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Abstract

We would like to study the Hochschild homology and cohomology for
algebras, to some possible extent of understanding the first level.
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1 Introduction

We as beginners would like to review and study the Hochschild (H) cohomology
and homology theory for algebras, just following Khalkhali [22] in part only.
This is a sort of yabu-kogi, but along such a route, where yabu-kogi in Japanese
means a mountain climbing without or out of a route. Within the time limited
for publication, we made some considerable effort to study this subject in a
decorated but incomplete form.
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2 Hochschild cohomology

Let A be an algebra over the field C of complex numbers. Let M be an A-
bimodule in the sense that M is a left and right A-module by left and right
actions of A on M compatible in the sense that a(mb) = (am)b for any a, b ∈ A
and m ∈ M .

The Hochschild cochain complex of A with coefficients in M , denoted as
(C∗(A,M) = C∗(⊗∗A,M), δ∗), is defined as that C0(⊗0A,M) = M ,

Cn(A,M) = Cn(⊗nA,M) = Hom(⊗nA,M)

as the additive group of all linear maps from the n-fold tensor product ⊗nA to
M , for n ≥ 1, and the differential as the boundary map

δ = δn : Cn(⊗nA,M) → Cn+1(⊗n+1A,M)

for n ≥ 0 is given by (δ0m)(a) = ma − am = [m, a] for m ∈ M and a ∈ A, and

(δnf)(a1, · · · , an+1) = a1f(a2, · · · , an+1)

+
n∑

j=1

(−1)jf(a1, · · · , ajaj+1, · · · , an+1) + (−1)n+1f(a1, · · · , an)an+1

for f ∈ Cn(⊗nA,M) for n ≥ 1 (corrected by replacing j + 1 to j the power of
(−1) in the sum).

� We may check that

Proposition 2.1. It holds that the composition δn+1 ◦ δn = 0 for n ≥ 0.

Proof. � Indeed, we compute that for m ∈ M and a1, a2 ∈ A,

(δ1 ◦ δ0)(m)(a1, a2) = δ1([m, ·])(a1, a2)
= a1[m, a2] − [m, a1a2] + [m, a1]a2

= a1(ma2 − a2m) − ma1a2 + a1a2m + (ma1 − a1m)a2 = 0.

We also compute that for f ∈ C1(A,M), a1, a2, a3 ∈ A,

(δ2 ◦ δ1)(f)(a1, a2, a3) = a1(δ1f)(a2, a3)
− (δ1f)(a1a2, a3) + (δ1f)(a1, a2a3) − (δ1f)(a1, a2)a3

= a1[a2f(a3) − f(a2a3) + f(a2)a3]
− [a1a2f(a3) − f(a1a2a3) + f(a1a2)a3]
+ [a1f(a2a3) − f(a1a2a3) + f(a1)a2a3]
− [a1f(a2)a3 − f(a1a2)a3 + f(a1)a2a3] = 0
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by cancellation (transposed). In general, for f ∈ Cn(⊗nA,M),

(δn+1 ◦ δn)(f)(a1, · · · , an+2) = a1(δnf)(a2, · · · , an+2)
n+1∑
j=1

(−1)j(δnf)(a1, · · · , ajaj+1, · · · , an+2) + (−1)n+2(δnf)(a1, · · · , an+1)an+2

= a1[a2f(a3, · · · , an+2) +
n∑

k=1

(−1)kf(a2, · · · , ak+1ak+2, · · · , an+2)

+ (−1)n+1f(a2, · · · , an+1)an+2] − [a1a2f(a3, · · · , an+2)

− f(a1a2a3, a4, · · · , an+2) +
n∑

k=2

(−1)kf(a1a2, · · · , ak+1ak+2, · · · , an+2)

+ (−1)n+1f(a1a2, a3, · · · , an+1)an+2]

+
n+1∑
j=2

(−1)j [a1f(a2, · · · , ajaj+1, · · · , an+2)

+
j−2∑
k=1

(−1)kf(a1, · · · , akak+1, · · · , ajaj+1, · · · , an+2)

+ (−1)j−1f(a1, · · · , aj−1ajaj+1, · · · , an+2) + (−1)jf(a1, · · · , ajaj+1aj+2, · · · , an+2)

+
n∑

k=j+1

(−1)kf(a1, · · · , ajaj+1, · · · , ak+1ak+2, · · · , an+2)

+ (−1)n+1f(a1, · · · , ajaj+1, · · · , an+1)an+2]

+ (−1)n+2[a1f(a2, · · · , an+1)an+2

+
n∑

l=1

(−1)lf(a1, · · · , alal+1, · · · , an+1)an+2 + (−1)n+1f(a1, · · · , an)an+1an+2]

which should be zero by cancellation(transposed)!

It then follows that the cohomology groups of the chain complex (C∗(⊗∗A, M), δ∗)
are defined, and the cohomology groups are denoted by Hn(A,M) = Hn(⊗nA,M)
for n ≥ 0. Namely,

Hn(A, M) = ker(δn)/im(δn−1)

the quotient abelian group of the kernel of δn by the image of δn−1. In particular,
H0(A,M) = ker(δ0). The cohomology H∗(A,M) in this sense is said to be the
Hochschild cohomology of an algebra A with coefficients in an A-bimodule M .

Example 2.2. Let M = A, with bimodule structure as a(b)c = abc for a, b, c ∈
A. In this case, the Hochschild complex C∗(⊗∗A,A) is also said to be the de-
formation or Gerstenhaber complex of A. The complex plays an important role
in deformation theory of associative algebras, pioneered by Gerstenhaber [16],
[17]. In particular, it is shown that H2(A, A) is the space of equivalence classes
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of infinitesimal deformations of A, and H3(A,A) is the space of obstructions for
deformations of A.

Example 2.3. Let M = A∗ = Hom(A,C) the linear dual space of A, with
A-bimodule structure given by (afb)(c) = f(bca) for a, b, c ∈ A and f ∈ A∗.

� Note that for a1, a2, b1, b2 ∈ A,

((a1 + a2)f(b1 + b2))(c) = f((b1 + b2)c(a1 + a2))
= f(b1ca1 + b1ca2 + b2ca1 + b2ca2)
= (a1fb1)(c) + (a2fb1)(c) + (a1fb2)(c) + (a2fb2)(c),

(a1(a2fb1)b2)(c) = (a2fb1)(b2ca1) = f(b1(b2ca1)a2)
= f((b1b2)c(a1a2)) = ((a1a2)f(b1b2))(c).

This bimodule is relevant to the cyclic cohomology theory, as (not) seen
later in this chapter, such that the Hochschild cohomology groups Hn(A, A∗)
and the cyclic cohomology groups HCn(A) (not) defined later makes a long
exact sequence.

There is the identification

Cn(⊗nA,A∗) = Hom(⊗nA,A∗) ∼= Hom(⊗n+1A,C), f �→ ϕ

defined by ϕ(a0, a1, · · · , an) = f(a1, · · · , an)(a0), so that the Hochschild differ-
ential δ is transformed to the differential b, given by, for n ≥ 1,

(bϕ)(a0, a1, · · · , an+1)

=
n∑

j=0

(−1)jϕ(a0, · · · , ajaj+1, · · · , an+1) + (−1)n+1ϕ(an+1a0, a1, · · · , an)

but

(bϕ)(a0, a1) = −ϕ(a0a1) + ϕ(a1a0)

=
n=0∑
j=0

(−1)j−1ϕ(a0, · · · , ajaj+1, · · · , an+1) + (−1)n=0ϕ(an+1a0, a1, · · · , an)

(corrected) (cf. [12]).

Proof. � Check that b0 = δ0 : A∗ → C1(A,A∗), because

(δ0f)(a1)(a0) = (fa1)(a0) − (a1f)(a0)
= f(a1a0) − f(a0a1) = (b0f)(a0, a1)

for f = ϕ ∈ A∗ = Hom(⊗0A,A∗) ∼= Hom(A,C).
� Check that b1 = δ1 : C1(A, A∗) → C2(⊗2A,A∗), because

(δ1f)(a1, a2)(a0) = a1f(a2)(a0) − f(a1a2)(a0) + f(a1)a2(a0)
= f(a2)(a0a1) − f(a1a2)(a0) + f(a1)(a2a0)
= ϕ(a0a1, a2) − ϕ(a0, a1a2) + ϕ(a2a0, a1) = (b1ϕ)(a0, a1, a2).
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� Check that b2 = δ2 : C2(⊗2A,A∗) → C3(⊗3A,A∗), because

(δ1f)(a1, a2, a3)(a0) = a1f(a2, a3)(a0) − f(a1a2, a3)(a0)
+ f(a1, a2a3)(a0) − f(a1, a2)a3(a0)

= f(a2, a3)(a0a1) − f(a1a2, a3)(a0)
+ f(a1, a2a3)(a0) − f(a1, a2)(a3a0)

= ϕ(a0a1, a2, a3) − ϕ(a0, a1a2, a3)
+ ϕ(a0, a1, a2a3) − ϕ(a3a0, a1, a2) = (b2ϕ)(a0, a1, a2, a3).

We may denote the Hochshild complex C∗(⊗∗A,A∗) = C∗(⊗∗+1A) simply
by C∗(A) and the Hochschild cohomology H∗(A,A∗) by Hc∗(A).

Example 2.4. We consider the case of n = 0. We have

H0(A, M) = ker(δ0) = {m ∈ M |ma = am for any a ∈ A}.

In particular, for M = A∗, as checked above,

Hc0(A) = H0(A, A∗) = {f ∈ A∗ | f(ab) = f(ba) for any a, b ∈ A}

is the space of traces on A, denoted as Tr(A). Note that C0(A,A∗) = A∗, and
for f ∈ A∗, bf = 0 if and only if f(a0a1) = f(a1a0) for a0, a1 ∈ A.

Example 2.5. We consider the case of n = 1. A Hochschild 1-cocycle f ∈
C1(A,M) with δ1f = 0, so that f ∈ Z1(A, M), is a derivation, that is a C-
linear map f : A → M such that

f(ab) = af(b) + f(a)b, a, b ∈ A.

Because (δ1f)(a, b) = af(b)− f(ab)+ f(a)b = 0. A 1-cocycle f ∈ Z1(A,M) is a
coboundary in im(δ0) = B1(A,M) if and only if it is an inner derivation, that
is, f(a) = [m, a] for a ∈ A. Note that for a, b ∈ A,

a[m, b] + [m, a]b = a(mb − bm) + (ma − am)b
= −abm + mab = [m, ab].

Therefore,

H1(A,M) =
Z1(A,M)
B1(A, M)

=
Derivations A → M

Inner derivations
=

Der(A,M)
Inn(A,M)

.

The H1 group is said to be the space of outer derivations of A with values in
M , denoted as Out(A,M). In particular, for M = A, the space Der(A,A) of
derivations of A is viewed as the Lie algebra of noncommutative vector fields on
the noncommutative space represented by A.
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� Indeed, for δ1, δ2 ∈ Der(A, A), the Lie bracket of δ1, δ2 is defined as
[δ1, δ2] = δ1δ2 − δ2δ1 ∈ Der(A,A). Check that for a, b ∈ A,

[δ1, δ2](ab) = δ1(δ2(ab)) − δ2(δ1(ab))
= δ1(aδ2(b) + δ2(a)b) − δ2(aδ1(b) + δ1(a)b)
= aδ1(δ2(b)) + δ1(a)δ2(b) + δ2(a)δ1(b) + δ1(δ2(a))b
− aδ2(δ1(b)) − δ2(a)δ1(b) − δ1(a)δ2(b) − δ2(δ1(a))b

= a[δ1, δ2](b) + [δ1, δ2](a)b.

Unless A is commutative, Der(A, A) need not be an A-module.
� For instance, for δ ∈ Der(A, A), define a left action cδ(·) = δ(·c) by c ∈ A.

Then, for a, b ∈ A, in general,

(cδ)(ab) = δ(abc) = aδ(bc) + δ(a)bc = a(cδ)(b) + δ(a)bc.

But if A is commutative, then

(cδ)(ab) = δ(abc) = δ(acb) = acδ(b) + δ(ac)b = a(cδ)(b) + (cδ)(a)b.

Hence, cδ ∈ Der(A,A).

Example 2.6. We consdier the case of n = 2. The Hochschild cohomology
group H2(A,M) classifies abelian (or singular) extensions of A by M (cf. [21]).
A singular extension B of A by M is defined by a short exact sequence of
algebras:

0 → M → B → A → 0

such that B is unital, M has trivial multiplication as M2 = {0}, and the induced
A-bimodule structure on M coincides with the original bimodule structure.

� It says that M is viewed as a nilpotent part as that

M ∼=
(

0 M
0 0

)
so that

(
0 M
0 0

)2

=
(

0 0
0 0

)
.

Note also that A ∼= B/M = {b + M | b ∈ B} as cosets. Then

(b + M)M(c + M) = (bM + M2)(c + M) = bMc ⊂ M.

Two such abelian (or singular) extensions B and B′ are said to be isomor-
phic if there is a unital algebra map ρ : B → B′ which induces the identity maps
on M and A. Such a map ρ existed is necessarily an isomorphism. Namely,

0 −−−−→ M −−−−→ B
p−−−−→ A −−−−→ 0∥∥∥ id

⏐⏐) ρ

⏐⏐)∼= id

⏐⏐) ∥∥∥
0 −−−−→ M −−−−→ B′ p−−−−→ A −−−−→ 0

Let Exts(A,M) denote the set of isomorphisms classes of such singular ex-
tensions. Define a natural bijection between as

Exts(A,M) ∼= H2(A,M)
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as follows. Given such a singular extension B of A by M . Let s : A → B be a
linear splitting for the projection p from B onto A as an algebra homomorphism,
so that p◦s is the identity map on A. Let f : A⊗A → M be the curvature for s,
defined by f(a, b) = s(ab)− s(a)s(b) for any a, b ∈ A and (a, b) = a⊗ b ∈ A⊗A
(where −f may be used as the definition of the curvature for s, cf. [21]).

� Note that

p(f(a, b)) = (p ◦ s)(ab) − (p ◦ s)(a)(p ◦ s)(b) = ab − ab = 0,

and thus f(a, b) ∈ M .
It then follows that f is a Hochschild 2-cocycle in Z2(A,M) with δ2f = 0

and its class in H2(A,M) is independent of the choice of the splitting s.
� Check that for (a1, a2, a3) = a1 ⊗ a2 ⊗ a3 ∈ ⊗3A,

(δ2f)(a1, a2, a3) = a1f(a2, a3) − f(a1a2, a3) + f(a1, a2a3) − f(a1, a2)a3

= a1(s(a2a3) − s(a2)s(a3)) − (s(a1a2a3) − s(a1a2)s(a3))
+ (s(a1a2a3) − s(a1)s(a2a3)) − (s(a1a2) − s(a1)s(a2))a3 = 0

with a1(s(a2a3) − s(a2)s(a3)) = s(a1)(s(a2a3) − s(a2)s(a3)) and (s(a1a2) −
s(a1)s(a2))a3 = (s(a1a2) − s(a1)s(a2))s(a3), because a1 = s(a1) + M and a3 =
s(a3) + M , so that a1 and a3 can be replaced with s(a1) and s(a3) mod M
respectively, and the left and right multiplications on M by A are defined by
mod M . Also, the same calculation holds when s is replaced by another splitting
s′ from A to B. For the corresponding curvatures fs = f and fs′ , it should hold
that the difference fs − fs′ can be in the image δ1(C1(A,M)).

� Check the following. Note that p(s(a) − s′(a)) = 0 for any a ∈ A. Hence
s − s′ : A → M is defined and in C1(A,M). Then

(δ1(s − s′))(a1, a2) = a1(s − s′)(a2) − (s − s′)(a1a2) + (s − s′)(a1)a2

= s(a1)(s − s′)(a2) − (s − s′)(a1a2) + (s − s′)(a1)s′(a2)
= (s(a1)s(a2) − s(a1a2)) + (s′(a1a2) − s′(a1)s′(a2)),

which shows that fs′ − fs = δ1(s − s′) ∈ δ1(C1(A,M)).
Conversely, given a 2-cochain f : A ⊗ A → M , define a multiplication on

B = A ⊕ M the direct sum by

(a,m)(a′,m′) = (aa′, am′ + ma′ − f(a, a′))

for (a,m), (a′,m′) ∈ B (corrected by multiplying −1 to f). This product on B
defines an associative multiplication if and only if f is a 2-cocycle.

� Check that

((a,m)(a′, m′))(a′′,m′′) = (aa′, am′ + ma′ − f(a, a′))(a′′,m′′)
= (aa′a′′, (aa′)m′′ + (am′ + ma′ − f(a, a′))a′′ − f(aa′, a′′)),
(a,m)((a′, m′)(a′′,m′′)) = (a, m)(a′a′′, a′m′′ + m′a′′ − f(a′, a′′))
= (aa′a′′, a(a′m′′ + m′a′′ − f(a′, a′′)) + ma′a′′ − f(a, a′a′′)).
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Associativity of the product implies that

f(a, a′)a′′ + f(aa′, a′′) = af(a′, a′′) + f(a, a′a′′).

Equivalently,

(δ2f)(a, a′, a′′) = af(a′, a′′) − f(aa′, a′′) + f(a, a′a′′) − f(a, a′)a′′ = 0.

Namely, f ∈ Z2(A,M). Conversely, this condition implies the product associa-
tivity.

The extension associated to such a 2-cocycle f is given by

0 → M → B = A ⊕f M → A → 0,

with A ⊕f M = A ⊕ M with the multiplication involving f .
� Note that for (0,m), (0, m′) ∈ {0} ⊕ M = M in A ⊕f M , we have

(0,m)(0,m′) = (0, 0m′ + m0 − f(0, 0)) = (0, 0) ∈ M ⊂ A ⊕f M,

and thus M2 = {0}. Note that since f is linear, then f(0, 0) = 0.
It may be checked that these constructions give the bijection as inverses to

each other.
� As a summary, a singular extension B of A by M gives a 2-cocycle fs for

a linear splitting s : A → B, up to its cohomology class. It should follow that
the isomorphisms class of B implies the same class of fs by using the following
diagram:

0 −−−−→ M −−−−→ B
p−−−−→

s:← A −−−−→ 0∥∥∥ id

⏐⏐) ρ

⏐⏐)∼= id

⏐⏐) ∥∥∥
0 −−−−→ M −−−−→ B′ p−−−−→

s′:←
A −−−−→ 0

Indeed, any s : A → B can be written as ρ−1◦s′ for some s′ : A → B′. Moreover,
fs defines the extension A ⊕fs M as B′, to be shown.

Indeed, the map ρ may be defined by sending b ∈ B to (π(b), b − s(π(b))) ∈
B′. Check that

(π(b), b − s(π(b)))(π(b′), b′ − s(π(b′)))
= (π(b)π(b′), π(b)(b′ − s(π(b′))) + (b − s(π(b)))π(b′) − fs(π(b), π(b′)))
= (π(bb′), (s(π(b)) + (b − s(π(b))))(b′ − s(π(b′))) + (b − s(π(b)))s(π(b′))
− s(π(b)π(b′)) + s(π(b))s(π(b′)))

= (π(bb′), bb′ − s(π(bb′))).

Also, we have Φ : A ⊕fs M ∼= A ⊕fs′ M for fs′ − fs = δ1(s − s′), by sending
(a,m) to (a,m + (s − s′)(a)). Check that

Φ(a,m)Φ(a′,m′) = (a,m + (s − s′)(a))(a′,m′ + (s − s′)(a′))
= (aa′, a(m′ + (s − s′)(a′)) + (m + (s − s′)(a))a′ − fs′(a, a′))
= (aa′, am′ + ma′ + a(s − s′)(a′) + (s − s′)(a)a′ − fs′(a, a′))
= (aa′, am′ + ma′ + (s − s′)(aa′) − fs(a, a′)) = Φ(aa′, am′ + ma′ − fs(a, a′)).
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Conversely, any f ∈ Z2(A,M) gives an abelian (or singular) extension A⊕f

M of A by M . The cohomology class [f ] ∈ H2(A, M) defines the isomorphism
class of the extension of A ⊕f M , as shown above.

Example 2.7. For A = C, we have, for n ≥ 1,

Hc0(C) = H0(C,C∗) ∼= C and Hcn(C) = Hn(C,C∗) ∼= 0.

� Since H0(C,C∗) is the space Tr(C) of traces on C, we have H0,∗(C) ∼=
C

∗ ∼= C. Because any linear functional from C to C as an element of C∗ is given
by the multiplication operator Mw by an element w of C defined by Mw(z) = wz
for z ∈ C, which is a trace on C. Thus, C1(C,C∗) ∼= C.

Also, any linear map from C to C
∗ ∼= C is given by Mw for some w ∈ C,

which is not a derivation from C to C
∗ if w �= 0. Thus, Z1(C,C∗) = {0}, with

no inner derivations from C to C
∗. Hence H1,∗(C) ∼= {0}.

As well, C2(C,C∗) ∼= C1(C,C∗) ∼= C since C ⊗ C ∼= C. Since Z1(C,C∗) =
{0}, then δ1 on C1(C,C∗) is injective, so that Z2(C,C∗) ∼= C and the image of
δ2 is zero. Indeed, compute that for z1, z2, z3 ∈ C,

(δ2Lw)(z1, z2, z3) = z1Lw(z2, z3) − Lw(z1z2, z3) + Lw(z1, z2z3) − Lw(z1, z2)z3

= z1(wz2z3) − w(z1z2)z3 + wz1(z2z3) − w(z1z2)z3 = 0.

Therefore, H2(C,C∗) ∼= C/C ∼= {0}.
Also, it follows that Exts(C,C∗) ∼= {0}, so that H2(C,C∗) ∼= {0}. Because

any non-trivial splitting s from C to the extension B ∼= C⊕fs C
∗ is an isomor-

phism, so that fs becomes the zero map. In this case, B is only the usual direct
sum C⊕ C

∗ as the trivial extension of C by C
∗.

The general case on n may be considered similarly. Indeed, Cn(C,C∗) ∼= C

since ⊗n
C ∼= C. Also, the boundary map δ2n is the zero map on C, but δ2n+1

is the isomorphism on C. Therefore,

H2n(C,C∗) = ker(δ2n)/im(δ2n−1) ∼= C/C ∼= 0,

H2n+1(C,C∗) = ker(δ2n+1)/im(δ2n) ∼= 0/0 ∼= 0.

Example 2.8. Let M be a closed (i.e., compact without boundary), smooth,
oriented, n-dimensional manifold and let A = C∞(M) denote the algebra of
complex-valued, smooth functions on M . For f0, f1, · · · , fn ∈ A, define the
(n + 1)-linear cochain ϕ : ⊗n+1A → C by

ϕ(f0, f1, · · · , fn) =
∫

M

f0df1 · · · dfn =
∫

M

f0
∂f1

∂x1
· · · ∂fn

∂xn
dx1 · · · dxn.

satisfying the following three properties.
(1) Continuous with respect to the natural Fréchet space topology of A.
(2) Becomes a Hochshild cocycle, and (3) be a cyclic cochain.
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Only the Hochschild cocycle property as bϕ = 0 is now checked as follows.

(bϕ)(f0, f1, · · · , fn+1) =
n∑

j=0

(−1)jϕ(f0, · · · , fjfj+1, · · · , fn+1) + (−1)n+1ϕ(fn+1f0, · · · , fn) =

n∑
j=0

(−1)j

∫
M

f0df1 · · · d(fjfj+1) · · · dfn+1 + (−1)n+1

∫
M

fn+1f0df1 · · · dfn

= 0, f0, · · · , fn+1 ∈ A

where we use the Leibniz rule for the de Rham differential d and the graded
commutativity of the algebra (Ω∗M,d) of differential forms on M .

� Note that

d(fjfj+1) =
∂(fjfj+1)

∂xj
dxj =

(
∂fj

∂xj
fj+1 + fj

∂fj+1

∂xj

)
dxj .

In the case of n = 0, M is a point set, and C∞(M) = C1, so that ϕ : C → C

is the constant map. Then, for f0, f1 ∈ C,

(bϕ)(f0, f1) = ϕ(f0f1) − ϕ(f1f0) = f0f1 − f1f0 = 0.

In the case of n = 1,

ϕ(f0, f1) =
∫

M

f0df1 =
∫

M

f0
df1

dx
dx.

Then, for f0, f1, f2 ∈ C∞(M),

(bϕ)(f0, f1, f2) = ϕ(f0f1, f2) − ϕ(f0, f1f2) + ϕ(f2f0, f1)

=
∫

M

f0f1
df2

dx
dx −

∫
M

f0
d(f1f2)

dx
dx +

∫
M

f2f0
df1

dx
dx = 0

by using the differential product rule given first at �.

� Recall from [4] the basic part in the de Rham theory as in the following,
with notation slightly changed. Let R

n be the real n-dimensional Euclidean
space with (x1, · · · , xn) as coordinates of R

n, which plays a local chart of M as
above. Let (dR

n)+ = R[1, dx1, · · · , dxn] be the unital algebra over R generated
by 1 and dx1, · · · , dxn with relations dxidxi = 0 for 1 ≤ i ≤ n and dxidxj =
−dxjdxi for i �= j.

The algebra (dR
n)+ has a linear basis consisting of 1, dxi for 1 ≤ i ≤ n,

dxidxj for 1 ≤ i < j ≤ n, · · · , dxi1dxi2 · · · dxik
for 1 ≤ i1 < i2 < · · · < ik ≤ n,

· · · , and dx1 · · · dxn. Namely, (dR
n)+ is a graded algebra, so that

(dR
n)+ = Ω∗dR

n = Ω0dR ⊕ (⊕n
p=1Ω

pdR
n)

where Ω0dR = R1 and each ΩpdR
n is the real vector space generated by

dxi1 · · · dxip for every 1 ≤ i1 < · · · < ip ≤ n.
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The algebra of C∞ differential forms of R
n is defined as the tensor product

algebra over R

Ω∗
R

n = C∞(Rn) ⊗R Ω∗dR
n,

where C∞(Rn) is the algebra of complex (or real) valued, smooth functions on
R

n. Any form ω ∈ Ω∗
R

n can be uniquely written as

ω =
∑

I

fIdxI = f01+
n∑

q=1

∑
1≤i1<···<iq≤n

fi1···iqdxi1 · · · dxiq , f0, fi1···iq ∈ C∞(Rn),

where we set dx0 = 1. Note that the (wedge) product in Ω∗
R

n is defined by

ωω′ = ω ∧ ω′ =
∑

I

fIdxI

∑
J

fJdxJ =
∑

I

∑
J

fIfJdxIdxJ .

The algebra Ω∗
R

n is a graded algebra, so that

Ω∗
R

n = ⊕n
q=0Ω

q(Rn) = ⊕n
q=0Ω

q

with ΩpΩq = Ωp+q for 0 ≤ p + q ≤ n and ΩpΩq = {0} for n + 1 ≤ p + q ≤ 2n,
where Ωq(Rn) is the space of C∞ q-forms on R

n with q as degree. Namely, for
ω ∈ Ωq(Rn) with deg ω = q for 1 ≤ q ≤ n,

ω =
∑
Iq

fIqdxIq =
∑

1≤i1<···<iq≤n

fi1···iqdxi1 · · · dxiq , fi1···iq ∈ C∞(Rn),

and Ω0(Rn) = C∞(Rn).
For ω ∈ Ωp, ω′ ∈ Ωq, we have

ω ∧ ω′ = (−1)pqω′ ∧ ω = (−1)deg ω deg ω′
ω′ ∧ ω.

The differential operator (or exterior differentiation) d : Ωq(Rn) → Ωq+1(Rn)
for 0 ≤ q ≤ n − 1 is defined by

df =
n∑

i=1

∂f

∂xi
dxi, for f ∈ Ω0(Rn),

dω =
∑
Iq

dfIqdxIq , for ω =
∑
Iq

fIqdxIq ∈ Ωq(Rn).

Example 2.9. In the case of n = 3, as Ω∗ = Ω∗[1, dx, dy, dz], the spaces
Ω0 = Ω0(R3) = C∞(R3) and Ω3 = Ω3(R3) are identified as a real vector space
by 0-forms f and 3-forms fdxdydz identified, but Ω0Ω0 = Ω0 �= {0} = Ω3Ω3.
Vector fields F = (f1, f2, f3) on R

3 are identified with 1-forms f1dx+f2dy+f3dz
in Ω1(R3), which may be also identified with 2-forms f1dydz + f2dzdx+ f3dxdy
in Ω2(R3) with dzdx = −dxdz.

Therefore, the differential on 0-forms as functions f is viewed as the gradient
grad(f):

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz = grad(f) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
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(or its transposed). The differential on 1-forms as vector fields F = (f1, f2, f3)
is computed to be equal to the rotation (or curl) rot(F ) of F as

d(f1dx + f2dy + f3dz) = (
∂f1

∂x
dx +

∂f1

∂y
dy +

∂f1

∂z
dz)dx

+ (
∂f2

∂x
dx +

∂f2

∂y
dy +

∂f2

∂z
dz)dy + (

∂f3

∂x
dx +

∂f3

∂y
dy +

∂f3

∂z
dz)dz

= (
∂f3

∂y
− ∂f2

∂z
)dydz + (

∂f1

∂z
− ∂f3

∂x
)dzdx + (

∂f2

∂x
− ∂f1

∂y
)dxdy

= rot(F ) =
(

∂f3

∂y
− ∂f2

∂z
,
∂f1

∂z
− ∂f3

∂x
,
∂f2

∂x
− ∂f1

∂y

)
= ∇× F =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
× F = (∂x, ∂y, ∂z) × F

=
(∣∣∣∣∂y f2

∂z f3

∣∣∣∣ ,

∣∣∣∣∂z f3

∂x f1

∣∣∣∣ ,

∣∣∣∣∂x f1

∂y f2

∣∣∣∣)
where ∇ × F is the outer (or vector) product of F by the partial differential
operator ∇ defined so, defined as the determinant vector.

The differential on 2-forms as vector fields F = (f1, f2, f3) is computed to
be equal to the divergence div(F ) of F :

d(f1dydz + f2dzdx + f3dxdy) = (
∂f1

∂x
dx +

∂f1

∂y
dy +

∂f1

∂z
dz)dydz

+ (
∂f2

∂x
dx +

∂f2

∂y
dy +

∂f2

∂z
dz)dzdx + (

∂f3

∂x
dx +

∂f3

∂y
dy +

∂f3

∂z
dz)dxdy

= (
∂f1

∂x
+

∂f2

∂y
+

∂f3

∂z
)dxdydz = div(f1, f2, f3)dxdydz.

Proposition 2.10. The differential d : Ωp(Rn) → Ωp+1(Rn) is an anti- (or
graded) derivation as that, for ω with deg ω and any ω′ ∈ Ω∗

R
n,

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)deg ωω ∧ dω′.

Proof. On Ω0(Rn), by differential product rule we have

d(fg) =
n∑

j=1

∂

∂xj
(fg)dxj

=
n∑

j=1

(
∂f

∂xj
g + f

∂g

∂xj

)
dxj = gdf + fdg.

For monomials ω = fIdxI and ω′ = fJdxJ , check that

d(ω ∧ ω′) = d(fIfJ)dxIdxJ = fJdfIdxIdxJ + fIdfJdxIdxJ

= dω ∧ ω′ + fI(−1)deg ωdxIdfJdxJ = dω ∧ ω′ + (−1)deg ωω ∧ dω′,

which extends by linearity for ω with degree and any ω′ ∈ Ω∗
R

n.
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Proposition 2.11. It holds that the composition d2 = d ◦ d = 0.

Proof. On Ω0(Rn) = C∞(Rn),

d2f = d

(
n∑

i=1

∂f

∂xi
dxi

)
=

n∑
i,j=1

∂2f

∂xj∂xi
dxjdxi = 0

because of symmetry of partial derivatives of f and skew-symmetry of infinites-
imals, so that

∂2f

∂xj∂xi
dxjdxi +

∂2f

∂xi∂xj
dxidxj =

(
∂2f

∂xj∂xi
− ∂2f

∂xj∂xi

)
dxjdxi = 0.

On homogeneous simple forms ω = fIdxI ,

d2ω = d2(fIdxI) = d(dfIdxI) = d(dfI ∧ 1dxI)
= d(dfI) ∧ dxI − dfI ∧ d(1dxI) = 0dxI − dfI ∧ 0dxI = 0.

The complex (Ω∗(Rn) = ⊕n
p=0Ω

p(Rn), d) is said to be the de Rham complex
on R

n. Forms of the kernel Zp(Rn) and the image Bp+1(Rn) of d : Ωp → Ωp+1

are said to be closed p-forms and exact (p+1)-forms, respectively. Since d2 = 0,
exact forms are closed forms.

Note that in the case of n = 2,

d(fdx + gdy) = (fxdx + fydy)dx + (gxdx + gydy)dy = (gx − fy)dxdy,

and thus fdx + gdy is a closed 1-form if and only if the partial differential
equation gx − fy = 0 holds. Namely, fdx + gdy = (f, g) as a vector field is a
solution to the differential equation.

The p-th de Rham cohomology of R
n is defined to be the quotient vector

space
Hp(Rn) = Zp(Rn)/Bp(Rn).

Similarly, for any open subset X of R
n, H∗(X) and Ω∗(X) are defined by

replacing R
n with X.

Lemma 2.12. (Poincaré). We have

Hp(Rn) ∼=
{

R q = 0,

0 1 ≤ q ≤ n.

Example 2.13. In the case of n = 0, Ω∗ = R1 = Ω∗(R0) = Ω0(R0). Since
d1 = 0, we have H0(R0) = Z0(R0) ∼= R.

In the case of n = 1, for f ∈ Ω0(R) = C∞(R), we have df = df
dxdx = 0 if

and only if f is a constant function on R. Hence H0(R) = Z0(R) = R. Also,
Ω1(R) = Z1(R) since d(fdx) = df

dxdx ∧ dx = 0. Moreover, any closed 1-form
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ω = fdx is exact because the indefinite integral F (x) =
∫ x

0
f(t)dt of f gives

dF = f(x)dx = ω. Therefore, H1(R) ∼= {0}.
Consequently, if X is a disjoint union of m open intervals in R, then H0(X) ∼=

R
m and H1(X) ∼= {0}.

Let ΩpM = Hom(ΩpM,C) = (ΩpM)∗ denote then the continuous linear
dual of the space ΩpM of p-forms on M , where the locally convex topology of
ΩpM is defined by semi-norms given as, for ω =

∑
Ip

fIpdxIp ∈ ΩpM (locally),

‖ω‖n = sup
|α|≤n,Ip,x∈M

|∂αfIp(x)|,

where the supremum is taken over all partial derivatives ∂α of total degree at
most n of all components fIp of ω, and over a fixed finite coordinate covering for
M . Elements of ΩpM are said to be de Rham p-currents on M . In particular,
elements of Ω0M = (Ω0M)∗ = C∞(M)∗ are distributions on M .

The de Rham differential d : ΩpM → Ωp+1M for 0 ≤ p ≤ n−1 is continuous
in the topology induced by the semi-norms for homogeneous differential forms.
Then we obtain the dual differential d∗ : Ωp+1M → ΩpM defined as d∗(ρ) = ρ◦d,
and the de Rham complex of currents on M :

Ω0M
d∗

←−−−− Ω1M
d∗

←−−−− Ω2M
d∗

←−−−− · · · d∗
←−−−− ΩnM.

The homology of this complex is said to be the de Rham homology of M , denoted
as H∗(M) = ⊕0≤p≤nHp(M).

� Note that (d∗)2ρ = ρ ◦ d ◦ d = ρ ◦ 0 = 0. Also, for f ∈ Ω0,

‖df‖n = sup
|α|≤n,1≤j≤n,x∈M

|∂α ∂

∂xj
f(x)| = ‖f‖n+1.

And for ω =
∑

Ip
fIpdxIp ∈ Ωp,

‖dω‖n = sup
|α|≤n,1≤j≤n,x∈M,Ip

|∂α ∂

∂xj
fIp(x)| = ‖ω‖n+1.

May check that for any p-current ρ ∈ ΩpM = (ΩpM)∗, closed or not, the
cochain defined as

ϕρ(f0, f1, · · · , fp) = ρ(f0df1 · · · dfp) = 〈ρ, f0df1 · · · dfp〉
for f0, f1, · · · , fp ∈ Ω0M = C∞(M) = A is a Hochshild p-cocycle on A.

� Check that in the case of p = 0,

(bϕρ)(f0, f1) = ρ(f0f1) − ρ(f1f0) = 0.

In the case of p = 1, by using the (usual) Leibniz rule,

(bϕρ)(f0, f1, f2) = ρ((f0f1)df2) − ρ(f0d(f1f2)) + ρ((f2f0)df1)
= ρ((f0f1)df2) − ρ(f0d(f1)f2) − ρ(f0f1d(f2)) + ρ((f2f0)df1) = 0.
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The general case would be shown by using the graded Leibniz rule.
As well, ϕρ is continuous in the natural topology of ⊗p+1A. Then taking the

quotient we obtain a canonical map from ΩpM to the continuous Hochschild
cohomology Hp,∗

con(C∞(M)) of C∞(M). This map is an isomorphism by Connes
[11].

Example 2.14. Let W = C[1, x, d
dx ] denote the Weyl algebra of differential

operators on R with polynomial coefficients, where the product is defined to be
the composition of operators. The Weyl algebra W is also the universal unital
algebra generated by elements 1, x, and d

dx with relation d
dxx − x d

dx = 1.
� Note that for f = f(x) a differentiable function on R,(

d

dx
x − x

d

dx

)
f =

d

dx
(xf) − x

df

dx
= f.

It then follows that H0,∗(W ) = H0(W,W ∗) = {0}. Namely, there are no
nonzero traces on W .

� Suppose that f ∈ W ∗ is a trace on W . Then

f(1) = f(
d

dx
x − x

d

dx
) = f(

d

dx
x) − f(

d

dx
x) = 0.

Also, for a positive integer n,

f(xn) = f(xn(
d

dx
x − x

d

dx
)) = f((xn d

dx
)x) − f(xn+1 d

dx
) = 0.

And

f(
dn

dxn
) = f(

dn

dxn
(

d

dx
x − x

d

dx
)) = f(

dn+1

dxn+1
x) − f((

dn

dxn
x)

d

dx
) = 0.

Moreover,

f(xn d

dx
) = f(xn d

dx
(

d

dx
x − x

d

dx
)) = f(xn+1 d2

dx2
) − f(

d

dx
xn d

dx
x),

f(
d

dx
xn) = f(

d

dx
xn(

d

dx
x − x

d

dx
)) = f(

d

dx
xn d

dx
x) − f(xn+1 d2

dx2
).

Therefore, by adding both sides, we obtain 2f(xn d
dx ) = 0. Furthermore,

f(x
dn

dxn
) = f(x

dn

dxn
(

d

dx
x − x

d

dx
)) = f(x2 dn+1

dxn+1
) − f(

dn

dxn
x

d

dx
x),

f(
dn

dxn
x) = f(

dn

dxn
x(

d

dx
x − x

d

dx
)) = f(

d

dx
x

dn

dxn
x) − f(x2 dn+1

dxn+1
).
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Thus, 2f(x dn

dxn ) = 0. And in the general case,

f(xm dn

dxn
) = f(xm dn

dxn
(

d

dx
x − x

d

dx
)) = f(xm dn+1

dxn+1
x) − f(xm(

dn

dxn
x)

d

dx
),

f(xm−1 dn

dxn
x) = f(xm−1 dn

dxn
x(

d

dx
x − x

d

dx
))

= f(xm dn

dxn
x

d

dx
) − f(xm−1(

dn

dxn
x2)

d

dx
),

... =
...

f(
dn

dxn
xm) = f(

dn

dxn
xm(

d

dx
x − x

d

dx
)) = f(x

dn

dxn
xm d

dx
) − f(

dn

dxn
xm+1 d

dx
).

By adding both sides of m + 1 equations, we obtain (m + 1)f(xm dn

dxn ) = 0 by
cancellation. It then follows that f = 0 on W .

Example 2.15. Any derivation of the Weyl algebra W is inner. Namely,
H1(W,W ) = {0}.

� Suppose that f : W → W is a derivation. Then f(1) = 1f(1) + f(1)1.
Thus, f(1) = 0. Hence f(x d

dx ) = f( d
dxx). Namely,

xf(
d

dx
) + f(x)

d

dx
=

d

dx
f(x) + f(

d

dx
)x.

Thus, [f(x), d
dx ] = [f( d

dx ), x]. And then? It is regretful that the proof here is
incomplete.

Example 2.16. Any derivation of the algebra C(X) of continuous, complex-
valued functions on a compact Hausdorff space X is zero. Indeed, if f = g2

for some g ∈ C(X) with g(x) = 0 for some x ∈ X, then (δf)(x) = 0 for any
derivation δ. Because, δf = 2gδ(g).

� Let f ∈ C(X). Let Re(f) + iIm(f) be the decomposition of f into the
real and imaginary parts. Let Re(f)± and Im(f)± be the non-negative and
non-positive parts of Re(f) and Im(f) respectively, defined as Re(f)+(x) =
max{Re(f)(x), 0} for x ∈ X and Re(f)−(x) = min{Re(f)(x), 0} for x ∈ X.
Since Re(f)+ is continuous on X compact, then there is the maximum value M
of Re(f)+ at some point α ∈ X. Let g = M1 − Re(f)+ ≥ 0. Then g = h2 with
h =

√
g and h(α) = 0. Hence, for any derivation δ, we have δ(g)(α) = 0. Since

δ is linear, δ(Re(f)+)(α) = 0. And then?

Example 2.17. Any derivation of the matrix algebra Mn(C) is inner (cf. [14]).

Proposition 2.18. Let Z(A) denote the center of an algebra A over C. Then
the Hochschild groups Hn(A,M) are Z(A)-modules.

Proof. Define a right action of A as well as Z(A) on Cn(A,M) by (fa)(· · · ) =
f(· · · )a ∈ M for f ∈ Cn(A,M) and a ∈ A. Then Zn(A,M) is invariant under
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the action by Z(A). Indeed, for f ∈ Zn(A,M) with δf = 0,

(δ(fa))(a1, · · · , an+1) = a1(fa)(a2, · · · , an+1)

+
n∑

j=1

(−1)j+1(fa)(a1, · · · , ajaj+1, · · · , an+1) + (−1)n+1(fa)(a1, · · · , an)an+1

= (δf)(a1, · · · , an+1)a = 0

in our sense. Define a right action by Z(A) on Hn(A, M) by [f ]a = [fa] =
fa + Bn(A,M). If f, g ∈ Zn(A, M) with f − g ∈ Bn(A,M) with f − g = δ(h)
for some h ∈ Cn−1(A,M), then fa−ga = δ(h)a = δ(ha) with ha ∈ Cn−1(A,M).
Hence, [fa] = [ga]. Thus, the right action by Z(A) on that Hn(A,M) is well
defined.

Example 2.19. Let U ⊂ R
n be an open subset of R

n and let X =
∑n

j=1 Xj
∂

∂xj

denote a smooth vector field on U , with Xj ∈ C∞(U) smooth functions, and X
may be identified with (X1, · · · , Xn), as vector bundles on U with C∞(U) as
fibers. Define a derivation δX : C∞(U) → C∞(U) by δX(f) =

∑n
j=1 Xj

∂f
∂xj

for
f ∈ C∞(U). Then there is the bijective correspondence between vector fields
on U with C∞(U) as fibers and derivations of C∞(U) (of the form) by sending
X to δX .

� For f, g ∈ C∞(U), with fxj = ∂f
∂xj

, note that

δX(fg) =
n∑

j=1

Xj(fxj g + fgxj ) = δX(f)g + fδX(g).

Any derivation δ of C∞(U) has the form δX for some X?
The bracket [X,Y ] of vector fields X,Y on U corresponds to the commutator

of the derivations δX , δY , so that δ[X,Y ] = [δX , δY ].
� For f ∈ C∞(U), compute that

[δX , δY ]f = δXδY f − δY δXf

= δX

n∑
k=1

Yk
∂f

∂xk
− δY

n∑
j=1

Xj
∂f

∂xj

=
n∑

j=1

n∑
k=1

Xj
∂

∂xj

(
Yk

∂f

∂xk

)
−

n∑
k=1

n∑
j=1

Yk
∂

∂xk

(
Xj

∂f

∂xj

)

=
n∑

j=1

n∑
k=1

{Xj
∂

∂xj

(
Yk

∂

∂xk

)
− Yk

∂

∂xk

(
Xj

∂

∂xj

)
}f

which is identified with
n∑

j=1

n∑
k=1

(XjYk − YkXj)f = δ[X,Y ]f
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with
∑n

j=1

∑n
k=1(XjYk − YkXj) = [X,Y ].

For any x ∈ U , define a C∞(U)-module structure on C such that f1 =
f(x)1 ∈ C for f ∈ C∞(U). Then the set Der(C∞(U),C) of C-valued deriva-
tions of C∞(U) is isomorphic to the complex tangent space of U at x. This
correspondence is extended to arbitrary smooth manifolds. For more details
of some aspects in differential geometry including differential forms and tensor
analysis, connection and curvature formalism, and the Chern-Weil theory, may
refer to [25] and [31].

3 H cohomology as a derived functor

Let A	 denote the opposite algebra of an algebra A, defined as A	 = A as a
vector space with the opposite multiplication defined by a� b = ba for a, b ∈ A.
There is a 1 to 1 correspondence between A-bimodules M and left A ⊗ A	-
modules M , so that

amb = (a ⊗ b)m = a(b � m) = b � (am), a, b ∈ A,m ∈ M.

Define a functor from the category of left A ⊗ A	-modules M to the category
of complex vector spaces by sending M to

HomA⊗A�(A, M) = {m ∈ M |ma = a � m = am, a ∈ A} = H0(A,M).

Assume that A is a unital algebra. Note that A is viewed as a left A ⊗ A	-
module in that sense. Consider the Bar resolution for A defined by

0 ← A ⊗ A	 = B0(A) b′←−−−− B1(A) b′←−−−− B2(A) b′←−−−− · · ·
(corrected by replacing A with A⊗A	) where Bn(A) = (A⊗A	)⊗ (⊗nA) for
n ≥ 0 is the free left A⊗A	-module generated by ⊗nA. The bar differential b′

is defined by

b′(a ⊗ b ⊗ a1 ⊗ · · · ⊗ an) = aa1 ⊗ b ⊗ a2 ⊗ · · · ⊗ an+
n−1∑
j=1

(−1)j(a ⊗ b ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an) + (−1)na ⊗ anb ⊗ a1 ⊗ · · · ⊗ an−1.

� Check that for a1 ∈ A,

b′(a ⊗ b ⊗ a1) = aa1 ⊗ b − a ⊗ a1b ∈ A ⊗ A	,

so that the map b′ on B1(A) is onto A ⊗ A	(?). Because, in particular, note
that B(1 ⊗ 1 ⊗ a1) = a1 ⊗ 1 − 1 ⊗ a1. Also, certainly, we have b′ ◦ b′ = 0 on
B2(A) as that

b′(a ⊗ b ⊗ a1 ⊗ a2) = aa1 ⊗ b ⊗ a2 − a ⊗ b ⊗ a1a2 + a ⊗ a2b ⊗ a1,

(b′)2(a ⊗ b ⊗ a1 ⊗ a2) = (aa1)a2 ⊗ b − a(a1a2) ⊗ b + aa1 ⊗ a2b

− aa1 ⊗ a2b + a ⊗ (a1a2)b − a ⊗ a1(a2b) = 0.
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Define the operators s : Bn(A) → Bn+1(A) for n ≥ 0 by

s(a ⊗ b ⊗ a1 ⊗ · · · ⊗ an) = 1 ⊗ b ⊗ a ⊗ a1 ⊗ · · · ⊗ an.

May check that b′s+sb′ = id on Bn(A) for n ≥ 1 and b′s = id on A⊗A	. With
b′ = 0 on A⊗A	 and s = 0 on {0}, we have b′s + sb′ = id on A⊗A	 = B0(A).

� Check that for a1 ∈ A,

(b′s)(a1 ⊗ 1 − 1 ⊗ a1) = b′(1 ⊗ 1 ⊗ a1 − 1 ⊗ a1 ⊗ 1)
= a1 ⊗ 1 − 1 ⊗ a1 − 1 ⊗ a1 + 1 ⊗ a1 = id(a1 ⊗ 1 − 1 ⊗ a1),

which implies b′s = id on A ⊗ A	. Check also that

(b′s)(a ⊗ b ⊗ a1) = b′(1 ⊗ b ⊗ a ⊗ a1)
= a ⊗ b ⊗ a1 − 1 ⊗ b ⊗ aa1 + 1 ⊗ a1b ⊗ a,

(sb′)(a ⊗ b ⊗ a1) = s(aa1 ⊗ b − a ⊗ a1b)
= 1 ⊗ b ⊗ aa1 − 1 ⊗ a1b ⊗ a,

so by adding both sides of which, we obtain b′s + sb′ = id on B1(A).
The equation shows that the complex (B∗(A), b′) is acyclic(?), and hence is

a free resolution of A as a left A ⊗ A	-module.
For any A-bimodule M , there is an isomorphism of cochain complexes as

HomA⊗A�(B∗(A),M) ∼= (C∗(A,M), δ),

which shows that the Hochschild cohomology is the left derived functor of the
Hom functor, so that

Hn(A, M) ∼= Extn
A⊗A�(A,M) = Hn(HomA⊗A�(P∗,M)), n ≥ 0

with P∗ any projective resolution for M . Therefore, one may use any projective
resolution of A, or any injective resolution of M , as a left A ⊗ A	-module to
compute the Hochschild cohomology groups.

Now recall the definition of the Hochschild homology of an algebra A with
coefficients in a bimodule M . The Hochschild homology complex of A with
coefficients in M is the chain complex (C∗(A,M), δ), given by C0(A,M) =
M and Cn(A,M) = M ⊗ (⊗nA) for n ≥ 1 and the Hochshild boundary δ :
Cn(A,M) → Cn−1(A,M) defined by

δ(m ⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑
j=1

(−1)jm ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an + (−1)nanm ⊗ a1 ⊗ · · · ⊗ an.

with the chain

C0(A,M) δ←−−−− C1(A,M) δ←−−−− · · ·Cn−1(A,M) δ←−−−− Cn(A,M) · · ·
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satisfying δ ◦ δ = 0.
� May check that δ(m ⊗ a1) = ma1 − a1m, and

(δ ◦ δ)(m ⊗ a1 ⊗ a2) = δ(ma1 ⊗ a2 − m ⊗ a1a2 + a2m ⊗ a1)
= (ma1)a2 − a2(ma1) − m(a1a2) + (a1a2)m + (a2m)a1 − a1(a2m) = 0.

The Hochschild homology of A with coefficients in M is defined to be the
homology of the complex (C∗(A,M), δ), denoted by Hn(A,M) for n ≥ 0, where
note that H0(A,M) is defined to be the quotient space M/[A,M ] since the
image δ(C1(A,M)) by δ is equal to [A,M ] the C-linear subspace of M spanned
by commutators [a,m] = am − ma for a ∈ A and m ∈ M .

As a fact, the Hochschild homology H∗(A,M) is the right derived functor
of the functor from the category of left A ⊗ A	-modules M to the category of
complex vector spaces, as

M �→ A ⊗A⊗A� M = H0(A,M),

so that
Hn(A,M) ∼= TorA⊗A�

n (A,M) = Hn(A ⊗A⊗A� P∗),

with P∗ any projective resolution for M . For the proof, we can use the Bar
resolution, as done for cohomology.

For an A-bimodule M , let M∗ = Hom(M,C), which is also an A-bimodule
by setting (afb)(m) = f(bma) for a, b ∈ A and m ∈ M,f ∈ M∗.

� Check that

(a1(a2fb1)b2)(m) = (a2fb1)(b2ma1) = f(b1b2ma1a2) = ((a1a2)f(b1b2))(m).

There is the natural isomorphism compatible with differentials

Hom(⊗nA,M∗) ∼= Hom(M ⊗ (⊗nA),C) = (M ⊗ (⊗nA))∗, n ≥ 0.

� Define as sending ϕ �→ ϕ∼ that

ϕ(a1, · · · , an)(m) = ϕ∼(m, a1, · · · , an)

It then follows that the natural isomorphisms as duality hold

Hn(A,M∗) ∼= Hn(A,M)∗, n ≥ 0.

The Hochschild homology groups H∗(A,A) may be denoted as Hh∗(A).
Then the duality becomes the isomorphisms

Hcn(A) ∼= Hhn(A)∗, n ≥ 0.

Example 3.1. Let A = C[x] = C[x, 1] be the algebra of polynomials generated
by 1 and x as a variable. There is the following resolution of A as a left A⊗A	-
module:

0 ← A
ε←−−−− A ⊗ A	 d←−−−− A ⊗ A	 ⊗ C ← 0,
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where the differentials ε and d are the unique A ⊗ A	-linear extensions of the
maps defined by ε(1 ⊗ 1) = 1 and d(1 ⊗ 1 ⊗ 1) = x ⊗ 1 − 1 ⊗ x.

� Note that (ε ◦ d)(1 ⊗ 1 ⊗ 1) = x − x = 0. Also, define

d(a ⊗ b ⊗ 1) = (a ⊗ b)(x ⊗ 1 − 1 ⊗ x) = ax ⊗ b − a ⊗ xb

and ε(a ⊗ b) = ab for a, b ∈ A, so that (ε ◦ d)(a ⊗ b ⊗ 1) = 0. This is the reason
for taking A	 for A noncommutaive. But in this case, A = C[x, 1] = A	.

The complex is equivalent to the complex

0 ← C[x] ε←−−−− C[x, y] d←−−−− C[x, y] ← 0,

where for p(x, y) ∈ C[x, y],

(εp)(x) = p(x, x), (dp)(x, y) = (x − y)p(x, y).

� Check that
(ε ◦ d)p(x) = (x − x)p(x, x) = 0.

Note that d1(x, y) = (x− y)1(x, y) = x− y. Also, x and y in C[x, y] correspond
to x ⊗ 1 and 1 ⊗ x in C[x] ⊗ C[x] respectively.

� The operator s : C[x] → C[x, y] may be defined by s(x) = x and s(1) = 1.
Indeed, (ε ◦ s)(x) = ε(x) = x and (ε ◦ s)(1) = ε(1) = 1, so that ε ◦ s is the
identity map on C[x]. The operator s : C[x, y] → C[x, y] may be defined by
(sp)(x, y) = 1

x−y (−p(x, x) + p(x, y)) as a possible choice. Indeed, it holds that

((s ◦ ε) + (d ◦ s))p(x, y) = p(x, x) +
x − y

x − y
(−p(x, x) + p(x, y)) = p(x, y).

Note also that if p(x, y) = p1(x)p2(y) as a simple tensor of polynomials, then
p(x, x)− p(x, y) = p1(x)(p2(x)− p2(y)) is divided by x− y, and this extends by
linearity.

By tensoring that resolution with the right A⊗A-module A, obtained is the
complex with the zero differential, with ε converted to the identity map, and so
omitted

0 ←−−−− C[x] 0=d⊗id←−−−−− C[x] ←−−−− 0.

And hence

Hhn(C[x]) ∼=
{
C[x], n = 0, 1,

0 n ≥ 2.

That complex is an example of a Koszul resolution (cf. [5] for the general theory
in the commutative case.)

� Note that A = (A ⊗ A)A ∼= A ⊗ A in the case. Also,

d(1 ⊗ 1 ⊗ a) = (x ⊗ 1)a − (1 ⊗ x)a = xa − ax = xa − xa = 0.
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Example 3.2. Let A = C[x1, · · · , xn] denote the algebra of polynomials in n
variables x1, · · · , xn. Let V be an n-dimensional complex vector space. The
Koszul resolution of A, as a left A ⊗ A-module, is defined by

0 ← A
ε←−−−− A ⊗ A

d←−−−− (⊗2A) ⊗ Ω1 ← · · · d←−−−− (⊗2A) ⊗ Ωn ← 0,

where Ωj = ∧jV is the j-th exterior power of V . The differentials ε and d
are defined as before. The differential d has the unique extension to a graded
derivation of degree −1 on the graded commutative algebra (⊗2A)⊗∧jV . Note
that A ∼= S(V ) the symmetric algebra of the vector space V with dimV = n.

Let K(S(V )) denote the Koszul resolution for S(V ) ∼= A given above. To
show the exactness for the resolution, note that

K(S(V ⊕ W )) ∼= K(S(V ) ⊗ K(S(W )))

for vector spaces V and W . For exact two complexes, their tensor product
complex is exact. Thus, the exactness of K(S(V )) is reduced to the case where
V is 1-dimensional. This case is considered in the last example.

As well, the following complex is shown to be the free resolution of S(V ), as
a left S(V ) ⊗ S(V )-module

0 ← S(V ) ε←−−−− S(V 2) iX←−−−− S(V 2) ⊗ E1 ← · · · iX←−−−− S(V 2) ⊗ En ← 0

with Ek = ∧kV , and iX is the interior multiplication (contraction) with respect
to the vector field X =

∑n
j=1(xj − yj) ∂

∂yj
on V 2 = V × V . May use the Cartan

homotoy formula diX + iXd = LX to find a contracting homotopy for iX .
As in the 1-dimensional case, the differentials in the complex A⊗A⊗AK(S(V ))

are all zero, so that

Hhj(S(V )) = TorS(V )⊗S(V )
j (S(V ), S(V )) ∼= S(V ) ⊗ ∧jV.

The right-hand side is isomorphic to the module of algebraic differential forms
on S(V ). Namely,

Hhj(S(V )) ∼= Ωj(S(V )).

This is special case of the Hochschild-Kostant-Rosenberg theorem. More gen-
erally, if M is a symmetric A-bimodule, the differentials of M ⊗A⊗A K(S(V ))
vanish, and hence

Hj(S(V ),M) ∼= M ⊗ ∧jV, 0 ≤ j ≤ n

and it is zero otherwise.

Example 3.3. Let A = T (V ) = C⊕ (⊕∞
j=1 ⊗j V ) denote the tensor algebra of

a vector space V . There is the complex

0 ← A
ε←−−−− A ⊗ A	 d←−−−− A ⊗ A	 ⊗ V ← 0,

with the differentials ε and d induced by ε(1⊗1) = 1 and d(1⊗1⊗v) = v⊗1−1⊗v
for v ∈ V , which is a free resolution of A as a left A⊗A	-module. It then follows
that Hj(A,M) ∼= A ⊗A⊗A� M for j = 0, 1 and Hj(A,M) = 0 for any j ≥ 2.
Namely, A has Hochschild homological dimension 1 in this sense.
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Example 3.4. There is a continuous analogue, of the resolution for C[x]. For
A = C∞(S1) the topological algebra of smooth functions on the circle S1, the
topological Koszul resolution is given by

0 ← A
ε←−−−− A ⊗ A

d←−−−− A ⊗ A ⊗ C ← 0

with the differentials defined similarly as before, where ⊗ means the projective
tensor product of locally convex spaces. To verify exactness, with A⊗A identi-
fied with C∞(S1 ×S1), the differentials are converted as that (εf)(x) = f(x, x)
for f ∈ C∞(S1 × S1) and x ∈ S1 and (df)(x, y) = (x − y)f(x, y) for (x, y) ∈
S1 × S1. The homotopy formula

f(x, y) = f(x, x) − (x − y)
∫ 1

0

∂

∂y
f(x, y + t(x − y))dt

implies that the kernel of ε is contained in the image of d.
� Compute that∫ 1

0

∂

∂y
f(x, y + t(x − y))dt =

[
1

x − y
f(x, y + t(x − y))

]1
t=0

=
1

x − y
(f(x, x) − f(x, y)).

That’s it! Therefore, if εf = 0, then

f(x, y) = (x − y)
1

x − y
f(x, y) = (x − y)

∫ 1

0

− ∂

∂y
f(x, y + t(x − y))dt.

Alternatively, may use Fourier series to establish the exactness.
To compute the continuous Tor functor, apply the functor (·)⊗A⊗A A to the

above complex, so that we have

0 ← C∞(S1) d⊗id=0←−−−−− C∞(S1) ← 0.

Therefore, the continuous Hochshild homology for A is

Hhj(C∞(S1)) =

{
ΩjS1, j = 0, 1,

0 j ≥ 2,

where ΩjS1 ∼= C∞(S1)ωj is the space of differential forms ωj of degree j on S1.
Similarly, the computation by using the continuous version of Ext by apply-

ing the functor HomA⊗A(·, A) gives

Hcj(C∞(S1)) =

{
ΩjS

1, j = 0, 1,

0 j ≥ 2,

where ΩjS
1 = (ΩjS1)∗ is the continuous dual space of differential forms ωj on

S1, i.e., the space of j-currents on S1.
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Note that identification between the continuous tensor product A ⊗ A and
C∞(S1 × S1) plays a crucial role in the proof above. But the algebraic tensor
product of C∞(S1) is only dense in C∞(S1 × S1), and this makes it difficult to
have a resolution to compute the algebraic Hochschild groups of C∞(S1), not
yet known so far.

Example 3.5. Let A and B be unital algebras (over C). There are chain maps

C∗(A ⊗ B) → C∗(A) ⊗ C∗(B) and C∗(A) ⊗ C∗(B) → C∗(A ⊗ B)

(over C) to construct and induce inverse isomorphisms (cf. [8], [28]). It then
follows that

Hhn(A ⊗ B) ∼= ⊕p+q=nHhp(A) ⊗ Hhq(B), n ≥ 0.

Namely, that is the Künneth relation between the Hochschild homology groups
for A, B, and A ⊗ B (over C).

In particular,
Hh0(A ⊗ B) ∼= Hh0(A) ⊗ Hh0(B).

There is a natural map from Hc0(A) ⊗ Hc0(B) to Hc0(A ⊗ B), but it need
not be surjective in general.

If A is commutative, then the multiplication m : A ⊗ A → A is an algebra
map and induces an associative and graded commutative product on Hh∗(A).

� Namely, for p + q = n,

0 → Hhp(A) ⊗ Hhq(A) → Hn(A ⊗ A) m∗−−−−→ Hn(A).

Example 3.6. Let A be the universal unital algebra generated by invertible
elements u1 and u2 with relation u1u2 = λu2u1 for some λ ∈ C not a root of
unity with |λ| = 1 Namely, A = C[u1, u2]/(u1u2−λu2u1). Let Ωj = ∧jV , where
V is a 2-dimensional complex vector space with basis e1 and e2. The following
complex of left A ⊗ A	-modules are defined

0 ← A
ε←−−−− A ⊗ A	 d0←−−−− A ⊗ A	 ⊗ Ω1 d1←−−−− A ⊗ A	 ⊗ Ω2 ← 0,

where ε is the multiplication map and the differentials d0 and d1 are given by
d0(1 ⊗ 1 ⊗ ej) = 1 ⊗ uj − uj ⊗ 1 for j = 1, 2, and

d1(1 ⊗ 1 ⊗ (e1 ∧ e2)) = (u2 ⊗ 1 − λ ⊗ u2) ⊗ e1 − (λu1 ⊗ 1 − 1 ⊗ u1) ⊗ e2.

This is a resolution of A as an A ⊗ A	-module, to compute Hh∗(A).
� Only check that

(d0 ◦ d1)(1 ⊗ 1 ⊗ (e1 ∧ e2)) = d0((u2 ⊗ 1 − λ ⊗ u2) ⊗ e1)
− d0((λu1 ⊗ 1 − 1 ⊗ u1) ⊗ e2)

= u2 ⊗ u1 − λ ⊗ u2u1 − u1u2 ⊗ 1 + λu1 ⊗ u2

− λu1 ⊗ u2 + 1 ⊗ u1u2 + λu2u1 ⊗ 1 − u2 ⊗ u1

= −λ ⊗ u2u1 − u1u2 ⊗ 1 + 1 ⊗ u1u2 + λu2u1 ⊗ 1 = 0?

It certainly holds that (ε ◦ d0) ◦ d1 = 0. That’s it!
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Example 3.7. Let W = C[1, x, d
dx ] be the Weyl algebra. There is a length two

resolution for W as a left W ⊗ W	-module, to show that Hh2(W ) ∼= C and
Hhj(W ) ∼= 0 for j �= 2. The generating class for Hh2(W ) is represented by the
2-cycle given by

1 ⊗ p ⊗ q − 1 ⊗ q ⊗ p + 1 ⊗ 1 ⊗ 1

with q = x and p = d
dx . As well, for ⊗nW , it is shown that Hh2n(⊗nW ) ∼= C

and Hhj(⊗nW ) ∼= 0 for j �= 2n. In this case, we have

Hh2n(⊗nW ) ∼= ⊗nHh2(W ),

so that the generating class for Hh2n(⊗nW ) is represented by the n-fold tensor
product of that 2-cycle for W , answering the question.

Let M be an A-bimodule. A cochain f : ⊗n → M is said to be normal-
ized if f(a1, · · · , an) = 0 whenever aj = 1 for some j. The space of normal-
ized cochains, denoted by C∗

nom(A,M) forms a subcomplex of the Hochschild
complex C∗(A,M), and the inclusion map from C∗

nom(A,M) to C∗(A,M) is a
quasi-isomorphism.

Example 3.8. Let A = C[x]/(x2) denote the algebra of dual numbers. The
normalized Hochschild complex may be used to compute Hh∗(A).

4 Deformation theory

Let A be a unital complex algebra. An increasing filtration on A is defined to be
an increasing sequence of subspaces F j(A) of A such that 1 ∈ F 0(A), F j(A) ⊂
F j+1(A) for integers j ≥ 0, and ∪jF

j(A) = A and F i(A)F j(A) ⊂ F i+j(A)
for any i, j, with F−1(A) = {0}. A filtered algebra is an algebra with such a
filtration. The associated graded algebra of a filtered algebra A is defined to be
the graded algebra Gr(A) = ⊕j≥0(F j(A)/F j−1(A)).

Definition 4.1. An almost commutative algebra is a filtered algebra A whose
associated graded algebra Gr(A) is commutative.

Being almost commutative for A is equivalent to the commutator condition
[F i(A), F j(A)] ⊂ F i+j−1(A) for any i, j.

� May check the equivalence above. Let a ∈ F i(A) and b ∈ F j(A). Then
ab − ba ∈ F i+j(A). Suppose that the commutator condition holds. Then

(a + F i−1(A))(b + F j−1(A)) = ab + aF j−1(A) + F i−1(A)b + F i−1(A)F j−1(A),

(b + F j−1(A))(a + F i−1(A)) = ba + F j−1(A)a + bF i−1(A) + F j−1(A)F i−1(A).

By subtracting both sides, ab − ba ∈ [F i(A), F j(b)] ⊂ F i+j−1, [a, F j−1(A)] ⊂
F i+j−2, [F i−1, b] ⊂ F i+j−2, [F i−1, F j−1] ⊂ F i+j−3. Namely, the right hand
side is zero mod F i+j−1.
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Example 4.2. The Weyl algebras are almost commutative.
More generally, algebras of differential operators on a smooth manifold and

universal enveloping algebras are almost commutative.

Let A be an almost commutative algebra. The Lie algebra brakcet [x, y] =
xy − yx for x, y ∈ A induces the Lie algebra bracket on Gr(A) defined as

[x + F i−1, y + F j−1] = [x, y] + F i+j−2

for x ∈ F i and y ∈ F j (corrected).
� Note that xF j−1 − F j−1x ⊂ F i+j−2 and F i−1y − yF i−1 ⊂ F i+j−2.
By the almost commutative assumption, [x, y] belongs to F i+j−1(A), and

Gr(A) is a graded Lie algebra with grading shifted by 1. The induced Lie
bracket on Gr(A) is compatible with multiplication in the sense that the map
x + F i �→ [y + F j , x + F i] is a derivation.

� Note that

[z + F k, (x + F i)(y + F j)] = [z + F k, xy + F i+j ]

= [z, xy] + F k+i+j−2,

[z + F k, x + F i](y + F j) + (x + F i)[z + F k, y + F j ]

= ([z, x] + F k+i−2)(y + F j) + (x + F i)([z, y] + F k+j−2)

= [z, x]y + x[z, y] + F k+i+j−2.

Note also that [z, x]y+x[z, y] = (zx−xz)y+x(zy−yz) = zxy−xzy+xzy−xyz =
[z, xy], which always! holds.

The algebra Gr(A) is said to be the semi-classical limit of the almost com-
mutative algebra A. It is also an example of a Poisson algebra.

Note that A and Gr(A) are isomorphic as a vector space, but they are not
as an algebra in general since A need not be commutative but Gr(A) is always!
commutative. The linear isomorphism q : Gr(A) → A is regarded as a naive
quantization map. We may demands more in the sense that q is a Lie algebra
map such that q([a + F i, b + F j ]) = [q(a), q(b)] for any a, b ∈ A. This is a
formulation by the Dirac quantization rule (cf. [14]).

We may think of A as the algebra of quantum observables of a dynamical
system acting on a Hilbert space, and think of Gr(A) as the algebra of classical
observables of functions on the phase space. The no-going theorems as the
Groenewold-Van Hove theorem states that it is almost never possible to have q
to be a Lie map, under reasonable irreducibility conditions (cf. [1], [19]). There
is a remedy to have q defined only for a certain class of elements of Gr(A), or
that the required equation holds in an asymptotic sense as that it does when the
Planck constant goes to zero. There are several ways to be done in the context
of formal deformation quantization (cf. [2], [7], [27]), or of the C∗-algebraic
strict deformation quantization (cf. [23], [32], [33]).

Definition 4.3. Let A be a commutative algebra. A Poisson structure on A is
a Lie algebra bracket [a, b] for a, b ∈ A such that for any a ∈ A, the map A → A
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defined by b �→ [a, b] is a derivation of A. Namely, we have [a, bc] = [a, b]c+b[a, c]
for a, b, c ∈ A.

The vector field defined by the derivation b �→ [a, b] is said to be the Hamil-
tonian vector field of the Hamiltonian function as a.

Definition 4.4. A Poisson algebra is defined to be a commutative algebra A
with a Poisson structure.

The semi-classical limit Gr(A) of any almost commutative algebra A is a
Poisson algebra. Conversely, is any Poisson algebra the semi-classical limit of
an almost commutative algebra? This is the problem of quantization of Poisson
algebras, the answer to which for general Poisson algebras is negative.

A few concrete examples of Poisson algebras are given in the following (cf.
[7], [9]).

Example 4.5. A Poisson manifold is defined to be a manifold M whose algebra
A = C∞(M) of smooth functions is a Poisson algebra, in which assume that
the bracket is continuous in the Fréchet topology of A, or equivalently, is a
bidifferentiable operator. All the Poisson structures on A are given by [f, g] =
〈df∧dg, π〉, where π ∈ C∞(∧2TM) is a smooth 2-vector field on M . This bracket
satisfies the Leibniz rule in each variable, and it satisfies the Jacobi identity if
and only if [π, π] = 0, where the Schouten bracket [π, π] ∈ C∞(∧3TM) is defined
in local coordinates as

[π, π]ijk =
n∑

l=1

(
πlj

∂

∂xl
πik + πli

∂

∂xl
πkj + πlk

∂

∂xl
πji

)
.

The Poisson bracket in local coordinates is given by [f, g] =
∑

i,j πij
∂

∂xi
f ∂

∂xj
g.

� Check that

[f, gh] = 〈df ∧ d(gh), π〉 = 〈df ∧ (gdh + hdg), π〉
= g〈df ∧ dh, π〉 + h〈df ∧ dg, π〉 = g[f, h] + h[f, g]

and that [g, f ] = 〈dg ∧ df, π〉 = −〈df ∧ dg, π〉 = −[f, g]. The Jacobi identity in
this case is

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0.

Namely,

〈d〈df ∧ dg, π〉 ∧ dh, π〉 + 〈d〈dg ∧ dh, π〉 ∧ df, π〉 + 〈d〈dh ∧ df, π〉 ∧ dg, π〉
= 〈〈df ∧ dg, dπ〉 ∧ dh, π〉 + 〈〈dg ∧ dh, dπ〉 ∧ df, π〉 + 〈〈dh ∧ df, dπ〉 ∧ dg, π〉
= 〈〈(df ∧ dg) ∧ dh, dπ〉, π〉 + 〈〈(dg ∧ dh) ∧ df, dπ〉, π〉 + 〈〈(dh ∧ df) ∧ dg, dπ〉, π〉
in some possible sense?

Symplectic manifolds are Poisson manifolds as the simplest examples, which
correspond to non-degenerate Poisson structures. A symplectic form on a sym-
plectic manifold is a non-degenerate closed 2-form on the manifold. Given a sym-
plectic form ω, the associated Poisson bracket is defined as [f, g] = ω(Xf , Xg),
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where the vector field Xf is the symplectic dual of df and is defined by requiring
that the equation df(Y ) = ω(Xf , Y ) holds for all smooth vector fields Y on M .

Let C∞
pl (T ∗M) be the algebra of smooth functions on T ∗M which are poly-

nomial in the cotangent direction. This is a Poisson algebra under the natural
symplectic structure of T ∗M , and is the semi-classical limit of the algebra of
differential operators on M .

Example 4.6. Let A be a unital commutative algebra. Let D0(A) = A =
EndA(A) ⊂ EndC(A) denote the set of differential operators of order zero on A,
i.e., A-linear maps from A to A.

� Each element a ∈ A becomes a right A-linear, left multiplication map La

on A in the sense that La(b) = ab for b ∈ A, so that La(bc) = abc = La(b)c for
b, c ∈ A.

Let D1(A) be the set of all operators D in EndC(A) such that [D, a] ∈ D0(A)
for any a ∈ A. Inductively, define Dn(A) to be the set of all operators D in
EndC(A) such that [D, a] ∈ Dn−1(A) for any a ∈ A. Elements of Dn(A) are
called differential operators of order n on A. The set D(A) = ∪n≥0D

n(A) is a
subalgebra of EndC(A), and is said to be the algebra of differential operators
on A. The algebra D(A) is an almost commutative algebra under the filtration
given by the subspaces Dn(A) for n ≥ 0.

A linear map D : A → A is a differential operator of order 1 if and only if
D = δ + a, where δ is a derivation on A and a ∈ A.

� For a, b, c, d ∈ A, check that [δ +a, b](cd) = ([δ +a, b](c))d in the following.

[δ + a, b](cd) = ((δ + a)b − b(δ + a))(cd)
= δ(bcd) + abcd − bδ(cd) − bacd,

([δ + a, b](c))d = ((δ + a)(bc) − b(δ + a)(c))d
= δ(bc)d + abcd − bδ(c)d − bacd,

with

δ(bcd) − bδ(cd) = δ(bc)d + bcδ(d) − bδ(c)d − bcδ(d) = δ(bc)d − bδ(c)d.

For a general unital commutative algebra A, the semi-classical limit Gr(D(A))
and its Poisson structure are not easily identified, except for coordinate rings of
smooth affine varieties, or algebras of smooth functions on a manifold.

In the case of the algebra C∞(M) of smooth functions on a manifold M
with dimM = n, a differential operator D of order k on C∞(M) is locally given
by D =

∑
|I|≤k aI(x)∂I for x ∈ M , where I = (i1, · · · , in) is a multi-index,

and ∂I = ∂i1 · · · ∂in is a mixed partial derivative. This expression depends
on the local coordinates of M , but its leading terms of total degree k have
an invariant meaning if we replace ∂j with ξj ∈ T ∗M . For ξ ∈ T ∗

x M and
x ∈ M , let σp(D)(x, ξ) =

∑
|I|=k aI(x)ξI . Then the function σp(D) : T ∗M →

C is invariantly defined and said to be the principal symbol of D, belonging
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to C∞
pl (T ∗M). The polynomial algebra C∞

pl (T ∗M) has the canonical Poisson
structure as a subalgebra of C∞(T ∗M) as the Poisson algebra.

Proposition 4.7. There is a Poisson algebra isomorphism from Gr(D(C∞(M)))
to C∞

pl (T ∗M) induced by the principal symbol σp as a map.

Refer to [9] for a proof, or may prove it by proving it for Weyl algebras first.

Example 4.8. Let D(C[x]) be the Weyl algebra of differential operators on the
real line R. Also, D(C[x]) is identified with the unital complex Weyl algebra
W generated by x and p with px − xp = 1, by sending x �→ x and p �→ d

dx .
The defining relation may be replaced with the canonical commutation relation
pq− qp = h

2πi1 in Physics, where h is the Planck constant and p and q represent
momentum and position operators. There is the merit in this expression that if
let h go to zero, then the commutative algebra of polynomials in two variables
is obtained as the semi-classical limit. Also, the imaginary i is necessary if we
consider p and q as self-adjoint operators. There is the normalized representation
from Physics to Math by sending q �→ x and p �→ h

2πi
d
dx .

� Check that the commutator pq − qp = [p, q] is represented as

h

2πi

d

dx
(xf(x)) − x

h

2πi

d

dx
f(x) =

h

2πi
f(x)

for f(x) a differentiable function on R, and p and q are extended to unbounded
self-adjoint operators on the Hilbert space L2(R) by continuity and density.

Any element of W = D(C[x]) has the unique finite sum expression
∑

j aj(x) dj

dxj

as a differential operator with polynomial coefficients aj(x). The standard filtra-
tion for W is given by degree of the differential operators. The principal symbol
map defined as σp(

∑n
j=0 aj(x) dj

dxj ) = an(x)yn induces an algebra isomorphism
from Gr(W ) to C[x, y]. The induced Poisson bracket on C[x, y] is the classical
Poisson bracket of partial derivatives given by

[f, g] = fxgy − fygx =
∣∣∣∣fx fy

gx gy

∣∣∣∣ = det
(

f
g

)′
.

The n-fold Weyl algebra ⊗nW is identified with the algebra D(C[x1, · · · , xn])
of differential operators on C[x1, · · · , xn]. The n-fold Weyl algebra ⊗nW can be
also defined as the universal algebra generated by 2n generators xi and pj for
1 ≤ i, j ≤ n such that [pi, xj ] = δij and [pi, pj ] = [xi, xj ] = 0 for 1 ≤ i, j ≤ n. in
particular, the Dixmier conjecture about the automorphisms of ⊗nW is known.
The Hochschild and cyclic cohomology of ⊗nW are computed in [15] (cf. [28]).

Example 4.9. Let U(g) denote the enveloping algebra of a Lie algebra g. The
algebra U(g) of g is defined to be the quotient of the tensor algebra T (g) of
g by the two-sided ideal generated by elements x ⊗ y − y ⊗ x − [x, y] for all
x, y ∈ g. For an integer p ≥ 0, let F p(U(g)) be the subspace generated by
tensors of degree at most p in U(g). Then U(g) becomes a filtered algebra as
U(g) = ∪p≥0F

p(U(g)). The Poincaré-Birkhoff-Witt theorem implies that the
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associated graded algebra Gr(U(g)) is canonically isomorphic to the symmetric
algebra S(g). This algebra isomorphism is induced by the symmetrization map
Sy from S(g) to Gr(U(g)) defined by

Sy(X1X2 · · ·Xp) =
1
p!

∑
σ∈Sp

Xσ(1)Xσ(2) · · ·Xσ(p).

Note as well that S(g) is viewed as the algebra of polynomial functions on the
dual space g∗ of g, and it is a Poisson manifold under the bracket defined as
[f, g](X) = [Df(X), Dg(X)] for f, g ∈ C∞(g∗) and X ∈ g∗, where the canonical
isomorphism g ∼= (g∗)∗ is used to regard the differential Df(X) ∈ (g∗)∗ as an
element of g. The induced Poisson structure on polynomial functions of S(g)
coincides with the Poisson structure in Gr(U(g)).

Example 4.10. The algebra of formal pseudo-differential operator on the circle
S1 is obtained by the completion of the algebra of differential operators on S1

together with the formal inverse ∂−1 to ∂ = d
dz for z ∈ S1. A formal pseudo-

differential operator on S1 has an expression of the form
∑n

j=−∞ aj(z)∂j , where
each aj(z) is a Laurent polynomial. The multiplication is determined uniquely
by the rules ∂z − z∂ = 1 and ∂∂−1 = ∂−1∂ = 1. We may denote by Ψd the
resulting algebra. The Adler-Manin trace on Ψd, as a noncommutative residue,
is defined by

Tr(
n∑

j=−∞
aj(z)∂j) = Res(a−1(z), 0) =

1
2πi

∫
S1

a−1(z)dz

(cf. [29]). It can be shown that Ψd/[Ψd, Ψd] is 1-dimensional, so that any trace
on Ψd is a multiple of the AM trace Tr.

Note that we have [W,W ] = W for the Weyl algebra W . There is another
interesting difference between Ψd and W such that Ψd has non-inner derivations.
There is also a generalization of Ψd to algebras of pseudo-differential operators
on higher dimensional spaces. The appropriate extension of the AM trace is the
noncommutative residue of Wodzicki (cf. [35]). See also [12] for relations with
the Dixmier trace and its role in noncommutative Riemann geometry.

Now we may recall the formal deformation quantization theory of associative
or Poisson algebras with star products, developed originally by Gerstenhaber,
as a closely related notion to the formulation of quantization of almost com-
mutative algebras by their semi-classical limits as Poisson algebras (cf. [2], [6],
[30]).

Let A be a noncommutative algebra over C and let A[[h]] denote the algebra
of formal power series

∑∞
j≥0 ajh

j =
∑∞

j≥0 hjaj over A with aj ∈ A and h as an
indefinite parameter convergeble to zero. A formal deformation of A is defined
to be an associative C[[h]]-linear multiplication ∗h : A[[h]]⊗A[[h]] → A[[h]] such
that ∗0 : A⊗A → A is the original multiplication of A. For any a, b ∈ A, define
the star product as

a ∗h b = B0(a, b) + hB1(a, b) + h2B2(a, b) + · · · + · · ·
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where each Bj : A ⊗ A → A is a Hochschild 2-cochain on A with values in A,
to satisfy the associativity as

(a ∗h b) ∗h c = a ∗h (b ∗h c), a, b, c ∈ A.

The initial condition on ∗h implies that B0(a, b) = ab for any a, b ∈ A.
Define the bracket [·, ·] on A by [a, b] = B1(a, b) − B1(b, a). Equivalently, or

more suggestively, may define as

[a, b] = lim
h→0

1
h

(a ∗h b − b ∗h a).

� Note that

a ∗h b − b ∗h a = h(B1(a, b) − B1(b, a)) + h2(B2(a, b) − B2(b, a)) + · · · + · · ·
The associativity of the star product implies that B1 : A ⊗ A → A is a

Hochschild 2-cocycle for the Hochschild cohomolog of A with coefficients in A.
Namely, the relation for a, b, c ∈ A

(δB1)(a, b, c) = aB1(b, c) − B1(ab, c) + B1(a, bc) − B1(a, b)c = 0

is satisfied.
� Note that we compute

(a ∗h b) ∗h c = (ab + hB1(a, b) + · · · ) ∗h c

= (ab) ∗h c + (hB1(a, b)) ∗h c + · · ·
= (abc + hB1(ab, c) + · · · ) + (hB1(a, b)c + · · · ) + · · ·
a ∗h (b ∗h c) = a ∗h (bc + hB1(b, c) + · · · )
= a ∗h (bc) + a ∗h (hB1(b, c)) + · · ·
= (abc + hB1(a, bc) + · · · ) + (ahB1(b, c) + · · · ) + · · ·

with ah = ha, so that B1(ab, c) + B1(a, b)c = B1(a, bc) + aB1(b, c) is obtained.
The bracket [·, ·] by B1 satisfies the Jacobi identity.
� Check that for a, b, c ∈ A,

[[a, b], c] + [[b, c], a] + [[c, a], b]
= [B1(a, b) − B1(b, a), c] + [B1(b, c) − B1(c, b), a] + [B1(c, a) − B1(a, c), b]
= B1(B1(a, b), c) − B1(c,B1(a, b)) − B1(B1(b, a), c) + B1(c,B1(b, a))

+ B1(B1(b, c), a) − B1(a,B1(b, c)) − B1(B1(c, b), a) + B1(a,B1(c, b))
+ B1(B1(c, a), b) − B1(b,B1(c, a)) − B1(B1(a, c), b) + B1(b,B1(a, c)).

Does this hold? At this moment, we notice that [b, a] = −[a, b].
If A is a commutative algebra, then (A, [·, ·]) is a Poisson algebra. Thus, in

general, (A, [·, ·]) is said to be a noncommutative Poisson algebra.
The bracket by B1 can be regarded as the infinitesimal direction of the

deformation. The deformation problem in commutative Poisson algebras is to
find higher order terms Bj for j ≥ 2, given B1.
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The associativity for the star product is equivalent to an infinite system of
equations involving the cochains Bj such that

B0 ◦∼ Bn + B1 ◦∼ Bn−1 + · · · + Bn ◦∼ B0 = 0, n ≥ 0,

(in some sense) and equivalently,

δBn =
n−1∑
j=1

Bj ◦∼ Bn−j ,

where the Gerstenhaber product f ◦∼ g of 2-cochains f, g : A⊗A → A is defined
to the 3-cochain given by

(f ◦∼ g)(a, b, c) = f(g(a, b), c) − f(a, g(b, c)), a, b, c ∈ A.

Note that a 2-cochain f defines an associative product if and only if f ◦∼ f =
0.

� Namely,

(f ◦∼ f)(a, b, c) = f(f(a, b), c) − f(a, f(b, c)) = 0,

so that f(f(a, b), c) = f(a, f(b, c)).
Also, the Hochschild coboundary δf of a 2-cochain f can be written as

δf = −m ◦∼ f − f ◦∼ m, where m : A ⊗ A → A is the multiplication of A.
� Check that

(δf)(a, b, c) = af(b, c) − f(ab, c) + f(a, bc) − f(a, b)c
= m(a, f(b, c)) − f(m(a, b), c) + f(a,m(b, c)) − m(f(a, b), c)
= m(a, f(b, c)) − m(f(a, b), c) − f(m(a, b), c) + f(a,m(b, c))
= −(m ◦∼ f)(a, b, c) − (f ◦∼ m)(a, b, c).

To solve those equations of Bj with B0 = m, by anti-symmetrizing we can
assume that B1 is anti-symmetric, and hence B1(·, ·) = 1

2 [·, ·], with B1(a, b) =
−B1(b, a)! Assume now that the equation with respect to B0, B1, · · · , Bn holds.
Then the sum

∑n
j=1 Bj ◦∼ Bn−j is shown to be a cocycle. Thus the equation

of δBn+1 holds if and only if the sum cocycle is a cobundary, i.e., its class in
Hn+2(A, A) (corrected from power 3) should vanish. In the upshot, the third
Hochschild cohomology H3(A,A) is said to be the space of obstructions for the
deformation quantization problem. In particular, if the H3(A,A) vanishes, then
any Poisson bracket on A can be deformed. This is only a sufficient condition,
and is by no means necessary.

In the most interesting examples, we have H3(A,A) �= 0 for A = C∞(M), as
example. To see this, we consider the differential graded Lie algebra (C∗(A,A), [·, ·], δ)
of continuous Hochschild cochains on A, and the differential graded Lie algebra
(∧∗TM, [·, ·], 0) of poly-vector fields on M with zero differential 0. The bracket
in the first is the Gerstenhaver bracket, and in the second is the Schouten
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bracket of poly-vector fields. It is shown by a theorem of Connes that the
anti-symmetrization map α from (C∞(∧∗TM), 0) to (C∗(A,A), δ) sending a
poly-vector field X1 ∧ · · · ∧ Xk to the functional ϕk defined by

ϕk(f1, · · · , fk) = df1(X1)df2(X2) · · · dfk(Xk)

is a quasi-isomorphism of differential graded algebras (see the resolution in
Lemma 44 in [11]). In particualr, induced is an isomorphism of graded com-
mutative algebras: ⊕kHk(A,A) ∼= ⊕kC∞(∧kTM). However, the map α is not
a morphism of Lie algebras. This is where the real difficulty of deforming a
Poisson structure is hidden.

The formality theorem of Kontsevich states that (C∗(A, A), δ, [·, ·]) as a dif-
ferential graded Lie algebra is formal in the sense that it is quasi-isomorphic to
its cohomology ([23]). Equivalently, the map α can be perturbed to a morphism
of L∞-algebras by adding an infinite number of terms. It follows that the original
deformation problem of Poisson structures can be transfered to (C∞(∧∗TM), 0)
with the differential zero, so unobstructed. There is also a deep structure hidden
in the deformation complex of an associative (C∗(A,A), δ), such as the following
as on a surface.

The first structure is given by the cup product. Now let C∗ = C∗(A,A).
The cup product ∪ : Cp × Cq → Cp+q is defined by

(f ∪ g)(a1, · · · , ap+q) = f(a1, · · · , ap)g(ap+1, · · · , ap+q).

Note that the cup product is associative and that the union product ∪ is compat-
ible with the differential δ, and hence it induces an associative graded product
on H∗(A,A). Moreover, this product is graded commutative for any algebra A
([16]).

� Note that for f ∈ Cp, g ∈ Cq, and h ∈ Cr,

((f ∪ g) ∪ h)(a1, · · · , ap+q+r) = (f ∪ g)(a1, · · · , ap+q)h(ap+q+1, · · · , ap+q+r)
= f(a1, · · · , ap)g(ap+1, · · · , ap+q)h(ap+q+1, · · · , ap+q+r)
= f(a1, · · · , ap)(g ∪ h)(ap+1, · · · , ap+q+r)
= (f ∪ (g ∪ h))(a1, · · · , ap+q+r).

� A possible compatibility should be the following doubled commutative
diagram:

Cp+1 × Cq ∪−−−−→ Cp+q+1 ∪←−−−− Cp × Cq+1

(δ,id)

+⏐⏐ +⏐⏐δ

+⏐⏐(id,δ)

Cp × Cq ∪−−−−→ Cp+q ∪←−−−− Cp × Cq

in the sense that δ ◦ ∪ = ∪ ◦ (δ, id) + ∪ ◦ (id, δ). But a proof is needed.
The second structure on (C∗(A,A), δ) is given by a graded Lie bracket, based

on the non-associative, Gerstenhaber circle product ◦∼ : Cp × Cq → Cp+q−1
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defined by that for f ∈ Cp and g ∈ Cq,

(f ◦∼ g)(a1, · · · , ap+q−1)

=
p∑

j=1

(−1)(p+j−1)qf(a1, · · · , g(aj , · · · , aj+q−1), · · · , ap+q−1) (corrected).

In particular, for p = 2 and q = 2, we have agreed as

(f ◦∼ g)(a1, a2, a3) = f(g(a1, a2), a3) − f(a1, g(a2, a3)).

� Check that for f, g, h ∈ C2,

((f ◦∼ g) ◦∼ h)(a1, · · · , a4) =
− (f ◦∼ g)(h(a1, a2), a3, a4) + (f ◦∼ g)(a1, h(a2, a3), a4) − (f ◦∼ g)(a1, a2, h(a3, a4))
= −f(g(h(a1, a2), a3), a4) + f(h(a1, a2), g(a3, a4)) + f(g(a1, h(a2, a3)), a4)
− f(a1, g(h(a2, a3), a4)) − f(g(a1, a2), h(a3, a4)) + f(a1, g(a2, h(a3, a4))),

and

(f ◦∼ (g ◦∼ h))(a1, a2, a3, a4) =
− f((g ◦∼ h)(a1, a2, a3), a4) + f(a1, (g ◦∼ h)(a2, a3, a4))
= −f(g(h(a1, a2), a3), a4) + f(g(a1, h(a2, a3)), a4)
+ f(a1, g(h(a2, a3), a4)) − f(a1, g(a2, h(a3, a4))).

Therefore, we obtain that ((f ◦∼ g) ◦∼ h) = (f ◦∼ (g ◦∼ h)) if and only if the
following equation holds:

0 = f(h(a1, a2), g(a3, a4))
− 2f(a1, g(h(a2, a3), a4)) − f(g(a1, a2), h(a3, a4)) + 2f(a1, g(a2, h(a3, a4))).

Nevertheless, it can be shown as in [16] that the corresponding graded
bracket [·, ·] : Cp×Cq → Cp+q−1 defined by [f, g] = f ◦∼g−(−1)(p−1)(q−1)g◦∼f
induces a graded Lie algebra structure on the deformation cohomology H∗(A,A),
with the Lie algebra grading, now shifted by 1.

What is interesting most is that the cup product and the Lie algebra struc-
ture are compatible in the sense that the graded bracket is a graded derivation
for the cup product. Namely, (H∗(A,A),∪, [·, ·]) becomes a graded Poisson
algebra.

The fine structure of the Hochschild cochain complex (C∗(A, A), δ) such as
the existence of higher order products and their homotopies has been the subject
studied in recent years. Those higher order products are relatively easily written
down in the form of an algebra structure on the Hochschild complex, but it is
hard for them to relate to known geometric structures such as moduli spaces of
curves, as predicted by the Deligne conjecture ([24]).

As a natural question from the graded Poisson algebra structure on de-
formation cohomology H∗(A,A), is it the semi-classical limit of a quantum
cohomology theory for algebras?
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Example 4.11. The dual g∗ of a finite dimensional Lie algebra g is the simplest
non-trivial Poisson manifold. Let Uh(g) = T (g)/Ih be the enveloping algebra
with the rescaled bracket h[·, ·], where the ideal Ih is generated by elements
x⊗ y − y ⊗ x− h[x, y] for x, y ∈ g. By the Poincaré-Birkhoff-Witt theorem, the
anti-symmetrization map αh : S(g) → Uh(g) is a linear isomorphism. Define
the ∗-hproduct on S(g) by

f ∗h g = α−1
h (αh(f)αh(g)) =

∞∑
n=0

hnBn(f, g).

With some work, it can be shown that Bn are bi-differential operators, and
hence the formula extends to a ∗-hproduct on C∞(g∗).

Example 4.12. Consider the algebra generated by 1, x and y with relation
xy − yx = h

i 1. Let f, g be polynomials in x and y. By iterated application of
the Leibniz rule, given is the formula for the product

f ∗h g =
∞∑

n=0

1
n!

(−ih)n

2n
Bn(f, g),

where B0(f, g) = fg, B1(f, g) = [f, g] is the standard Poisson bracket, and

Bn(f, g) = (−1)n
n∑

k=0

(−1)k

(
n

k

)
(∂k

x∂n−k
y f)(∂n−k

x ∂k
y g), n ≥ 2.

Note that this formula does make sense for f, g ∈ C∞(R2), and it defines a
deformation of this smooth algebra with the standard Poisson structure. This
can be extended to arbitrary constant Poisson structure on R

2, with [f, g] =∑
πij∂if∂jg. Then the Weyl-Moyal quantization ∗-product is given by

f ∗h g = exp
(
−i

h

2

∑
πij∂i ∧ ∂j

)
(f, g).

Formal power series of formal deformation theory should be convergent. The
Rieffel strict deformation quantization of the Poisson algebra A = C∞(M) for a
Poisson manifold (M, [·, ·]) is defined to be a family of pre-C∗-algebra structures
(∗h, ‖ · ‖h) on A for h ≥ 0 such that the family forms a continuous field of
pre-C∗-algebras on [0,∞), so that the function h �→ ‖f‖h for any f ∈ A is
continuous, and

‖ 1
ih

(f ∗h g − g ∗h f)‖h → [f, g] (h → 0), f, g ∈ A.

We then have a family of C∗-algebras Ah obtained by completing A with respect
to the norm ‖ · ‖h ([33]).

Example 4.13. It is shown by [32] that the family of smooth (and completed)
non-commutative 2-tori Aθ (and Aθ repectively) with θ ∈ [0, 2π] forms a strict
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deformation quantization of the Poisson algebra C∞(T2) of smooth functions
on the 2-torus T

2. This is viewed as a special case of a more general case. In
fact, let α be a smooth action of R

n on A = C∞(M). Let Xj (1 ≤ j ≤ n)
denote the infinitesimal generators for the action α. Any skew-symmetric n by
n matrix J defines a Poisson bracket on A by [f, g] =

∑n
i,j=1 JijXi(f)Xj(g) for

f, g ∈ A. For each h ∈ R, the new product ∗h on A is defined by

f ∗h g =
∫

Rn×Rn

αhJu(f)αv(g)e2πi〈u,v〉dudv.

The involutive structure is defined by conjugation without deformation, and
with the ∗-norm ([32]). For A = C∞(T2) with the natural R

2-action, the smooth
non-commutative tori Aθ are defined as a strict deformation quantization of A
as a quantum or phantom field.

As a remark, any Poisson manifold does admit a strict deformation quan-
tization? This question may be still open, even for symplectic manifolds. It is
shown in [32] that the canonical symplectic structure on the 2-sphere admits
no SO(3)-invariant strict deformation quantization. As an intriguing idea given
in [13], the existence of a strict deformation quantization of a Poisson manifold
should be regarded as an integrability condition for formal deformation quan-
tization. There is also an analogy in the case of formal and convergent power
series solutions to differential equations around singular points. As a question,
a cohomology theory that could capture the difference between these cases may
be a possible theory of ambiguity. This idea is realized by Landsman [27] as the
example of strict deformation quantization of Poisson manifold dual to Lie alge-
broids. It is shown that they are integrable precisely when they can be deformed
by the C∗-algebra of the Lie groupoid integrating the given Lie algebroid. Note
that the correspoding Poisson manifold is integrable if and only if so is the Lie
algebroid. On the other hand, all of Hochschild cohomology as well as H3(A, A)
seem to be irrelevant to stirct C∗-deformation quantization, as so far.

Example 4.14. It is shown to that the Weyl algebra W is a simple algebra,
that is, it has no non-trivial two-sided ideals, and so is the same for ⊗nW . Also,
any automorphism of W is inner?

Example 4.15. It is shown to that there is no linear map q from C[x, y] to W
such that q(1) = 1 and q(fxgy − fygx) = [q(f), q(g)] for any f, g ∈ C[x, y]. This
is an important special case of the Groenewold-van Hove no-going theorem ([1],
[19]).

Example 4.16. The algebra A = C[x]/(x2) of dual numbers is a non-smooth
algebra. Its algebra of differential operators is described.

Example 4.17. The algebra Ψ of pseudo-differentail operators has non-inner
derivations. The log ∂ = −∑∞

n=1
1
n (1 − ∂)n does not belong to Ψ, but we have

[log ∂, a] ∈ Ψ for any a ∈ Ψ. Therefore, the map δ defined by δ(a) = [log ∂, a]
defines a non-inner derivation of Ψ. The corresponding Lie algebra 2-cocycle ϕ
defined by ϕ(a, b) = tr(a[log ∂, b]) is said to be the Radul cocycle [26]
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5 Topological algebras

For applications of Hochschild cohomology and cyclic cohomology to noncom-
mutative geometry, it is crucial to consider topological algebras, together with
topological bimodules, topological resolutions, and continuous cochains and
chains. For instance, the algebraic Hochschild groups of the algebra of smooth
functions on a smooth manifold are not known, and perhaps are hopelss to com-
pute, but its continuous Hochschild homology and cohomology as a topological
algebra can be comupted as we recall below. May refer to [11], [12] for some
more details. For locally convex topological vector spaces and topological tensor
products, may also refer to [34].

There exists no difficulty in defining continuous analogues of Hochschild co-
homology and cyclic cohomology groups for Banach or C∗-algebras. We have
to simply replace bimodules by Banach or C∗-bimodules, that are bimodules
which are complete by norms, with left and right module actions by bounded
operators, and also cochains by continuous ones. Since the multiplication in
a Banach or C∗-algebra is a continuous operation, all operators such as the
Hochschid boundary map and the cyclic operators extend by continuity. How-
ever, the resulting Hochschild and cyclic theory for C∗-algebras is almost useless
and does vanish in many interesting cases. This is not surprising because the
definition of any Hochschild or cyclic cocycle of an algebra of dimension greater
than zero involves differentiating elements of the algebra. This is in sharp con-
trast with topological K-theory for spaces where the Bott periodicity and so on
hold, as well as the K-theory for C∗-algebras where their analogues hold.
Remark. It follows from Connes [10] and Haagerup [20] that a C∗-algebra is
amenable if and only if it is nuclear.

A C∗-algebra A is said to be amenable if the continous Hn(A, M∗) = 0 for
all n ≥ 1 and for any Banach dual bimodule M∗. In particular, it then holds
that the continuous cohomology HHn(A) = Hn(A, A∗) = 0 for all n ≥ 1. It
also follows from the Connes long exact sequence in cyclic cohomology that the
cyclic continuous cohomology HC2n(A) = A∗ and HC2n+1(A) = 0 for all n ≥ 0
and for any nuclear C∗-algebra A. The class of nuclear C∗-algebras contains
commutative C∗-algebras, the C∗-algebra of compact operators, and the full
(and reduced) group C∗-algebras of amenable groups [3].

The right class of topological algebras for Hochshild and cyclic cohomology
theory be to be the class of locally convex algebras [11]. An algebra A that is a
locally convex topological vector space is said to be a locally convex algebra if
the multiplication map from A⊗A to A is jointly continuous, in the sense that
for any continuous semi-norm p on A, there is a continuous semi-norm p′ on A
such that p(ab) ≤ p′(a)p′(b) for any a, b ∈ A (corrected as making sense).

It may be mentioned that there are topological algebras with a locally convex
topology for which the multiplication map is only separately continuous. Such
more general class appears rarely in applications. But for the class of Fréchet
algebras, there is no distinction between separate and joint continuity of the
multiplication map. In fact, many examples of smooth noncommutative spaces
in noncommutative geometry are Fréchet algebras.
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Example 5.1. Let A = C∞(S1) as a basic example of Fréchet algebras. We
may consider the elements of A as smooth periodic functions on the real line
with period one. The topology on A is defined by the sequence of norms pn for
n ∈ N defined by

pn(f) = sup
0≤k≤n

‖f (k)‖∞ = sup
0≤k≤n

sup
x∈S1

|f (k)(x)|.

for f ∈ A and f (k) the k-th derivative of f . Equivalently, we may use the
sequence of norms qn defined as qn(f) =

∑n
k=0

1
k!‖f (k)‖∞. Note that each qn is

submultiplicative in the sense that qn(fg) ≤ qn(f)qn(g) for f, g ∈ A.
Locally convex algebras with topology induced by a family of submultiplica-

tive semi-norms are known to be projective limits of Banach algebras.
� Check that

‖(fg)(k)‖∞ = ‖
k∑

j=0

kCjf
(j)g(k−j)‖∞ ≤

k∑
j=0

k!
j!(k − j)!

‖f (j)‖∞‖g(k−j)‖∞.

Therefore,

qn(fg) ≤
n∑

k=0

k∑
j=0

1
j!(k − j)!

‖f (j)‖∞‖g(k−j)‖∞

=
n∑

k=0

∑
p+q=k,p,q≥0

1
p!q!

‖f (p)‖∞‖g(q)‖∞ ≤ qn(f)qn(g).

On the other hand, ‖fg‖∞ ≤ ‖f‖∞‖g‖∞, and

‖(fg)′‖∞ = ‖f ′g + fg′‖∞ ≤ ‖f ′‖∞‖g‖∞ + ‖f‖∞‖g′‖∞.

It then follows that p1(fg) ≤ 2p1(f)p1(g).
In general, we obtain that pn(fg) ≤ Cnpn(f)pn(g) for some constant Cn ≥ 0.

In such a case, we may define that pn is submultiplicative with some constant
multiple.

Let M be a closed smooth manifold and A = C∞(M) of smooth functions
on M as a basic example of Fréchet algebras. The topology of A is defined by
the sequence of semi-norms pn defined by

pn(f) = sup
|α|≤n,M⊂∪jUj

‖∂αf‖∞

where the supremum is taken over a fixed, finite coordinate cover ∪jUj for
M , with α = (α1, · · · , αdim M ) multi-index of non-negative integers and |α| =
α1 + · · · + αdim M , and ∂α = ∂α1 · · · ∂αdim M of partial derivatives on Uj .

The Leibniz rule for derivatives of products of functions implies that the
multiplication map is indeed jointly continuous.
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For two locally convex topological vector spaces V1 and V2, their projective
tensor product is defined to be a locally convex space V1 ⊗p V2 with a universal
jointly continuous bilinear map from V1 ⊗ V2 to V1 ⊗p V2 (cf. [18], [34]). Equiv-
alently, for any locally convex space W , and a jointly continuous bilinear map
from V1 × V2 to W , there is a continuous linear map from V1 ⊗p V2 to W . The
topology of V1 ⊗p V2 is defined explicitly by the family of semi-norms p1 ⊗p p2

for p1, p2 continuous semi-norms on V1, V2 respectively, and

(p1 ⊗p p2)(t) = inf{
∑

j

p1(aj)p2(bj) | t =
∑

j

aj ⊗ bj ∈ V1 ⊗ V2}.

Then V1 ⊗p V2 is defined to be the completion of V1 ⊗ V2 under the family of
semi-norms p1 ⊗p p2.

The topology of C∞(M) implies that it is nuclear (cf. [18], [34]). Namely,
in particular, for any other smooth compact manifold N , the natural map from
C∞(M) ⊗p C∞(N) to C∞(M × N) is an isomorphism of topological algebras.
This plays an important role in computing the continuous Hochschild cohomol-
ogy of C∞(M).

Let A be a locally convex topological algebra. A topological left A-module
is defined to be a locally convex vector space M endowed with a continuous left
A-module action A ⊗p M → M . A topological free left A-module is a module
of the type M = A ⊗p V for a locally convex space V . A topological projective
module is a topological module which is a direct summand in a free topological
module.

For a locally convex algebra A, consider Hom(⊗n+1
p A,C) the space of con-

tinuous (n + 1)-linear functionals on A. The algebraic definitions and results
with respect to Hom(A⊗ (⊗nA),C) can be extended to this topological setting,
to define the continuous Hochschild theory groups of a locally convex algebra A.
Dealing with resolutions is needed to be careful. The right class of topological
projective or free resolutions is given by those resolutions that admit continuous
linear splitting. For comparison theorems for resolutions and independence of
cohomology from resolutions, needed are some extra conditions (cf. [11]).

Example 5.2. A locally convex topology on the smooth noncommutative 2-
torus Aθ = A∞

θ generated by unitaries U and V with the relation V U = λUV
for λ = e2πiθ is defined by the sequence of norms pk defined by

pk(a) = sup
m,n∈Z

(1 + |n| + |m|)k|am,n| for a = (am,n) =
∑
m,n

am,nUmV n ∈ A∞
θ ,

where the smoothness is given by finiteness of the norms. It is shown that the
multiplication of Aθ is continuous in this topology.
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� For example, aU =
∑

m,n am,nλnUm+1V n = (am−1,nλn). Thus,

pk(aU) = sup
m,n

(1 + |n| + |m|)k|am−1,nλn|

= sup
m,n

(1 + |n| + |m + 1|)k|am,n|

≤ sup
m,n

(1 + |n| + |m|)k′ |am,n| ≤ pk′(a)pk(U)

for some k′ larger than k, where pk(U) = 2k.

Remark. It is regretful from the time and space limited for publication that
the next more story core is left unchecked and untouched by us, but possibly
expected to be extended in the next time if any chance exists.
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