_{\lambda}(\alpha) \operatorname{Imm}^{\lambda} A, \qquad (4.1)$$

where $f^{\lambda} = \chi^{\lambda}(e)$, e being the identity permutation, and

$$f_{\lambda}(\alpha) = \prod_{i=1}^{l(\lambda)} \prod_{j=1}^{\lambda_i} (1 + (j-i)\alpha)$$

is the modified content polynomial for λ . This is immediate from the well-known expansion formula

$$\alpha^{\nu(\cdot)} = \frac{1}{N!} \sum_{\lambda \vdash N} f^{\lambda} f_{\lambda}(\alpha) \chi^{\lambda}.$$
(4.2)

Theorem 4.1. For $g \in \mathfrak{S}_{kn}$, we have

$$\omega_{n,k}(g) = \frac{k^{kn}}{|\mathcal{K}|} \det_{-1/k}((I_n \otimes \mathbf{1}_k)P(g))$$
$$= \left(\frac{k^k}{k!}\right)^n \sum_{y \in \mathcal{K}} \left(-\frac{1}{k}\right)^{\nu(gy)}.$$

Proof. By (4.1) and Lemma 2.2 (i), we have

$$\det_{-1/k}((I_n \otimes \mathbf{1}_k)P(g)) = \frac{|\mathcal{K}|}{(kn)!} \sum_{\lambda \vdash kn} f^{\lambda} f_{\lambda}(-1/k) \omega_{\mathcal{K}}^{\lambda}(g).$$

Since $f_{\lambda}(-1/k) = 0$ if $\lambda_1 > k$ and $\text{Imm}^{\lambda}(A \otimes \mathbf{1}_{k,1}) = 0$ unless $\lambda \ge (k^n)$, only the term for $\lambda = (k^n)$ survives in the righthand side of the equation above. By the hook formula for f^{λ} and the definition of $f_{\lambda}(\alpha)$, we readily obtain

$$f^{(k^n)}f_{(k^n)}(-1/k) = \frac{(kn)!}{k^{kn}}.$$

This completes the proof of the first equality. The second equality is immediate by the definition of the alpha-determinant. $\hfill \Box$

Using Theorem 4.1, we obtain the stability of $\omega_{n,k}$ with respect to n as well as the non-vanishingness of $\omega_{n,k}$ when k + 1 is prime as follows.

Corollary 4.2. If m > n, then $\omega_{m,k}(g) = \omega_{n,k}(g)$ for any $g \in \mathfrak{S}_{kn}$, where we regard $g \in \mathfrak{S}_{kn}$ as an element in \mathfrak{S}_{km} by the standard embedding.

Proof. We regard \mathfrak{S}_k^m as a direct product $\mathfrak{S}_k^n \times \mathfrak{S}_k^{m-n}$. If $g \in \mathfrak{S}_{kn}$ and $(y_1, y_2) \in \mathfrak{S}_k^n \times \mathfrak{S}_k^{m-n}$, then gy_1 and y_2 are disjoint permutations, and hence it follows that $\nu(gy_1y_2) = \nu(gy_1) + \nu(y_2)$. Thus we have

$$\begin{split} \omega_{m,k}(g) &= \left(\frac{k^k}{k!}\right)^m \sum_{(y_1, y_2) \in \mathfrak{S}_k^n \times \mathfrak{S}_k^{m-n}} \left(-\frac{1}{k}\right)^{\nu(gy_1 y_2)} \\ &= \left(\frac{k^k}{k!}\right)^m \sum_{y_1 \in \mathfrak{S}_k^n} \left(-\frac{1}{k}\right)^{\nu(gy_1)} \sum_{y_2 \in \mathfrak{S}_k^{m-n}} \left(-\frac{1}{k}\right)^{\nu(y_2)} \\ &= \left(\frac{k^k}{k!}\right)^n \sum_{y_1 \in \mathfrak{S}_k^n} \left(-\frac{1}{k}\right)^{\nu(gy_1)} \\ &= \omega_{n,k}(g) \end{split}$$

as desired.

Theorem 4.3. Let p be an odd prime. The function $\omega_{n,k}$ does not vanish on \mathfrak{S}_{kn} if k = p - 1.

Proof. By Theorem 4.1, we have

$$\omega_{n,k}(g) = \left(\frac{(p-1)^{p-1}}{(p-1)!}\right)^n \sum_{y \in \mathcal{K}} \left(-\frac{1}{p-1}\right)^{\nu(gy)} \equiv \frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} 1 \equiv 1 \pmod{p}$$

for any $g \in \mathfrak{S}_{kn}$, which implies the desired nonvanishingness.

Remark 4.4. In [7], the inverse of Theorem 4.3 is proved. In fact, the authors show that if $n \geq 3$ and k+1 is composite, then one can find $M \in \mathcal{M}_{n,k}$ such that $\left[(\det X)^k \right]_M = 0$.

We give a formula for the function $\omega_{n,k}$ in terms of the wreath determinant.

Lemma 4.5. For $A \in Mat_{n,kn}$, we have

wrdet_k
$$A = \frac{1}{k^{kn}} \operatorname{Imm}^{(k^n)}(A \otimes \mathbf{1}_{k,1}).$$

Proof. By the definition of the wreath determinant and the formula (4.1), we have

wrdet_k
$$A = \det_{-1/k} (A \otimes \mathbf{1}_{k,1})$$

= $\frac{1}{(kn)!} \sum_{\lambda \vdash kn} f^{\lambda} f_{\lambda}(-1/k) \operatorname{Imm}^{\lambda} (A \otimes \mathbf{1}_{k,1}).$

The conclusion follows from a similar discussion as in the proof of Theorem 4.1. \Box

Theorem 4.6. For $g \in \mathfrak{S}_{kn}$, we have

$$\omega_{n,k}(g) = \frac{\mathcal{M}(g)!}{|\mathcal{K}|} \left[(\det X)^k \right]_{\mathcal{M}(g)}$$
$$= \frac{\operatorname{wrdet}_k((I_n \otimes \mathbf{1}_{1,k})P(g))}{\operatorname{wrdet}_k(I_n \otimes \mathbf{1}_{1,k})}$$

-12 -

Proof. By Lemma 4.5, we see that

wrdet_k(X
$$\otimes$$
 1_{1,k}) = $\frac{1}{k^{kn}}$ Imm^(kⁿ)(X \otimes 1_k).

On the other hand, by (W2) and (3.3), we have

wrdet_k(X
$$\otimes$$
 1_{1,k}) = (det X)^k wrdet_k(I_n \otimes 1_{1,k}) = $\left(\frac{k!}{k^k}\right)^n$ (det X)^k.

Thus it follows that

$$(\det X)^k = \frac{1}{|\mathcal{K}|} \operatorname{Imm}^{(k^n)}(X \otimes \mathbf{1}_k).$$

Hence, by Lemma 2.2 (ii), we have the first equality. The second equality is obtained by Theorem 4.1 and the equation

$$\det_{-1/k}((I_n \otimes \mathbf{1}_k)P(g)) = \operatorname{wrdet}_k((I_n \otimes \mathbf{1}_{1,k})P(g)),$$

which follows from the definition of the wreath determinant.

As a corollary, we see that the relative invariance of the function $\omega_{n,k}$ with respect to the wreath product $\mathfrak{S}_k \wr \mathfrak{S}_n$.

Corollary 4.7. For any $g \in \mathfrak{S}_{kn}$ and $h, h' \in \mathfrak{S}_k \wr \mathfrak{S}_n$, we have

$$\omega_{n,k}(hgh') = \chi_{n,k}(hh')\omega_{n,k}(g).$$

Here $\chi_{n,k}$ is the character of $\mathfrak{S}_k \wr \mathfrak{S}_n$ defined by (3.2). In particular, $\omega_{n,k}$ is $\mathfrak{S}_k \wr \mathfrak{S}_n$ biinvariant if k is even.

Proof. Let $h = (\sigma, \tau), h' = (\sigma', \tau') \in \mathcal{K} \rtimes \mathfrak{S}_n = \mathfrak{S}_k \wr \mathfrak{S}_n$. Since

$$(I_n \otimes \mathbf{1}_{1,k})P(h) = (I_n \otimes \mathbf{1}_{1,k})P(\sigma)(I_k \otimes P(\tau)) = P(\tau)(I_n \otimes \mathbf{1}_{1,k}),$$

we have

$$\omega_{n,k}(hgh') = \frac{\operatorname{wrdet}_k((I_n \otimes \mathbf{1}_{1,k})P(hgh'))}{\operatorname{wrdet}_k(I_n \otimes \mathbf{1}_{1,k})}$$
$$= \frac{\operatorname{wrdet}_k(P(\tau)(I_n \otimes \mathbf{1}_{1,k})P(g)P(h'))}{\operatorname{wrdet}_k(I_n \otimes \mathbf{1}_{1,k})}$$
$$= \det P(\tau)^k \chi_{n,k}(h') \frac{\operatorname{wrdet}_k((I_n \otimes \mathbf{1}_{1,k})P(g))}{\operatorname{wrdet}_k(I_n \otimes \mathbf{1}_{1,k})}$$
$$= \chi_{n,k}(hh')\omega_{n,k}(g)$$

as desired.

5 Applications

5.1 The Alon-Tarsi conjecture on Latin squares

A Latin square of degree n is an n by n matrix whose rows and columns are permutations of $1, 2, \ldots, n$. The set of all Latin squares of degree n is denoted by LS(n).

Example 5.1. There are twelve Latin squares of degree 3:

$$LS(3) = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}.$$

For $L \in LS(n)$, we associate 2n permutations $r_1, \ldots, r_n, c_1, \ldots, c_n \in \mathfrak{S}_n$ to it by

$$L = \begin{pmatrix} r_1(1) & \dots & r_1(n) \\ \vdots & \ddots & \vdots \\ r_n(1) & \dots & r_n(n) \end{pmatrix} = \begin{pmatrix} c_1(1) & \dots & c_n(1) \\ \vdots & \ddots & \vdots \\ c_1(n) & \dots & c_n(n) \end{pmatrix}.$$

Then we define

$$\operatorname{sgn} L := \prod_{i=1}^n \operatorname{sgn} r_i \prod_{i=1}^n \operatorname{sgn} c_i,$$

and we call L even (resp. odd) if $\operatorname{sgn} L = +1$ (resp. -1). We denote by $\operatorname{els}(n)$ and $\operatorname{ols}(n)$ the numbers of even and odd Latin squares of degree n respectively. Since the map $\operatorname{LS}(n) \ni L \mapsto P(\sigma)L \in \operatorname{LS}(n)$ for a given $\sigma \in \mathfrak{S}_n$ is a bijection and $\operatorname{sgn}(P(\sigma)L) = (\operatorname{sgn} \sigma)^n \operatorname{sgn} L$ for $L \in \operatorname{LS}(n)$, we have $\operatorname{els}(n) = \operatorname{ols}(n)$ when n is odd. When n is even, it is conjectured that the numbers of even and odd Latin squares are always different.

Conjecture 5.2 (Alon-Tarsi conjecture). $els(n) \neq ols(n)$ if n is even.

This conjecture originally arose from the study of colorings of graphs. Indeed, if the Alon-Tarsi conjecture for even n is true, then we see that the Dinitz conjecture below for n follows [1].

Proposition 5.3 (Dinitz conjecture). The line graph of the biclique (or complete bipartite graph) $K_{n,n}$ is n-choosable.

We remark that the Dinitz conjecture itself is already settled down by Galvin [4]. There are also various statements which are equivalent to or related with the Alon-Tarsi conjecture (see, e.g. [6, 11]). The Alon-Tarsi conjecture is proved to be true in the case where n = p + 1 by Drisko [2] and in the case where n = p - 1 by Glynn [5], where p is an odd prime; We also refer to [3].

We need another statement which is equivalent to the Alon-Tarsi conjecture. Define

$$\mathsf{L}(n) := \{ \boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_n) \in \mathfrak{S}_n^n \, | \, P(\sigma_1) + \dots + P(\sigma_n) = \mathbf{1}_n \}.$$

For $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n) \in L(n)$, the matrix

$$L(\boldsymbol{\sigma}) := \sum_{i=1}^{n} i P(\sigma_i)$$

is a Latin square of degree n, and every Latin square is uniquely obtained in this way. A Latin square $L = L(\boldsymbol{\sigma})$ ($\boldsymbol{\sigma} \in L(n)$) is called symbol even (resp. symbol odd) if

$$\operatorname{symsgn} L := \prod_{i=1}^n \operatorname{sgn} \sigma_i$$

is +1 (resp. -1). We denote by sels(n) and sols(n) the number of symbol even and symbol odd Latin squares of degree n respectively. It is known that

$$sels(n) - sols(n) = (-1)^{n(n-1)/2} (els(n) - ols(n))$$

for every n (see, e.g. [5]), so Conjecture 5.2 is equivalent to the

Conjecture 5.4. $\operatorname{sels}(n) \neq \operatorname{sols}(n)$ if n is even.

Since

$$\begin{split} [(\det X)^n]_{\mathbf{1}_n} &= \sum_{\substack{\sigma_1, \dots, \sigma_n \in \mathfrak{S}_n \\ P(\sigma_1) + \dots + P(\sigma_n) = \mathbf{1}_n}} \prod_{i=1}^n (\operatorname{sgn} \sigma_i) \\ &= \sum_{\boldsymbol{\sigma} \in \mathcal{L}(n)} \operatorname{symsgn} L(\boldsymbol{\sigma}) \\ &= \sum_{L \in \mathrm{LS}(n)} \operatorname{symsgn} L = \operatorname{sels}(n) - \operatorname{sols}(n), \end{split}$$

we obtain the following result by Theorem 4.6.

Theorem 5.5. When n is even, the Alon-Tarsi conjecture on LS(n) is equivalent to the following assertions.

- (1) $[(\det X)^n]_{\mathbf{1}_n} \neq 0.$
- (1) $[(\det X)^n]_{\mathbf{1}_n} \neq 0.$ (2) $\operatorname{wrdet}_n((I_n \otimes \mathbf{1}_{1,n})P(g_n)) = \operatorname{wrdet}_n(\overbrace{I_n \dots I_n}^n) \neq 0.$
- (3) $\omega_{n,n}(g_n) \neq 0.$

Here the permutation $g_n \in \mathfrak{S}_{n^2}$ is given by

$$g_n((i-1)n+j) = (j-1)n+i, \qquad 1 \le i, j \le n, \tag{5.1}$$

 \boldsymbol{n}

which is a product of n(n-1)/2 disjoint transpositions and $M(g_n) = \mathbf{1}_n$.

Thus, Theorem 5.5 (3) together with Theorem 4.3 gives another proof of the

Corollary 5.6 (Glynn [5]). The Alon-Tarsi conjecture for Latin squares of degree n is true if n = p - 1 for an odd prime p.

5.2 A remark on Kumar's conjecture on plethysms

Let k and n be positive integers as heretofore, and V be a finite dimensional vector space over \mathbb{C} such that dim $V \ge n$. The symmetric group \mathfrak{S}_m acts on $V^{\otimes m}$ from the right by

$$(v_1 \otimes \cdots \otimes v_m) \cdot \sigma := v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(m)} \quad (\sigma \in \mathfrak{S}_m).$$

This action linearly extends to that of the group algebra $\mathbb{C}\mathfrak{S}_m$. We understand that the symmetric tensor power $S^m(V)$ of V is a subspace of $V^{\otimes m}$ spanned by the vectors of the form

$$v_1 \cdots v_m := v_1 \otimes \cdots \otimes v_m \cdot \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} \sigma = \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_m} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(m)}.$$
(5.2)

Set

$$\mathcal{H} = \mathcal{K} \rtimes \mathfrak{S}_n = \mathfrak{S}_k \wr \mathfrak{S}_n, \quad \mathcal{K}' = \mathfrak{S}_n^k, \quad \mathcal{H}' = \mathcal{K}' \rtimes \mathfrak{S}_k = \mathfrak{S}_n \wr \mathfrak{S}_k,$$

and

$$\boldsymbol{e}(G) = \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}\mathfrak{S}_{kn}$$

for $G < \mathfrak{S}_{kn}$. We have then

$$S^n(S^kV) = V^{\otimes kn} \cdot \boldsymbol{e}(\mathcal{H}), \qquad S^k(S^nV) = V^{\otimes kn} \cdot \boldsymbol{e}(\mathcal{H}').$$

Define a linear transformation $\tau = \tau_{k,n}$ on $V^{\otimes kn}$ by

$$\tau \colon V^{\otimes kn} \ni \underbrace{\overbrace{v_1^1 \otimes \cdots \otimes v_k^1 \otimes \cdots \otimes \underbrace{v_1^n \otimes \cdots \otimes v_k^n}_k}^n_{k} \mapsto \underbrace{\underbrace{v_1^1 \otimes \cdots \otimes v_1^n \otimes \cdots \otimes \underbrace{v_k^1 \otimes \cdots \otimes v_k^n}_n}_n \in V^{\otimes kn}$$

or equivalently,

$$\tau(v_1 \otimes v_2 \otimes \cdots \otimes v_{kn}) = (v_1 \otimes v_2 \otimes \cdots \otimes v_{kn}) \cdot g_{n,k},$$

where the permutation $g_{n,k} \in \mathfrak{S}_{kn}$ is defined by

$$g_{n,k}((i-1)n+j) = (j-1)k+i, \qquad 1 \le i \le k, \ 1 \le j \le n.$$
(5.3)

We notice that $g_{n,n}$ equals g_n defined in (5.1). Using this, we define a map $h_{n,k}$ by

$$h_{n,k} := p \circ \tau \circ i \colon S^n(S^k V) \stackrel{i}{\hookrightarrow} V^{\otimes kn} \xrightarrow{\tau} V^{\otimes kn} \xrightarrow{p} S^k(S^n V),$$

where *i* is the inclusion and *p* is the natural projection (i.e. multiplication by $e(\mathcal{H}')$ from the right as in (5.2)). Notice that $h_{n,k}(v) = v \cdot g_{n,k} e(\mathcal{H}')$ for $v \in S^n(S^k V)$. This map is clearly a GL(V)-intertwiner between two left GL(V)-modules $S^n(S^k V)$ and $S^k(S^n V)$.

Example 5.7.

$$\begin{aligned} h_{2,2}((v_1v_2)(v_3v_4)) &= (p \circ \tau) \left(\frac{v_1 \otimes v_2 + v_2 \otimes v_1}{2} \otimes \frac{v_3 \otimes v_4 + v_4 \otimes v_3}{2} \right) \\ &= \frac{1}{4} p \left(v_1 \otimes v_3 \otimes v_2 \otimes v_4 + v_2 \otimes v_3 \otimes v_1 \otimes v_4 \\ &+ v_1 \otimes v_4 \otimes v_2 \otimes v_3 + v_2 \otimes v_4 \otimes v_1 \otimes v_3 \right) \\ &= \frac{(v_1v_3)(v_2v_4) + (v_2v_3)(v_1v_4) + (v_1v_4)(v_2v_3) + (v_2v_4)(v_1v_3)}{4} \end{aligned}$$

Motivated by the Hadamard-Howe conjecture on the maximality of $h_{n,k}$, it is conjectured by Kumar that ker $h_{n,k}$ does not contain $\mathbf{E}_V^{(k^n)}$, the irreducible $\mathrm{GL}(V)$ -module with highest weight $(k^n) = (k, \ldots, k)$, if $n \leq k$ and k is even (see [11, Conjecture 1.6]). We focus on this problem below.

By the Schur-Weyl duality

$$V^{\otimes kn} = \bigoplus_{\lambda \vdash kn} \mathbf{E}_V^\lambda \boxtimes \mathbf{M}_{kn}^\lambda,$$

where $\mathbf{M}_{kn}^{\lambda}$ is the irreducible \mathfrak{S}_{kn} -module corresponding to λ , the multiplicity of \mathbf{E}_{V}^{λ} in $S^{n}(S^{k}V)$ as a left $\mathrm{GL}(V)$ -module is equal to $\dim(\mathbf{M}_{kn}^{\lambda} \cdot \boldsymbol{e}(\mathcal{H}))$, which is majorated by $\dim(\mathbf{M}_{kn}^{\lambda} \cdot \boldsymbol{e}(\mathcal{H})) = K_{\lambda(k^{n})}$, the Kostka number.

Remark 5.8. Similarly, we see that the multiplicity of \mathbf{E}_{V}^{λ} in $S^{k}(S^{n}V)$ is majorated by $K_{\lambda(n^{k})}$. Especially, if n > k, then $S^{k}(S^{n}V)$ does not contain $\mathbf{E}_{V}^{(k^{n})}$ since $K_{(k^{n})(n^{k})} = 0$.

Lemma 5.9. The multiplicity of $\mathbf{E}_{V}^{(k^{n})}$ in $S^{n}(S^{k}V)$ is exactly one if k is even.

Proof. Since we know that the multiplicity dim $(\mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{H}))$ of $\mathbf{E}_V^{(k^n)}$ in $S^n(S^kV)$ is at most one, we should show that it is at least one. Take a nonzero \mathcal{K} -invariant vector $w \in \mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{K})$, which is unique up to constant multiple since dim $\mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{K}) = K_{(k^n)(k^n)} = 1$. We see that

$$w \cdot g = \omega_{n,k}(g)w + w^{\perp}(g) \tag{5.4}$$

for $g \in \mathfrak{S}_{kn}$ where $w^{\perp}(g)$ is a certain vector in the orthocomplement of $\mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{K})$ in $\mathbf{M}_{kn}^{(k^n)}$ with respect to the invariant inner product on $\mathbf{M}_{kn}^{(k^n)}$. Since k is even, we see that $\omega_{n,k}(g) = 1$ for $g \in \mathcal{H}$ by Corollary 4.7. Hence it follows that

$$w \cdot \boldsymbol{e}(\mathcal{H}) = w \cdot \boldsymbol{e}(\mathcal{H})\boldsymbol{e}(\mathcal{K}) = \frac{1}{|\mathcal{H}|} \sum_{g \in \mathcal{H}} (w \cdot g) \cdot \boldsymbol{e}(\mathcal{K}) = w + \frac{1}{|\mathcal{H}|} \sum_{g \in \mathcal{H}} w^{\perp}(g) \cdot \boldsymbol{e}(\mathcal{K}) = w.$$

Namely, we have $\mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{K}) \subset \mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{H})$. Thus we see that

$$\dim(\mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{H})) \ge \dim(\mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{K})) = K_{(k^n)(k^n)} = 1$$

as desired.

Remark 5.10. If k is odd, then $w \cdot g = (\operatorname{sgn} \tau) w$ for $w \in \mathbf{M}_{kn}^{(k^n)}$ and $g = (\sigma, \tau) \in \mathcal{H}$. Thus, in this case, we have $\mathbf{M}_{kn}^{(k^n)} \cdot \boldsymbol{e}(\mathcal{H}) = 0$, and hence $S^n(S^k V)$ does not contain $\mathbf{E}_V^{(k^n)}$.

We restrict our attention on the special case where k = n and n is even. We have $\mathcal{K} = \mathcal{K}'$ and $\mathcal{H} = \mathcal{H}'$ in this case. The map $h_{n,n}$ is then a $\operatorname{GL}(V)$ -intertwiner from $S^n(S^nV)$ onto itself. Since the multiplicity of $\mathbf{E}_V^{(n^n)}$ in $S^n(S^nV)$ is one, the restriction of $h_{n,n}$ on $\mathbf{E}_V^{(n^n)}$ must be a scalar by Schur's lemma, and the scalar is given by $\omega_{n,n}(g_n)$ by (5.4) since $h_{n,n}(v) = v \cdot g_n \boldsymbol{e}(\mathcal{H})$. Therefore we obtain the

Theorem 5.11. When n is even, we have

$$h_{n,n}(v) = \omega_{n,n}(g_n)v$$

if $v \in S^n(S^nV)$ belongs to the (n^n) -isotypic component. In particular, ker $h_{n,n} \supset \mathbf{E}_V^{(n^n)}$ if and only if $\omega_{n,n}(g_n) = 0$.

As a corollary, we obtain the

Corollary 5.12 ([11, Theorem 1.9 (b)]). The Alon-Tarsi conjecture on LS(n) is equivalent to the assertion that ker $h_{n,n}$ does not contain $\mathbf{E}_V^{(n^n)}$.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR14D6 and JSPS KAKENHI Grant Number JP18K03248.

References

- N. Alon and M. Tarsi, Colorings and orientations of graphs. Combinatorica 12 (1992), 125–134.
- [2] A. A. Drisko, On the number of even and odd Latin squares of order p + 1. Adv. Math. 128 (1997), 20–35.
- [3] B. Friedman and S. McGuinness, The Alon-Tarsi conjecture: a perspective on the main results. *Discrete Math.* 342 (2019), no. 8, 2234–2253.
- [4] F. Galvin, The list chromatic index of a bipartite multigraph. J. Combin. Theory Ser. B 63 (1995), 153–158.
- [5] D. G. Glynn, The conjectures of Alon-Tarsi and Rota in dimension prime minus one. SIAM J. Discrete Math. 24 (2010), no.2, 394–399.
- [6] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares and straightening coefficients. *Discrete Math.* **128** (1994), 225–236.
- [7] M. Itoh and J. Shimoyoshi, A condition for the existence of zero coefficients in the powers of the determinant polynomial. J. Algebra 579 (2021), 231–236.

- [8] K. Kimoto, Zonal spherical functions on symmetric groups and the wreath determinant (in Japanese). RIMS Kôkyûroku, No. 2031 (2017), 218–234.
- [9] K. Kimoto, The Alon-Tarsi conjecture on Latin squares and zonal spherical functions on symmetric groups (in Japanese). RIMS Kôkyûroku, No. 2039 (2017), 193–210.
- [10] K. Kimoto and M. Wakayama, Invariant theory for singular α-determinants. J. Combin. Theory Ser. A 115 (2008), no. 1, 1–31.
- [11] S. Kumar and J. M. Landsberg, Connections between conjectures of Alon-Tarsi, Hadamard-Howe, and integrals over the special unitary group. *Discrete Math.* 338 (2015), 1232–1238.
- [12] I. G. Macdonald, Symmetric Functions and Hall Polynomials (2nd ed.), Oxford University Press, 1995.
- [13] T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205 (2003), no. 2, 414–463.
- [14] D. Vere-Jones, A generalization of permanents and determinants. *Linear Algebra Appl.* 63 (1988), 267–270.
- [15] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups. Selecta Math. New Ser. 2 (1996), no.4, 581–605.

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara-cho, Okinawa 903-0213 JAPAN