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Abstract

In 2020, Diene, Thabet and Yusuf proposed a new multivariate signature
scheme whose public key is a set of multivariate “cubic” polynomials over
a finite field. In the present paper, we show how to recover its equivalent
secret key.
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1 Introduction

A multivariate public key cryptosystem is a cryptosystem whose public key is a set
of multivariate non-linear polynomials over a finite field, and has been considered
to be a candidate of post-quantum cryptography. In fact, in NIST’s standard-
ization project of post-quantum cryptography, Rainbow [3] and GeMSS [2] were
selected as a finalist and an alternative candidate respectively in the final (third)
round [12].

Most multivariate public key cryptosystems, including these two signature
schemes, are constructed by quadratic polynomials. One of the reasons why there
have been few schemes with (over) cubic polynomials is that the number of co-
efficients in cubic polynomials is much more than that in quadratic polynomials
and then the key size is much larger. While there might be a cubic type scheme
which is secure enough to compensate for the disadvantage in efficiency, we do
not have such schemes at the present time (see e.g. [9, 4, 10, 1, 11, 6, 7]). Re-
cently, Diene-Thabet-Yusuf [5] proposed a multivariate signature scheme using
cubic polynomials, whose signature generations are fast enough. However, such a
structure for speeding up the signature generation has yielded a vulnerability. In
the present paper, we show that how to recover its equivalent secret key of this
signature scheme efficiently.
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2 Diene-Thabet-Yusuf’s signature scheme

We first describe the construction of Diene-Thabet-Yusuf’s signature scheme [5].
Let q be a power of prime, Fq a finite field of order q and r,m, n ≥ 1 integers

with m := r2, n := 2r2 = 2m. Denote by k1(x), . . . , kn(x) linear polynomials of
x = t(x1, . . . , xn) and put

P = P (x) :=





k1(x) · km+1(x) kr+1(x) · km+r+1(x) · · · km−r+1(x) · kn−r+1(x)
k2(x) · km+2(x) kr+2(x) · km+r+2(x) · · · km−r+2(x) · kn−r+2(x)

...
...

. . .
...

kr(x) · km+r(x) k2r(x) · km+2r(x) · · · km(x) · kn(x)




.

Generate an r× r matrix M = M(x) whose entries are (constants or) linear poly-
nomials of x such that the entries ofM−1 are also (constants or) linear polynomials
of x. Define the cubic polynomial map G : Fn

q → Fm
q , G(x) = t(g1(x), . . . , gm(x))

by 


g1(x) · · · gm−r+1(x)

...
. . .

...
gr(x) · · · gm(x)



 = M(x) · P (x).

Diene-Thabet-Yusuf’s signature scheme is as follows [5]ɽ

Secret key: Two invertible affine maps S : Fn
q → Fn

q , T : Fm
q → Fm

q and
polynomial matrices P,M .

Public key: The cubic polynomial map

F := T ◦G ◦ S : Fn
q → Fm

q .

Signature generation: For a message m ∈ Fm
q , compute y = (y1, . . . , ym) :=

T−1(m). Next choose u1, . . . , um ∈ Fq randomly and find x ∈ Fn
q satisfying

M(x)−1 ·




y1 · · · ym−r+1
...

. . .
...

yr · · · ym



 =




u1 · k1(x) · · · um−r+1 · km−r+1(x)

...
. . .

...
ur · kr(x) · · · um · km(x)



 ,

(km+1(x), . . . , k2m(x)) = (u1, . . . , um).

The signature for the message m is s = S−1(x).

Signature verification: Verify whether F (s) = m holds.

Since M is generated such that the entries of M(x)−1 are (constants or) linear
polynomials, the signature generation requires only solving a system of n linear
equations of n variables. The complexity of the signature generation is thus O(n3).

3 Key recovery attack on DTY signature scheme

We now propose our key recovery attack on Diene-Thabet-Yusuf’s signature scheme.

Ƚ!3!Ƚ



Let K : Fn
q → Fn

q be the linear map with K(x) = (k1(x), . . . , kn(x)),

P̃ : Fn
q → Fm

q the quadratic polynomial map with

P̃ (x) = t(p1(x), . . . , pm(x)) := t(x1 · xm+1, . . . , xm · xn)

and M̃(x) :=

(M(x)

. . .
M(x)

)
. It is easy to see that

G(x) = M̃(x)P̃ (K(x)),

and then
F (x) = (TM̃(x))P̃ ((K(S(x))).

Since T,K, S are affine maps and the entries of M̃−1 are (constants or) linear poly-
nomials of x, there exist an m×m matrix L = L(x) whose entries are (constants
or) linear polynomials and quadratic polynomials h1(x), . . . , hm(x) such that

L(x)F (x) = t(h1(x), . . . , hm(x)).

We can easily check that one can find such an L in polynomial time and the
quadratic polynomials h1(x), . . . , hm(x) are linear sums of p1((K(S(x))), . . . ,
pm((K(S(x))). Then the coefficient matrices of h1(x), . . . , hm(x) are in the forms

t(KS)

(
0m ∗
∗ 0m

)
(KS).

This means that the polynomials h1(x), . . . , hm(x) are the balanced oil-vinegar
type and then that Kipnis-Shamir’s attack on the (balanced) oil-vinegar signature
scheme [13, 8, 9] is available for (h1(x), . . . , hm(x)). We can recover a linear map
S1 : Fn

q → Fn
q satisfying

(KS)S1 =

(
∗m ∗
0 ∗m

)

in polynomial time. It is easy to see that the quadratic polynomials in L(x)F (S1(x))
are in the forms

tx

(
0m ∗
∗ ∗m

)
x+ (linear polynomial of x).

This is equivalent to the polynomials in the balanced oil-vinegar signature scheme
[13]. We thus conclude that the attacker can generate dummy signatures for
arbitrary messages feasibly and this signature scheme is not secure at all.
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