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WREATH DETERMINANTS,
ZONAL SPHERICAL FUNCTIONS
ON SYMMETRIC GROUPS
AND THE ALON-TARSI CONJECTURE*

Kazufumi Kimoto

Abstract

In the article, we give several formulas for a certain zonal spherical function
on the symmetric group in terms of polynomial functions on matrices called
the alpha-determinant and wreath determinant. We also explain the relation
between these objects and the Alon-Tarsi conjecture on the enumeration of
Latin squares. In particular, we give an alternative proofs of (i) Glynn’s result
on a special case of the Alon-Tarsi conjecture, and (ii) the result due to Kumar
and Landsberg on the equivalence between a special case of Kumar’s conjecture
on plethysms and the Alon-Tarsi conjecture. Most of the results given here are
already announced in the articles [8, 9].
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1 Introduction

For a given pair of positive integers n and k, let wy, ; be the function on the symmetric
group Gy, of degree kn defined by

1

= m Z X(kn)(gy)v g e 6kn7

yeX

wn,k(9)

where X = &y is a Young subgroup of G, corresponding to the partition (k") =
(k,...,k) F kn, and x*") is the irreducible character of Gy, corresponding to the
same partition (k™). This function is biinvariant with respect to X, that is,

wnk(¥9Y') = wn k(9), Vg € Gpp, Vy,y' € K.

We refer to the function w, » as a zonal spherical on &y, with respect to X. Note
that in the case where n = 2, wy}, is indeed a zonal spherical function associated
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to the Gelfand pair (Sai, &) x &) in the ordinary sense (see, e.g. Macdonald [12,
Chapter VII]).

The purpose of the article is to give several formulas for w,  in terms of polynomial
functions on matrices called the alpha-determinant [13, 14] (Theorem 4.1) and wreath
determinant [10] (Theorem 4.6). The alpha-determinant is a parametric deformation
of the ordinary determinant, which interpolates the determinant and permanent. The
wreath-determinant wrdety, is a polynomial function on the space Mat,, x, consisting
of n by kn matrices, which is defined via the alpha-determinant (see (3.1)), and it has
a nice characterization in terms of a suitable GLy,, xK-action (see (W1)—(W3) in §3).
When k£ = 1, the 1-wreath determinant wrdet; on Mat, = Mat, , agrees with the
usual determinant. In this sense, our result provides a ‘quasi-determinantal’ formula
for the zonal spherical function wy, k.

As an application of our formulas, we show that the values of w,, ; do not vanish
when k is equal to p — 1 for a certain odd prime number p. In particular, we observe
that the Alon-Tarsi conjecture on the Latin squares is true when the size of squares is
p—1 for an odd prime p. This gives an alternative proof of Glynn’s result [5]. We also
look at a conjecture on certain plethysms due to Kumar and see that the conjecture in
a special case is equivalent to the Alon-Tarsi conjecture, which is originally obtained
in [11].

Most of the results given here are already announced in the articles [8, 9].

2 Preliminaries

2.1 General conventions

The symmetric group of degree n is denoted by &,. For 0 € &,, P(0) = (d;is(j))
is the permutation matrix of o. The set of m by n complex matrices is denoted by
Mat,, ,, and we write Mat,, = Mat,, ,, for short. The identity matrix of size n is I,
and 1,, , is the m by n matrix all of whose entries are one. We write 1,, to indicate
1,.,. We denote by A ® B the Kronecker product of matrices defined by

a11B . alnB
A® B = : : € Mat,p ng
am1B ... amaB
for A = (a;5) € Mat,, , and B € Mat, 4. The general linear group of degree n is GL,.
We always work on the vector spaces and/or algebras over the complex number field
C. The cardinality of a set S is denoted by |S].

Let z;; (1 < 4,57 < n) be independent commuting variables, and put X =
(xij)1<i,j<n- For M = (m;;) € Mat,, such that m;; € Z>¢, define

M ._ L2y
M= T
0,J
By this notation, we have

det X = Z sgn(o) zF'(@)
ceS,



for instance. When p = p(211,...,%nn) is a polynomial in x;;’s, we denote by [p],,
the coefficient of the monomial 2™ in p.

2.2 Double cosets

We fix a pair of positive integers n and k in what follows. Let Q = (4,...,9Q,) be a
set partition of {1,2,...,kn} given by

o = {mez|[2] =)
={(i—-Dk+r|r=1,2,....k} (i=1,...,n)

and define
Ki={g€Cu|gti=9Q; (i=1,...,n)}.

n

—_——~
Notice that X is isomorphic to the direct product G} = & X --- X &, of the n copies
of 6. Put

mij(g) == [gQ N Q| (1 <4,5 <n), M(g) := (mi;(9))1<ij<n

for g € Gy, that is, m;;(g) counts the number of elements in ; which are sent into
Q; by g. For g,¢' € Gy, we see that

KgK = Kg'K < M(g) = M(g')

and )
%)
KgK| =
9% = My

where M(g)! = [T} ;_, mi;(9)!. Put

Mn,k = {M = (mij) S Matn(Zzo) Zmir = stj = k‘ (1 S i,j S n)} .

r=1 s=1

The map
K\Spn/K 3 KgK — M(g) € My, 1

is bijective. Thus M,, ; gives a ‘coordinate system’ for the set K\Sy,, /XK of double
cosets.

2.3 Immanants and zonal spherical functions

For each \ + kn, define

W) = ﬁ S 9y) (9 € G, (2.1)
yeX

where x* is the irreducible character of &y, corresponding to A\. These are K-
biinvariant functions on &y, and hence we refer to these as zonal spherical functions.



Since x* are Z-valued, the functions w3\< are Q-valued. Observe that wy ; = wgf RE

The function wy is identically zero unless A > (k™) with respect to the dominance

ordering
A2 p = M+ + N>t Vil

on partitions of the same size.
The immanant of a matrix A = (a;;) € Maty associated to A = N € Zs is

N
mm* A=Y o) [[ aiw)- (2.2)
=1

€GN

Notice that Tmm®") A = det A and Tmm™) A = per A, where per A is the permanent
of A. For later use, we give an expression of the value of w§‘< in terms of immanants.

Lemma 2.1. For any A = (a;j) € Maty, i, we have
kn
bt (410 = 3 A0 ] g 2
TEGkn =1
where a;; = afi/r; s the (i, j)-entry of A® 1p1.

Proof. Since a;(i)j = aj; for any y € X, it follows that

kn kn
1
Imm*(A@1e1) = Y. x*0) [[alw = 9 S X ] awen
c€ECkn i=1 yeX oSy i=1
1 kn kn
— A / _ A /
x| Z Z X (1y) Hajr(j) = Z wic (7) Hajr(j)
yeX 71€Skn j=1 TESKR j=1
as desired. O

Lemma 2.2. Let \F kn.

(1) FO’I“g € Gkn;
1
wi(g9) = x| Imm* (I, ® 1x)P(g))-
(ii) It holds that
Imm™(X ® 1) = Z wix (T)z™M™),
TEG KR
In particular,

wie(9) = Arljg’z) | [t (X @ 1)

M(g

for g € G-



Proof. We get (i) if we set A = (I, ® 11 )P (g) with g € Gy, in (2.3). If we set
A=X®1y; in (2.3), then we have (ii) since a_,) = 2pg when i € Q) and 7(i) € Qg
and

2
Y @M= Y Y @@= Y B e,

TESkn MeMy ), TESK, MeM, i
M(T)=M
where gps is an arbitrarily chosen element in Gy, such that M(gar) = M. O

3 The alpha-determinant and wreath determinant

We recall the definitions and basic facts on the alpha-determinant and wreath deter-
minant. The alpha-determinant is first introduce by Vere-Jones [14] as a-permanent,
whose definition is slightly different from ours; here we follow the convention in [13].
For the wreath determinant, see [10] for the detailed information.

First we define a class function v(-) on Sy by

v(oc) =N — Zmi(o) = Z(z —1)m; (o)

i>1 i>2

for ¢ € & when the cycle type of ¢ is 11(2)2m2(9)  N™~(9)_ Notice that v(o7) =
v(o) + v(r) if o and 7 are disjoint.

Remark 3.1. For each 0 € Gy, v(0) is equal to the distance between the identity e
and ¢ on the Cayley graph of & whose generating set consists of all transpositions.
Remark 3.2. The value of v(o) for 0 € G is invariant under the standard embedding
Sy — Sn/ (N > N) which regards o as an element in &/ leaving N’ — N letters
N+1,..., N’ fixed. Namely, it would be natural to regard the function v(-) as a class
function on the infinite symmetric group Goo = Uy, Gn-

The alpha-determinant of an N by N matrix A = (a,;;) € Maty is

N
dety, A := Z (@) H Aig(i)-
i=1

oceGN

Note that det_; A = det A and det; A = per A. The alpha-determinant is multilinear
in rows and columns, is invariant under the transposition, and has Laplace expansion
formula. We see that

deta(AP(0)) = deta(P(0)A)

for any A € Maty and 0 € Sy because v(-) is a class function on Sy, but the
equation dety(AB) = det,(BA) does not hold in general. We also note that we have

A B
det,, (O C’> = dety A det, C

if A and C are square matrices.



Example 3.3. We have

N—1
deto, 1y = Z o) = H (1+ja).
j=1

€GN

For an n by kn matrix A = (a;;) € Mat,, xn, the k-wreath determinant of A is
defined by
wrdety A 1= det_l/k(A ® ]-k,l)- (31)

Note that the 1-wreath determinant wrdet; is the ordinary determinant. The wreath-
determinant wrdety, is characterized as a polynomial function on the space Mat,, r»,
by the following three conditions up to a scalar multiple (see [10] for the proof):

(W1) wrdety is multilinear in columns.
(W2) wrdety(QA) = (det Q) wrdety(A) for Q € Mat,, and A € Mat,, k.

(W3) wrdety(AP(c)) = wrdety(A) for 0 € K and A € Mat,, . In other words, if
A; € Mat, , (1 =1,2,...,n), then

1=
WI‘detk(Alp(O'l) AQP(O’Q) ce AnP(O'n>) = Wrdetk(Al A2 ce An)
for any o1,...,0, € G.

In fact, instead of (W3), the k-wreath determinant satisfies a slightly stronger relative
invariance

(W3') wrdeti(AP(g9)) = Xn.k(g) wrdety(A) for g € X x &, = 6,16 < S, and
A € Mat,, iy, where X, is defined by

Xn.k(9) = (sgn )", g=(0,7) € X x S. (3.2)
(W3') means that if A; € Mat, (i =1,2,...,n), then
Wrdetk(AT(l) AT(2) AT(n)) = (sgn 7')]c wrdety (A1 Aa ... A,)

for any 7 € &,,. This readily follows from (W2) by taking @ = I ® P(7). Here we
regard the wreath product &, 1 & as a subgroup of Sy, so that we have

P(g) = P(o)- (k@ P(7)),  g=(0,7) € 6,16,.

Remark 3.4. The definition of the wreath determinant is a bit different from the origi-
nal one in [10], where the k-wreath determinant is defined for the kn by n rectangular
matrices.

Example 3.5. We have

1
1
Wrdetk(In (24 11,k) = det_l/k(In [029] ]-k) = det_l/k
1,
, kl\n»
= (det_y/p 1p)" = (ﬁ) : (3.3)



More generally, for A € Mat,,, we have

I\n
wrdety,(A® 114) = wrdety(A - (I, ® 11.4)) = (%) (det A)~.

4 Formulas for zonal spherical functions

The alpha-determinant is written as a linear combination of immanants as
deto A = Z 2 fr(a) Imm* A, (4.1)
AFN

where f* = x*(e), e being the identity permutation, and

I\ A
:HH 1+ (-1

is the modified content polynomial for A\. This is immediate from the well-known
expansion formula

o’ = % Z .fAf)\(O[)X)\- (42)

TARN

Theorem 4.1. For g € &, we have

kk
wn,k(9) = (6] det_1/k((In ® 1x) P(g))

ER\n 1y v (9)
=) 25

yeX

Proof. By (4.1) and Lemma 2.2 (i), we have

det_ (I, ® 1;) P( |g<| > P A1k (9).
v ’ - (kn)! Ark

Since fa(—1/k) = 0 if \; > k and ITmm*(A ® 1;,1) = 0 unless A > (k"), only the
term for A = (k™) survives in the righthand side of the equation above. By the hook
formula for f* and the definition of fy(a), we readily obtain

(kn)!

FED oy (1/R) = >

This completes the proof of the first equality. The second equality is immediate by
the definition of the alpha-determinant. O

Using Theorem 4.1, we obtain the stability of w,, ; with respect to n as well as the
non-vanishingness of wy,  when k£ 4 1 is prime as follows.

Corollary 4.2. If m > n, then wy, k(9) = wnx(g) for any g € Sy, where we regard
g € G, as an element in Gy, by the standard embedding.



Proof. We regard G as a direct product &7 x &' ". If g € &y, and (y1,y2) €
G} x &)™, then gy and y» are disjoint permutations, and hence it follows that

v(gy1y2) = v(gy1) + v(y2). Thus we have

wm,k(g) = (%’:)m Z (_%)V(gylz!?)
. (y1,92)EGPXST ™"
kym , U
B (%) Z(}i) o Zmn(;) (y2)
sk Y266

() x ("

Yy1EG]
= wnk(9)
as desired. O

Theorem 4.3. Let p be an odd prime. The function wy, ; does not vanish on Sy, if
k=p-—1.

Proof. By Theorem 4.1, we have
(p—1)P=I\n 1 \vev) 1
n =|— i =— 1=1 d
wn.k(9) ( —1) ) Z( p—l) |J<|Z (mod p)
yeX yeX

for any g € Gk, which implies the desired nonvanishingness. O

Remark 4.4. In 7], the inverse of Theorem 4.3 is proved. In fact, the authors show that
if n > 3 and k+1 is composite, then one can find M € M,, ;, such that [(det X)k} =
0.

We give a formula for the function wy, ; in terms of the wreath determinant.

Lemma 4.5. For A € Mat,, i, we have
1 n
WrdetkA: Wlmm(k )(A®1k;’1)

Proof. By the definition of the wreath determinant and the formula (4.1), we have

wrdety, A = det_q,(A® 1x,1)

_ 1 ; Z FAAA(=1/k) ITmm™ (A ® 15.4).

(kn) AFkn

The conclusion follows from a similar discussion as in the proof of Theorem 4.1. [

Theorem 4.6. For g € Gy, we have

wn.k(g9) = M(j(ﬁ)' [(det X)k]]\/[(g)
_ wrdety (I, ® 111)P(g))

Wrdetk(In (24 ll,k)




Proof. By Lemma 4.5, we see that

1
wrdet,(X ® 11 ) = kTImm( X ® 1.).

On the other hand, by (W2) and (3.3), we have
kElnm
wrdety (X ® 114) = (det X)* wrdety (I, @ 1, 4) = (z?k) (det X)".

Thus it follows that

1 n

Hence, by Lemma 2.2 (ii), we have the first equality. The second equality is obtained
by Theorem 4.1 and the equation

det_q 5 ((In ® 11)P(g)) = wrdety((In ® 11x)P(g)),
which follows from the definition of the wreath determinant. O

As a corollary, we see that the relative invariance of the function wy,  with respect
to the wreath product 61 6,,.

Corollary 4.7. For any g € Gy, and h,h' € &, 16, we have

wn,k(hgh/) = Xn,k(hh,)wn,k'(g)-

Here X1 is the character of &1 6, defined by (3.2). In particular, wy i is Gk 16, -
bitnvariant if k is even.

Proof. Let h = (o,7),h = (¢/,7") € X 1 &,, = 6,1 S,,. Since
(I, ®115)P(h) = (I, @11 1) P(0)(Ix @ P(1)) = P(7)(I, @ 11 1),

we have

wrdety ((I, ® 11 1) P(hgh’))
wrdety (I, ® 11,1)

_ wrdety (P(7)(L, ® 11,1)P(
Wrdetk( ® 1 k)

(

det ( Ih ® 11 k)P(g))
_ P k 7\ WII k ,
det (T) X’I’L,k?(h ) Wrdet}k(In ® 117k)
= Xn,k(hh,)wn,k'(g)

as desired. ]

wn,k(hgh') =
g)P(h'))




5 Applications

5.1 The Alon-Tarsi conjecture on Latin squares

A Latin square of degree n is an n by n matrix whose rows and columns are permu-
tations of 1,2,...,n. The set of all Latin squares of degree n is denoted by LS(n).

Example 5.1. There are twelve Latin squares of degree 3:

1 2 3 1 2 3 2 31 2 31
LS(3) = 2 3 11,13 1 2,11 2 3,13 1 2},
3 1 2 2 3 1 3 1 2 1 2 3
3 1 2 3 1 2 1 3 2 1 3 2
1 2 3,12 3 1,12 1 3,13 2 1},
2 3 1 1 2 3 3 21 2 1 3
2 1 3 2 1 3 3 2 1 3 2 1
1 3 20,13 2 1,11 3 2,12 1 3
3 2 1 1 3 2 2 1 3 1 3 2
For L € LS(n), we associate 2n permutations r1,...,7y,¢1,...,C, € &, to it by
r1(1) r1(n) (1) cn(1)
L - =
rn(1) n(n) c1(n) cn(n)

Then we define . N
sgn L := H sgnr; H sgn ¢;,
i=1 i=1

and we call L even (resp. odd) if sgn L = +1 (resp. —1). We denote by els(n) and
ols(n) the numbers of even and odd Latin squares of degree n respectively. Since the
map LS(n) 3 L — P(o)L € LS(n) for a given o € &,, is a bijection and sgn(P(c)L) =
(sgno)™sgn L for L € LS(n), we have els(n) = ols(n) when n is odd. When n is even,
it is conjectured that the numbers of even and odd Latin squares are always different.

Conjecture 5.2 (Alon-Tarsi conjecture). els(n) # ols(n) if n is even.

This conjecture originally arose from the study of colorings of graphs. Indeed, if
the Alon-Tarsi conjecture for even n is true, then we see that the Dinitz conjecture
below for n follows [1].

Proposition 5.3 (Dinitz conjecture). The line graph of the biclique (or complete
bipartite graph) K,  is n-choosable.

We remark that the Dinitz conjecture itself is already settled down by Galvin [4].
There are also various statements which are equivalent to or related with the Alon-
Tarsi conjecture (see, e.g. [6, 11]). The Alon-Tarsi conjecture is proved to be true in
the case where n = p+ 1 by Drisko [2] and in the case where n = p — 1 by Glynn [5],
where p is an odd prime; We also refer to [3].



We need another statement which is equivalent to the Alon-Tarsi conjecture. De-
fine

L(n):={o=(01,...,0,) €S} | P(o1) +---+ P(o,) =1, }.

For o = (01,...,05) € L(n), the matrix

L(o) := Z i P(oy)
i=1

is a Latin square of degree n, and every Latin square is uniquely obtained in this way.
A Latin square L = L(o) (o € L(n)) is called symbol even (resp. symbol odd) if

n
symsgn L := H sgn o;
i=1

is +1 (resp. —1). We denote by sels(n) and sols(n) the number of symbol even and
symbol odd Latin squares of degree n respectively. It is known that

sels(n) — sols(n) = (—1)""=1/2(els(n) — ols(n))
for every n (see, e.g. [5]), so Conjecture 5.2 is equivalent to the
Conjecture 5.4. sels(n) # sols(n) if n is even.

Since

n

Z H(sgn )

O1,..,0n €Sy, =1
P(o1)++P(on)=1,

= Z symsgn L(o)

ocl(n)

= Z symsgn L = sels(n) — sols(n),
LeLS(n)

[(det X)"]y,

we obtain the following result by Theorem 4.6.

Theorem 5.5. When n is even, the Alon-Tarsi conjecture on LS(n) is equivalent to
the following assertions.

(1) [(det X)"]; #0. n
—

(2) wrdet, ((In ® 11,,)P(gn)) = wrdety (I, ... I,) #0.

(3) wn,n(gn) # 0.
Here the permutation g, € &,2 is given by

gn(i—1n+j)=G—-1)n+1, 1<4,5<n, (5.1)
which is a product of n(n — 1)/2 disjoint transpositions and M(gy,) = 1,,.
Thus, Theorem 5.5 (3) together with Theorem 4.3 gives another proof of the

Corollary 5.6 (Glynn [5]). The Alon-Tarsi conjecture for Latin squares of degree n
s true if n = p — 1 for an odd prime p.



5.2 A remark on Kumar’s conjecture on plethysms

Let k and n be positive integers as heretofore, and V' be a finite dimensional vector
space over C such that dim V' > n. The symmetric group &,,, acts on V®™ from the
right by

(VM1 ® - ®VUn) 0= V(1) @ QUg(m) (0 € Gp).
This action linearly extends to that of the group algebra C&,,,. We understand that

the symmetric tensor power S™ (V') of V is a subspace of V®™ spanned by the vectors
of the form

1 1
V1 U 5:U1®"'®U7n'm Z a:m Z Vo(1) @+ @ Vg(m)- (5.2)
oeG,, oceS,y,
Set
H=Kx6,=6,16, K =68 H=K x6,=6,16,
and

1
e(G) = @ D g eC6y,

geG
for G < &,,. We have then

ST(SFV) = VO e(H),  SH(S"V) = VO . e(3()).
Define a linear transformation 7 = 7, on V®kn by

n

Ve Sl R . Ruie - R Qup
———— ———

k k
k

U @ QU R U@ @y € VO
— —
n n

or equivalently,
T(V1 ®V2 @ @ Ugn) = (V1 ®V2 @+ @ Vkn) * Gn.k;
where the permutation g, € Gy, is defined by
Ik (0 = n+7) = — Dk +14, 1<i<k, 1<j<n (5.3)
We notice that g, , equals g, defined in (5.1). Using this, we define a map h,, by
Tk = poToi: S(SHV) & VERR T, yekn L gh(gny),

where i is the inclusion and p is the natural projection (i.e. multiplication by e(H’)
from the right as in (5.2)). Notice that h, 1 (v) = v+ g, xe(H') for v € S*(S*V). This
map is clearly a GL(V)-intertwiner between two left GL(V)-modules S™(S¥V) and
Sk(S™V).



Example 5.7.

V1 QUg 4+ 12 QU V3 QUs+ 04 RV
h2,2((vlv2)(v3”4)):(pOT)< - 22 — o= 42 : 3)

1
:4}?(?}1®03®02®v4+v2®v3®vl®v4

+’01®U4®02®1}3+02®U4®01®1}3>

_ (v1v3)(v2v4) + (v203) (V104) + (V104) (V203) + (V204) (V103)
h 4
Motivated by the Hadamard-Howe conjecture on the maximality of h,, x, it is con-
jectured by Kumar that ker h,, ;, does not contain Ei/kn), the irreducible GL(V')-module
with highest weight (k) = (k, ..., k), if n < k and k is even (see [11, Conjecture 1.6]).
We focus on this problem below.
By the Schur-Weyl duality

vekn = B Ey IMy,,
A-kn

where Mgn is the irreducible Gg,-module corresponding to A, the multiplicity of E€‘/
in S™(S*V) as a left GL(V)-module is equal to dim(M3,, - e(H)), which is majorated
by dim(My,, - (X)) = K(4n), the Kostka number.

Remark 5.8. Similarly, we see that the multiplicity of E{\, in S¥(S™V) is majorated by
K\ (nty- Especially, if n > k, then Sk(S™V) does not contain Ei,k ) since K (inymr) = 0.

Lemma 5.9. The multiplicity of Egcn) in S™(S*V) is exactly one if k is even.

Proof. Since we know that the multiplicity dim(M,(j:) -e(H)) of Eifn) in S*(S*V) is
at most one, we should show that it is at least one. Take a nonzero X-invariant vector
w E M,(J:L) - e(X), which is unique up to constant multiple since dim M,(:;) ce(X) =
Knykny = 1. We see that

w- g =wnk(g)w+w(g) (5.4)

L(g) is a certain vector in the orthocomplement of M,(CI::) -e(X)
in M,(CI;) with respect to the invariant inner product on M,(JZ ). Since k is even, we

see that wy, x(g) = 1 for g € H by Corollary 4.7. Hence it follows that

for g € &, where w

w- e(H) = w- e(H)e(X) = ﬁ S (weg)e(®) =w+ ﬁ S wh(g) - e(X) = w.
geFH geEH

Namely, we have M,(J:L) -e(X) C M,(;;) - e(H). Thus we see that
dim(M - e(H)) > dim(M ) - e(K)) = Kgny gy = 1
as desired. O



Remark 5.10. If k is odd, then w - g = (sgn7)w for w € M,(JZL) and g = (0,7) € H.
Thus, in this case, we have M,(C];n) - e(3H) = 0, and hence S"(S*V) does not contain

EV).

We restrict our attention on the special case where k = n and n is even. We
have X = X' and H = H’ in this case. The map h,, ., is then a GL(V)-intertwiner

from S™(S™V) onto itself. Since the multiplicity of Egln) in S™(S™V) is one, the
restriction of hy,, on Egl ") must be a scalar by Schur’s lemma, and the scalar is
given by wy n(gn) by (5.4) since hp n(v) = v - gne(H). Therefore we obtain the

Theorem 5.11. When n is even, we have

hn,n (U) = Wn,n (gn)v

if v e S"(S"V) belongs to the (n™)-isotypic component. In particular, kerhy, , D
EE,” ) if and only if wy n(gn) = 0.

As a corollary, we obtain the

Corollary 5.12 ([11, Theorem 1.9 (b)]). The Alon-Tarsi conjecture on LS(n) is

equivalent to the assertion that ker hy, , does not contain E&fn).
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